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We propose a method of solving the nonlocal boundary-value problem for nonhomogeneous
PDE of the first order in time and, in general, of infinite order in spatial variables in the case
when the solution uniqueness conditions are violated. We specify the way of constructing a
particular solution of the problem in the class of non-uniqueness.
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[Ipennoxken MeTo I pellleHNs HETOKATBLHON KPAcBOH 3a a4l /s HEOTHOPOIHOT O AudpepeH-
IMaJbHOTO YpaBHEHMA IEPBOTO MOPAAKA IO BpeMeHHU 1, BooOIle IoBopsd, 6€CKOHEYHOI'O IOo-
PAIKA IO TPOCTPAHCTBEHHBIM TT€PEMEHHBIM B CIyYae HEBBITIOJHEHNA YCAOBUH €[MHCTBEHHOCTH
pellleHnA. YKa3aH MeTO[ MOCTPOEHNA PellleHusA 3aa49n B KJIacce Hee MHCTBEHHOCTH.

The problems with nonlocal boundary conditions have been studied in many scientific
investigations. This is caused by a great practical significance of these problems [1, 5] as well
as theoretical investigations considering as wide as possible class of boundary conditions [3].
The problems with nonlocal boundary conditions in a selected variable for PDEs are mostly
ill-posed problems [2, 6].

The present work is a continuation of our previous investigations and deals with con-
structing the differential-symbol method of solving this problem in the case when its solution
uniqueness conditions are violated.

In the domain of variables t € (0,h), @ € R®, we shall examine the nonlocal boundary
value problem

[% —a (%)} Ut,z) = f(t, ), (1)
U0, 2) + pU(h,z) = o(x), (2)

where p e R, h € R, h >0, s € N, f(t,2) and ¢(x) are given smooth functions with certain
restrictions which will be specified below. Here a (88—9) is a differential expression, in general,
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of infinite order with constant coefficients, the symbol of this expression is an analytical in
R® function a(r) # 0 whose univalent analytical continuation into C° is an entire function.

Problem (1), (2) for f(t,2) =0, ¢(x) =0, i.e.

2 (2] -0 "
U(0,2) + ulU(h,z) =0, (4)

when g = 0, is a Cauchy problem and, in the case of existence of a solution of problem (3),
(4), has only trivial solution U(t,z) = 0. If g # 0 then problem (3), (4) may have also
non-trivial solutions, e.g. if p = -1, a (88—90) = %
problem (3), (4). The set of solutions of problem (3), (4), or, in other words, the null space
of problem (1), (2), has been specified in [4].

Obviously, the solution of problem (1), (2) can be represented as a sum of an arbitrary
solution of problem (3), (4), a particular solution of problem (3), (2) and the particular

then an arbitrary constant is a solution of

solution of problem (1), (4). The existence and uniqueness class of solution of problem (3),
(2) as well as the formula for this solution have been also proposed in [4]. We shall investigate
problem (1), (4) in the class of non-uniqueness of its solution.

1. ONE-DIMENSIONAL CASE (s =1)

Let n(v) = 1+ pexpla(v)h], P={v € C: n(r) = 0}. Also, we shall introduce the class
K, for M C C, L C C, of quasipolynomials of the form

flt,x) = Zexpwjt + 0 2]Qn, (L, ), (5)

where m € N, 3; € M, a; € L, Q,,(1,) is a polynomial of two variables ¢ and z of total
degree n; € Z,, for j =1, m.

