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The category of the anti-Lawson semilattices 1s isomorphic to that of the algebras for the
finite hyperspace monad in the coarse category. A notion of anti-Lawson coarse semilattice
is introduced. We construct an example of a coarse semilattice which is not an anti-Lawson
coarse semilattice. Tt is proved also that every coarse semilattice of asymptotic dimension (in
the sense of Gromov) zero is an anti-Lawson coarse semilattice.
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Kareropusa aHTHIOYCOHOBCKIX TMOMYPEIIETOK W30MOP(MHA KATETOPUH adTebp A MOHA B
KOHEYHOT'O TUIEPIPOCTPAHCTBA B IPYOON KaTeropuu. BBoAUTCA MOHATHE aHTUIOYCOHOBCKON
rpy6on moaypenieTku. Mu cTpoum mpumep TpySol MOMYPeeTK, KOTopas He ABIAETCA aH-
THUAOYCOHOBCKON T'Py6ol modypetieTkol. [okazano, 9To Kaxgad rpybasd HoJdypeleTKa acuM-
OTOTHYECKOH Pa3MepHOCTH (B CMEICAe ['poMOBa) HOMIb ABIAECTCA aHTHIOYCOHOBCKOH TpPyGOH
TTOJIY PEITe TKOI.

1. Introduction. The notion of Lawson semilattice is one of the most important in the
theory of compact semilattices. The Lawson semilattices are defined to be the compact
semilattices possessing the base of topology consisting of subsemilattices, i.e. the compact
semilattices with small subsemilattices. In the categorical setting, the coarse semilattices
are characterized as the algebras of the hyperspace monad (see [1] for the case of compact
Hausdorff spaces and [2] for the case of uniform spaces).

In different applications, one need to know macroscopic properties of (metric) spaces
rather than their local structure. A formalization of this lead to notions of coarse spaces,
coarse topological spaces, etc. In the category of coarse spaces (see, e.g. [3]) the notion of
coarse semilattice can be naturally defined. Connections between the coarse semilattices and
the algebras of the hyperspace monad in the category of coarse spaces are established in [4].

In this note we introduce a counterpart of the notion of Lawson semilattices in the
category of coarse semilattices. We call the obtained class of coarse semilattices the anti-
Lawson semilattices.

Examples of compact semilattices that are not Lawson semilattices were constructed by
Lawson [5] and Gierz [6]. In Section 3 we construct two examples of metric coarse semilattices
that are not anti-Lawson semilattices. Ideas of our examples are based on modifications of
the examples from [5, 6].
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Lawson [7] has proved that all zero-dimensional compact semilattices are Lawson semi-
lattices. In Section 4 we prove an asymptotic counterpart of this result.

2. Preliminaries.
2.1. Coarse structures. For the convenience of reader we recall some definitions of the
coarse topology; see, e.g. [3, 8-11] for details.

Let X be a set and M, M C X x X. The composition of M and N is the set

MN = {(x,y) € X x X | there exists z € X such that (z,z) € M, (z,y) € N},

the inverse of M is the set M~ = {(z,y) € X x X | (y,z) € M}.
A coarse structure on a set X is a family & of subsets, which are called the entourages,
in the product X x X that satisfies the following properties:

1. any finite union of entourages is contained in an entourage;
2. for every entourage M, its inverse M~! is contained in an entourage;

3. for every entourages M, N, their composition M N is contained in an entourage;
4. JE=X x X.

A coarse structure on X is called unital if the diagonal Ay is contained in an entourage.
A coarse structure on X is called anti-diserete if X x X is an entourage.

If &, & are coarse structures on X, then & < & means that for every M € &; there is
N € &, such that M C N.

Two coarse structures, & and &, are said to be equivalent if £ < & and & < &;. We
usually identify coarse spaces with equivalent coarse structures.

If € is a coarse structure on a set X, then, obviously, the coarse structure & = {MUM ™! |
M € £} is equivalent to € and is symmetric in the sense that N™! € & for every N € &.

Given M € £ and A C X, we define the M-neighborhood M(A) of A as follows: M(A) =
{z € X | (a,2) € M for some a € A}. We use the notation M(a) instead of M({a}). A set
A C X is bounded if there exists @ € X such that A C M(x). Given M € &, we say that
two sets A, B C X are M-close if AC M(B)and B C M(A).

Let (X;, &), 1 =1,2, be coarse spaces. A map f: X; — Xy is called coarse if the following
two conditions hold:

1. for every M € & there exists N € & such that (f x f)(M) C N;
2. for any bounded subset A of X3 the set f~'(A) is bounded.
Let (X, d) be a metric space. The family

Ea={{(z,y) e X x X | d(z,y) <n}|neN}

forms a metric coarse structure on X.

It is easy to see that the coarse spaces and coarse maps form a category. We denote it
by CS.

The product of coarse spaces (X1,&1), (Xz,&2) is the coarse space (X x X3,& x &),
where & x & ={U; x Uy | Uy € &, Uy € &1

Let (X1,&1), (X2,&;) be coarse spaces. A coarse map f: X; — X5 is said to be strongly
open such that for every V € & there exists U € & with the following property: for every
z,y € V the sets fi(z) and f~!(y) are nonempty and U-close.
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Note that the restriction f: X — R onto the set X = {(z,y) € R? | 0 <y < z} of the
projection map onto the first coordinate is an example of a strongly open coarse map.

2.2. Finite hyperspace monad. Define the finite hyperspace functor exp,_: CS — CS as
follows: Given a coarse space (X, &), endow the set

exp, X ={AC X |A#@, Ais finite}
with the so called Vietoris coarse structure, £y, consistion of the sets

(U) ={(A,B) | ACU(B), BCUA)},

where U € £. For a coarse map f: X — Y, it is easy to see that the map exp,, f: exp, X —
exp,, Y defined by the formula exp (A) = f(A), is coarse (see, e.g., [4]).

Recall that a monad on a category C is a triple T = (7,5, i) consisting of an endofunctor
T:C — C and natural transformations n: l¢ — T (unit), p: 7? — T (multiplication)
making the diagrams

TU_T>T2 TSM_T>T2
o NP
n 2 Tu 2
T2L>T T2L>T

commutative (see [4] for details).

Given a monad T = (T, n, 1) on a category C, we say that a pair (X, ¢) is a T-algebra if
£: TX — X is a morphism in C such that {ony = 1x and {opux = £ o TE. The T-algebras
form a category, CT; a morphism of a T-algebra (X,£) into a T-algebra (X’,¢') in CT is
a morphism f: X — X’ in C such that fo& =¢ o T¢.

Similarly as in [4], it can be proved that the functor exp,_ generates a monad, H, =
(exp,,, s,u), on the category CS. The natural transformations s: log — exp, and u: exp? —

exp,, are defined as follows: sx () = {a}, ux(A) = J A.

2.3. Coarse semilattices. Let (X, &) be a coarse space and (X, V) a semilattice. We say
that (X,V,E) is a coarse semilattice whenever V: (X, &) x (X, &) — (X, &) is a coarse map.
If no ambiguity arises, one abbreviates (X, V, &) to (X, V) or even X.

A coarse semilattice (X, V, &) is said to be anti-Lawson if for every U € &£ there exists
V' € & such that for every nonempty finite subsets A, B C X with A C U(B) and B C U(A)
we have (sup A,sup B) € V. (As usual, for any C' = {¢1,..., ¢} € exp, X we denote by
sup C the element ¢; V -+ V¢, € X.)

In the case of metric coarse structures we obtain the following definition. A coarse semi-
lattice (X, V) is anti-Lawson if for every ¢ > 0 there exists § > 0 such that for every nonempty
finite subsets A, B C X with A C O.(B) and B C O.(A) we have d(sup A,sup B) < ¢.

A typical example of a coarse semilattice is
RY} = {(z1,...,2,) | @, > 0 for every ¢}

endowed with the coarse structure induced by the Euclidean metric and the coordinatewise
maximum semilattice operation. Note that R™ is an anti-Lawson semilattice.

Proposition 2.1. Let f: X; — X, be a strongly open homomorphism of a coarse semilat-
tices. If X, is an anti-Lawson semilattice, then so is X,.
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Proof. We denote by &; the coarse structure on X;, ¢+ = 1,2. Given U € &, find V € &
such that, for any z,y € U, the sets f~'(z) and f~'(y) are V-close. Since X; is an anti-
Lawson semilattice, there exists W € & such that, for any nonempty finite V-close subsets
A, B C Xy, we have (sup A,sup B) € W.