One can prove that the solution of problem (1), (4) can be found by the formula

Ut,e)=f (%, %) {CI)()\,I/,t) exp [1/:1;]}

) (6)

A=v=0
where

exp[M] — (1 + pexp[Ah]) expla(v)t]
(A —a(v))n(v) ’

moreover, it exists and is unique in the class Keevp, if f(t,2) € Keeyp. Suppose that
f(t, @) in equation (1) has the form

f(t, ) = exp[Bt + ax]Q(t, v), (8)

O\, v, t) = nv) (7)

where 8 € C, Q(t,z) is an arbitrary polynomial of variables ¢ and x, a € P, p, is a
multiplicity of the zero « of the function n(r). Formula (6), is obviously inapplicable for
f(t, @) of the form (8). So, we shall indicate the formula for a particular solution of problem
(1), (4), which will now be determined up to solutions of problem (3), (4).
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Lemma 1. Let
pa—1

R(a,v,t,x) = expla(a)t + ax] Z (v—a)
PO = S0l )

Z(\ vt x) = F(A v, t)explre] +
+uF (AN v, t — h)expla(v)h + Ah + va] + pF (A v, h)R(o, v, t, @) .
Then the function
Z(A\ vt )
n(v)

is entire with respect to A and analytic in the neighborhood of v = «.

G\ vt a) = (10)

Proof. The fact that G(X, v, ¢, 2) is an entire function in A follows from the form of function
(10) and from the fact that function (9) is entire in A. Let us prove the second part of the
lemma. We will show that the numerator of the function G(A, v, t,2) and its derivatives
up to the order (p, — 1) inclusively with respect to the parameter v vanish at v = a.
From the equalities n)(a) = 0, j = 0, p, — 1, one can easy obtain the following equalities:
pexpla(a)h] = =1, a¥(a) =0, j =1, py — 1, and from this it follows that

DF(\v,t)
ovi

Let us compute the values of the function Z (A, v, ¢, ) and its derivatives at v = « using

=0, 53=1,p, — 1.

v=o

the previous equalities. For m =0, p, — 1, we have:

ang;z,t,x) _ explaz ; Cia™” ]% e
—exp[Mr + aw ]zm; Crua™™ ajF(AéZ;t = v
+pexpla(a)t + ax ]i:;(} xm_jw‘y:a
o] zm: (1 g W — exp[M] 3J'F()\élzj,jt — h)
> _ .
+pexpla(a)t] W y:a] N
I Em; G i W el aJF(AaZ]t h) -
> _ .
—expla(a)(t — k)] W V= a_ "

+ explaz]a™ [F(A, v, t) — exp[AR]F (X, v,t — h) — expla(a)(t — h)|F (A, v, k)] =0.
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Theorem 2. Let f(t,x) be a function of the form (8), where 8 € C, Q(t,x) is a polynomial

of variables t and x, o € P, p, is the multiplicity of the zero o of n(v). Then a particular
solution of problem (1), (4) can be computed with the formula

Ult,a) = f (%, %) {G()\,I/,t,:z;)}

)
A=vr=0

I.e.

) (11)

where G(A\, v, t,x) is function (10).

Proof. Let us show that G(A,v,t,x) is a solution of the equation

0 0
{a —a (8_1;)] G\ vt x) = exp[At + vz (12)
and satisfies the condition
G\ v, 0,2) + uG(A, v, h,2) =0. (13)

In fact, equalities (12) and (13) follow from the equalities given below:
{F (A, v, t)exp 1/:1;]} = exp[M + va],
{F (A vt — exp[l/x]} = exp[A(t — h) + va],

Rozl/tx}—(), F(Av,0)=0,

F( )exp[a(u)h + Ah] = —F(A v, h), 14 pexpla(a)h] =0.

Now we shall prove that function (11) determines a solution of equation (1). Using
Lemma 1, we have

%‘(ag)} (m au> {G“”}

B [%_a<%>] (m o

:Q%’a%){[at (
Q(a)\ ;){exp[)\t—l—l/x]}

The realization of condition (4) follows from Lemma 1 and from equality (13). O

A:O
=0

= Q(t,x)explat + fzx] = f(t, ).

A=p3
v=or
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Example 3. In the domain ¢ € (0,1), « € R, find the solution of the problem

0 0*
The function f(¢,x) can be represented in the form (8), where 3 =0, o =0, Q(¢,2) = t.
In the given case, a(v) = v, u = —1, n(r) =1 — exp[?], 0 € P, moreover py = 2.