Since the map f is coarse, there exists M € &, such that (f x f)(W) C M. Now, if A, B
are nonempty finite U-close subsets A, B C X5, using strong openness of the map f, one
can find finite A’, B" C X; such that f(A') = A, f(B’) = B and A’, B are V-close. Then
(sup A';sup B') € W and

(sup A, sup B) = (f x f)(sup A';sup B') C (f x f)(W) C M.

The following result gives a characterization of the category of Hy-algebras.

Theorem 2.2. The category of H,-algebras is isomorphic to the category of anti-Lawson
semilattices and their coarse homomorphisms.

Proof. First, we show that every anti-Lawson semilattice, (X, V), possesses a natural struc-
ture of H,-algebra. Given A € exp, X, define {(A) = sup A. It can be easily verified that
(X, ¢) is an H,-algebra.

Given an H,,-algebra (X, £), define amap V: X x X — X by the formulaxVy = {({z,y}),
r,y € X. It is easy to see that V is a semilattice operation. The map V: X x X — X,
being a composition of two coarse maps, g: X x X — exp, X, g(x,y) = {z,y}, and &, is
also a coarse map.

Note that, under this definition of the semilattice operation, we have {(A) = sup A,
for every A € exp, X. It follows from the definition that (X, V) is an anti-Lawson coarse
semilattice. O

3. Examples. We provide two examples of coarse semilattices that are not anti-Lawson

coarse semilattices.

3.1. In the space (> define the semilattice operation V as follows: (a;)V (y;) = (max{x;, y;}).
Let

X = {(n,(:z;i),t) ENX I xR |ax; €{0,1} for every 1,
x; =0 for every 1 >n, t > In <1—|—in> }

Given (n, (2;),t), (m, (y:),s) € X, we let

(n, (z:), 1) * (m, (y;),s) = <max{n, m}, (x;) V (y;), max {t, s,1In <1 + Zmax{xi, y2}> }) .

It is easy to verify that (X, *) is a semilattice.

We are going to show that (X, #) is a coarse semilattice with respect to the coarse
structure induced by the natural metric on X.

Fix ¢ > 1 and suppose that

d((nv (1’2), t)v (nlv (l’;), t/)) <g, d((m, (yi)v 5)7 (mlv (yz/')v 5/)) <é&.
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This implies that
In—n|<e |m—m|<e, t—t]<e, |s—s|<e. (3.1)
We estimate
d((n, (i), 1)+ (0", (27), 1), (. (a), ) = (m, (), 57).-

Since |max{n, m}, max{n’,m'}| < eand d((z;)V(y;), (})V(y!)) < 1, it is enough to estimate

D=d <max {t, s,1n <1 + Zmax{xi, y2}>} ,max {t’, s’ In <1 + Z max{z’, yi}) }) .

The rest of the proof splits into few cases. In what follows, Case (a,b) means

max {t, s,1n <1 + Zmax{xi, y2}>} = a, max {t’, s In <1 + Zmax{x;, yi})} = b.

Case (¢,t'). Then D < e, by (3.1).
Case (t,s'). Then s <t,t' <" and it follows from the inequalities

tl—e<t <s<s+e<t+e

that D < e.
Case (t,In(1 4+ > max{z}, y'})). First suppose that max{s’,t'} = ¢/, then

t' <In <1 + Zmax{xé,yf}) < max{ln <1 + in) ,In <1 + Zyi)} +In2 <
<max{s,t'} +In2=¢+1n2

and therefore D < ¢ + In 2.
Now suppose that max{s’,t'} = s, then

s <In <1 —I—Zmax{x;,y;}> < max{ln <1 —I—Zx;> ,In <1 —|—Zy2’>} +In2<s +1n2

and it follows from the inequalities
s —e<s<t<t+e<s+e
that D <In2 +e¢.
Case (In(1 + > max{x;, y:}), In(1 + > max{zt, y!})). Then
max{t,s} <In <1 + Z max{x;, y2}> < max{t,s} +1n2,
max{t’,s'} <In <1 + Z max{a’, yi}) < max{t',s'} +1n2

and from the obvious inequality | max{t, s} — max{t’,s'}| < ¢ it follows that D <&+ 21In 2.

The remaining cases are treated similarly.
It can be easily shown that the preimage under the map V of every bounded subset in
X is bounded. Therefore V is a coarse map and (X, V) is a coarse semilattice.
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Now we show that X is not an anti-Lawson semilattice. For every n € N let

4, = {(n,(:pi),IHZ) XY = 1}, B, = {(n,(1,0,...,0),In2},
then A, C O2(B,) and B,, C Oz(A,,). However,
d(sup A,,sup B,) =d((n,(1,...,1),In(n 4+ 1)), (n,(1,0,...,0),In2)) =In(n + 1) — In 2

and there is no 6 > 0 with d(sup A,,sup B,,) < 4.

3.2. The hyperspace exp X of X is the space of all nonempty compact subsets in X endowed
with the so-called Vietoris topology.

For a metric space (X, p) the Vietoris topology on exp(X) is induced by the Hausdorff
metric py:

pu(A,B)=inf{e >0| AC O.(B), BC O.(A)}.

If X is a subset of a metric linear space, we can consider the subspace
cc(X) ={A €exp(X) | Ais convex}

(the hyperspace of compact convex subsets).
Given a subset A of a metric linear space, we denote by conv(A) its closed convex hull.
It is well-known that for any A, B € cc(X), we have

conv(AUB) ={ta+(1—-t)bla€ A, be B, t€]0,1]}

Let K denote a Roberts compactum, i.e. a compact convex subset in a linear metric
space which does not possess extreme points [12]. We assume, without loss of generality,
that K is endowed with an F-norm || - || (i.e. ||@ +y|| < ||z|| 4 ||ly]| and |[tz| < ||| for every
t with [t| < 1) and the diameter of K is < 1.

Let X =N X cc(K). We endow X with the metric d defined as follows:

max{m,n} if m #n,

d((m,A),(n,B)) = {de(A B) ifm=n.

We leave to the reader an easy verification that d is a metric.
Define a binary operation V on X as follows:

(m, A) if m > n,
(m,A)V (n,B) = ¢ (n, B) if n>m,
(m,conv(AU B)) ifn=m.

It is easy to see that (X, V) is a semilattice.
We are going to verify that (X, V) is a coarse semilattice. Let (m, A), (m/, A"), (n, B),
(n', B') be elements of X with

d((m, A),(m', A")) <e, d((n,B),(n',B)) < .

We are going to estimate D = d((m, A)V (n, B),(m/, A") vV (n/, B')).
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Case 1). m # m/, n # n’. Then max{m, m’} <&, max{n,n'} < e and
(m, A)V (n, B),(m',A") v (n/,B") € (NN [0,¢]) x K.
We conclude that D < diam((NN[0,¢]) x K) < 3e.

Case 2). m # m’, n = n'. Without loss of generality, we may assume that m’ < m. Then
m < e and dy(B,B') < e.

First, suppose that n < m. Then (m,A)V (n,B) = (m,A) € (NN[0,¢]) x K and also
(m/,A") Vv (n/,B") € (NN [0,e]) x K. Therefore, D < 3e.

Next, suppose that n” =n = m. Then

(m, A)V (n, B) = (m, conv(AU B)), (m', A") Vv (n', B") = (m, B').
Since m < e, we have diam({m} x K) < ¢ and
D =dy({m} x conv(AU B)), {m} x B) <e.
Finally, if m" < m < n = n', then
(m, A)V (1, B) = (n, B), (', )V (o', B) = (o, B

and therefore D < ¢.
Case 3). m = m/, n = n’. Without loss of generality, we may assume that m < n. The case
m < n is trivial. Therefore, we have to show that, if dy(A, A’) < ¢, dy(B, B’) < ¢, then
dp(conv(AU B),conv(A’ U B)) <e.

Let ¢ € conv(AU B), then ¢ = ta+ (1 —t)b, where a € A, b € B, and t € [0,1]. There
exist a’ € A",/ € B, such that d(a,d’) < ¢ and d(b,b") < e. Let ¢/ =ta’ 4 (1 — t)V/, then

d(e,d) = tla=d) + (1 =8)(b= V)| < fla = a'l| + [|b = ]| < 2e,

by the properties of the F-norm in K.

It is also easy to see that the preimage of every bounded subset in X under the map V
is bounded in X x X. Therefore (X, V) is a coarse semilattice.

We are going to show that (X, V) is not an anti-Lawson semilattice. Suppose the opposite
and show that in this case the map sup: exp(cc(K)) — cc(K) is continuous.

First, we show that sup is uniformly continuous. By the anti-Lawson property, there
exists § > 0 such that, for any finite subsets Y, 7 C X with dg(Y,7Z) < 1, we have
d(sup Y,sup Z) < 4.

Now suppose that ¢ > 0. There exists n € N such that §/n < e.