Using formula (11), we find

B IG (A, v, t, )
0 A—=0 a)\ ’

where

1 {exp[)\t] — exp[r?t]

A — 12

G\ vt a) =

[p— explrz] —

_exp[At] - exp[r?(t — 1)]

A — 12

explA] — expli?]
A —v?
By Lemma 1 this limit exists, so it could be computed in such a way:

IG (A, v, t, )

exp[l/2 + A4 va] — (1 +va)|.

= ll,l_r}% G\ (0,v,t,x).

Having computed the last limit using the [’Hospital rule, we obtain

TR S

U(t,:z;)——4 —|—2—2. (14)

Remark 4. From Example 3, one can see that finding a particular solution of problem (3) is

connected with an evaluation of indeterminate form of the type %. Formula (11) is obtained

as a result of “improving” formula (6) with the element of the null space, namely R(«, v, 1, x).

It turns out that a particular solution of the problem could be found without using elements

of the null space, just formally applying the L’Hospital rule. E.g., a particular solution of
problem (3) can be found as follows:

Ult,z) = g (F'(A v, t)— F(\ vt —1)exp[r? 4+ A]) exp[rva] B
= oX 1 — exp[?] A= -

o aLe i

42 2 6

As we can see, the obtained solution of problem (3) differs from solution (14) by the constant
which is an element of the null space.

Such a way of finding a solution is equivalent to the formal applying the L.’Hospital rule
in formula (6). We shall prove that when formally applying the L’Hospital rule in formula
(6), where ®(\, v, t) is defined by formula (7), a particular solution of problem (1), (4) is
obtained.

Let f(t,x) have the form (8), moreover, the degree of the polynomial Q(¢,x) in the
variable x is equal to n. We shall denote

oAt x) =nv)P(\ v, t)explre]. (15)
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Then formula (6) will have the form

It is easy to see that the expression obtained as a result of action of the differential polynomial
Q ( o 2 ) onto the expression in braces, can be represented in the form

NN
g 0 oA vt x At x
ON Ov n(v) [n(w)]"
Also, one can easy make sure that « is a zero of the function [n(v)]"™! of the multiplicity

(n + l)pa-

Theorem 5. Let f(t,x) have the form (8), where § € C, a € P, p, is a multiplicity of
the zero o of the function n(v), Q(t,x) a polynomial of degree n in x. Then, provided that
expression (16) holds, a particular solution of problem (1), (4) can be computed with the

A=p3
v=or

formula
a(n+1)pa
O (n+1)pa p(ﬁ? v, 1, l’)

Ut,z) = v=a, (17)

d(n+1)pa el
d]/(n+1)pa [77(1/)]

Proof. 1t follows from formulas (9), (15) and (16) that the function p(A, v, ¢, ) is entire in A
and v. Let us show that function (17) is a solution of equation (1). It is easy to see that

5, 5,
{a —a (8_1;)] o(A v, t,x) = exp[At + va]n(v). (18)
Having substituted function (17) into equation (1) and taking into account equalities (18)

and (16), we obtain

a(n+1)pa

2 (- BT A

g;pgjﬁg{ﬁ(Vﬂn+l

P t1)pa . =
Goerm L™ explval }
- Q(t7 l’) eXp[ﬁt] d(n-l-l)pa 41 v=a
dpre
(nt+1)pa ) dk k
Z C(n+1)pa W[T/(V)]n-l-l 2 )pa— eXp[a;z;]
k= o
- Q(t7 l’) eXp[ﬁt] ° d(n-l-l)pa +1 —
dotrnm )] _

— exp[Bt + az]Q(t, ).