For every subset ' C cc(K) and n € N, let C,, ={{n} x A| A € C}.

Consider finite subsets Y, 7 C K with dg(Y,Z) < 1/n, then dy(Y,, Z,) < 1 and, by
the choice of 4, dg(supY,,sup Z,) < §. By the definition of metric in X, we conclude
that dy(sup Y,sup Z) < d/n = e. Since the set {Y € exp(cc(K)) | YV is finite} is dense in
exp(cc(K)), the map sup: exp(cc(K)) — cc(K) is well-defined and continuous.

It follows from [13, Proposition VI-3.9] that cc(K) is a continuous lattice (see [13] for the
definition). Then, as it is proved in [5], the space K can be affinely embedded into a locally
convex space, a contradiction.

4. Asymptotically zero-dimensional anti-Lawson semilattices. Let (X,€) be a
coarse space and U a cover of X. We say that U is uniformly bounded if there exists U € £
such that for every V € U there exists @ € X such that V C U(x).
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Given U € &, we say that a family A of subsets in X is U-discrete provided that for
every @ € X there exists at most one element A € A such that ANU(x) # @.

A coarse space (X, &) has the asymptotic dimension zero (written asdim(X,€&) = 0) if
for every U € & there exists a uniformly bounded U-discrete cover ¢ of X.

The definition above is a natural modification of the definition given by Gromov [14] for
the case of metric spaces.

Let X be a coarse V-semilattice, £ the coarse structure on X. Given U € &, find V € £
such that

(v,2") e U, (y,y)eU= (zVa',yvy)eV

for every z, 2’ y,y € X.
Lemma 4.1. If A is a nonempty finite subset of X and b € U(A), then

(sup A, sup(AU{b})) e V.

Proof. Consider a € A with (a,b) € U. Then
(sup A,sup(AU{b})) = ((supA) Va,(sup A) Vb) € V.
0

Theorem 4.2. Let X be a coarse V-semilattice with asdimX = 0. Then X is an anti-
Lawson semilattice.

Proof. Let U,V € £ be as above.

There exists a uniformly bounded V-discrete cover U of X.

Now let A, B be nonempty finite subsets of X with A C U(B), B C U(A). We are going
to consider (sup A,sup(A U B)). Write B = {by,...,b,}, then by Lemma 4

(sup A,sup(AU{b})) € V,
(sup AU {by},sup(A U {by,b2})) € V,

(sup AU{b1,...,b,1},sup(AU B)) € V. (4.1)
Since the cover U is V-discrete, all the elements
sup A, sup(AU{bi}), ..., sup AU{b,..., b1}, sup(AU B)

belong to some element W of ¢. Hence (sup A,sup(AU B)) € W. Similarly, (sup B, sup(AU
B)) € W and therefore (sup A,sup B) € WW=t C W, for some W € U, i.e. X is anti-

Lawson.

O

5. Remarks and open questions. Let X be a metric space of diameter < 1. The open
cone of X is the set OX = (X xR4)/(X x{0}) endowed with the metric (by [z, {] we denote
the equivalence class of (z,1) € X x Ry):

d([z1, t1], [w2,t2]) = [t — to| + min{ty, to}d(21, 22).

If X is a V-semilattice, then one can define a binary operation V on OX as follows:
[, 510y ] = [ V £, max{s, 1}].
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Question 5.1. If X is compact, is there a compatible metric on X such that (OX,V) with
the metric defined above is a coarse semilattice?

Question 5.2. If X is a compact Lawson semilattice, is there a compatible metric on X
such that (OX, V) with the metric defined above is anti-Lawson semilattice?

In the theory of compact Hausdorfl semilattices, it is proved by J. Lawson [7] that every
semilattice whose underlying space is a finite-dimensional Peano continuum is a Lawson
semilattice.

Question 5.3. Find a counterpart of this result in the theory of coarse semilattices.

I. V. Protasov conjectured that a result similar to Theorem 2.2 can be obtained for the
monad on the category CS generated by the bounded hyperspace functor exp,: exp, X =
{AC X | A# @is bounded}.

[. V. Protasov [15] introduced the notion of ball structure, which turned out to be closely
related to that of coarse structure. One can formulate and prove counterparts of the results
of this note in the category of sets endowed with ball structures (the ball category). Remark
that the metric spaces carry the natural ball structure; therefore our examples fit also for
the ball category.
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