Thus, function (16) is a solution of the nonhomogeneous equation (1). Besides, it satis-
fies the homogeneous nonlocal condition (4), which follows from the equality o(X, 1,0, x) +

po(A v, h,x) =0. 0
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Remark 6. If f(¢,x) is an arbitrary function from the class K¢ p, i.e. it has the form (5),
where 3; € C, a; € P, p,, is a multiplicity of the zero a; of the function n(v), Q,,(t,z) is a
polynomial of variables ¢ and x, for j = 1, m, then, using formula (11), one can find partic-
ular solutions U;(t,z) for f;(1,2) = exp[B;t + a;z]Qy,,(t,x) and then, by the superposition

principle of solution of linear differential equation’s, we shall find U(t,z) = > U;(t, x).
7=1

2. MULTIDIMENSIONAL CASE (s > 2)

Let j,n,r € Z5, v = (21,22,... ,2,) € R®, v = (11,13,... ,1v5) € C°. Then

S S

S
xr:H:I;;i; 1/-:1;:21/2':1;2'; r!:Hn!; O =(0,0,...,0);
=1 =1

=1
s

n! or olrl
C, = AT i :Zri;

rl(n —r)! — ovr v ovy? ... vt
1=

P={veC: nv)=1+pexpla(v)h] =0}. (19)
For oo € P, we shall introduce the following sets:

> v 0} :
I/w =

20)={0el: G=wtr we(a), reZ}, r#0};

Q(a) = (a) UQs (a) .

Q
Q

We shall also consider the set Ky p, for M C C, L C C?, of quasipolynomials of several

variables
flt,x) = Z exp [Bit + o - 2] Qn, (L, ),
7=1
where m € N, 8, € M, o; € L, Q,,(1, x) are polynomials of variables ¢, z1, x,... ,z, of total

degree n; € Zy, 3 =1, m.
The formal solution of problem (1), (4) is

Ut,x)=f <%,%> {CI)()\,I/,t)eXp [1/:1;]}

where ®(\, v, t) is function (7), v = (v1, 14, . .. ,vs). We shall consider the case when f(t, ) €
Kcp. Formula (20) in this case obviously becomes inapplicable. As in the case s = 1, the

, (20)
A=0
v=0

solution of problem (1), (4) exists, but is not unique. We shall indicate the formulas for
constructing a particular solution of problem (1), (4) in the case when f(¢,2) € Kcp.
Similarly as in the case s = 1, we shall write down the function

o(t,z, N\ v) =n)®(A\ v, t)explr - x)]. (21)

Obviously, condition (16) holds, where n is the degree of the polynomial Q(¢,x) in the set
of variables x1,x,,... , ;.
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Theorem 7. Let f (t,2) be a quasipolynomial
f(tv l’) = exp[ﬁt +o- J?]Q(t, l’),

where 8 € C, a € P, p, = r%i(n)|r| and rog € Q(«) is one of the vectors realizing the
refla

minimum, i.e. |ro| = p,, n is the degree of the polynomial Q(t,x) in the set of variables

T1,%2,...,2s. Then, provided that condition (16) holds, a particular solution of problem

(1), (4) can be found by the formula

a(n—l—l)ro
—7552;—7?(57V7t7$)
Ut,z) = r=a (22)
d(n—l—l)ro w1
T n (V)]
Proof. The proof is similar to that of Theorem 5. 0

Example 8. In the domain ¢ € (0,1), (z,y) € R? find a solution of the problem

0 o
|:a - axay3:| U(t,x,y) = exp[t]xy, U(vavy) - U(l,x,y) =0.
For the given problem, we have h = 1, p = —1, a(v) = vy, P = {v € C* : vy =

2rki,k € Z}. The set P contains, in particular, the vector v = (0,0). For this vector, we
can construct the set 2(0,0) = {(1 4+ k,3+m), k,m € Z,}. Having applied formula (22),
where ro = (1, 3), we obtain the solution of the problem:

1 1
Ut,z,y)=(1—¢) (y:z;t + @y4x2 + §y:1;> + explt]yz.
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