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NORMAL BALL STRUCTURES

I. V. Protasov. Normal ball structures, Matematychni Studii, 20 (2003) 3-16.

A ball structure is a triple B = (X, P, B), where X, P are nonempty sets and, for all z € X,
o € P, B(x,a) is a subset of X,z € B(z, «), which is called the ball of radius a around z. We
introduce the class of normal ball structures as an asymptotic counterpart of normal topological
spaces. The part of continuous functions in this situation is played by the slowly oscillation
functions. We describe the ball analogues of pseudocompactness and discreteness and define
a corona of a normal ball structure which 1s a generalization of the Higson corona of a proper
metric space.
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IMTaposas cTpykTypa — »T0 Tpoiika B = (X, P, B), rge X, P — HemycTele MHOXeCTBa W
g Beex € X, oo € P, Bz, ) — noamuoxkecTo n3 X,z € B(x, ), KoTopoe HasbIBaeTCA

apoM pagnyca « ¢ MeHTpOM B . KJacc HOPMAJbLHBLIX MIAPOBBIX CTPYKTYD OMpenedeTcs
KaK AcCHMIITOTHYECKIH TBOWHUK KJIacCa HOPMAJBHBIX TOMOJOIMYEeCKNX TPOCTPAHCTB. Poub
HETPEPLIBHBIX (DYHKIWH B JaHHOW CHTYAallld WI'PAIOT MeNJIeHHO OCHMIINPYole (QyHKINN.
BBongaTcsa mapoBble aHAJOTH TICEBIOKOMIAKTHOCTH W AUCKPETHOCTH, & TaKiKe OMpeendeTcA
KOpOHa HOPMAJBHOW IIAPOBOW CTPYKTYPHI Kak 0006IIeHNe KOPOHBI XHUICOHA COGCTBEHHOIO
METPHUYIECKOIO TPOCTPAHCTBA.

Following [4,5], by a ball structure we mean a triple B = (X, P, B), where X, P are
nonempty sets and, for any « € X, a € P, B(x,«a) is a subset of X which is called the ball
of radius a around x. It is supposed that @ € B(z,«) for all € X, o € P. The set X is
called the support of B, P is called the set of radiuses.

Let By = (X1, P, B1), By = (X2, P2, By) be ball structures, f: X; — X5. We say that
[ is a >-mapping if, for every 3 € P,, there exists o € P, such that

By(f(x), 8) € [(Bi(x,a))

for every € X;. If there exists a surjective =-mapping f: X; — Xy, we write B; > Bs.
A mapping f: X; — X; is called a <-mapping if, for every o € Py, there exists g € P,
such that
f(Bi(z,a)) C Ba(f(x), B)

for every z € X. If there exists an injective <-mapping f: X; — X5, we write B; < Bs.
A bijection f: Xy — X, is called an isomorphism between B; and By if f is a >=-mapping
and f is a <-mapping.
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Let By = (X, P1, B1), By = (X, P2, By) be ball structures with common support X. We
say that By C B, if the identity mapping id: X — X is a <-mapping of B; to By. If
B, C B, and B, C By, we write B; = Bs.

A property P of ball structures is called a ball propertyif a ball structure B has a property
‘P provided that B is isomorphic to some ball structure with property P.

Let B = (X, P, B) be a ball structure. For any « € X, a € P put

B (z,a)={y e X :2 € B(y,a)}.

A ball structure B* = (X, P, B) is called dual to B. Note that B** = B.

A ball structure B is called symmetric if B = B*.

A ball structure B = (X, P, B) is called multiplicative if, for any o, 3 € P, there exists
(e, B) € P such that

B(B(x,a),8) € B(z,y(a, 8))
for every x € X. Here
B(Y,a) = | J B(y,a),
yeY
forany Y C X, a € P.

A ball structure B is called uniform if B is symmetric and multiplicative. By [4], sym-
metricity and multiplicativity are ball properties so uniformity is a ball property. Formally,
the notion of a uniform ball structure is an asymptotic duplicate of the notion of a uniform
topological space. It is well known [1] that every uniform topological space can be approxi-

mated by metrizable spaces. Now we describe a ball analogue of such an approximation.
Let (X,d) be a metric space, Rt = {& € R: 2 > 0}. Given any z € X, r € RT, put

By(x,r) ={y € X :d(z,y) <r}.

The ball structure (X,R*, By) is denoted by B(X,d). We say that a ball structure B
is metrizable if B is isomorphic to B(X,d) for some metric space (X,d). Clearly, every
metrizable ball structure is uniform. To formulate a ball characterization of metrizability we
need some more definitions.

Let B = (X, P, B) be a ball structure, @,y € X, We say that x,y are connected if there
exists a € P such that = € B(y, ), y € B(x,a). A subset Y C X is called connected if any
two elements from Y are connected. A ball structure B is called connected if its support is
connected. If a ball structure is uniform, then connectedness is an equivalence relation on
its support. Hence, the support of every uniform ball structure disintegrates to connected
components. Note also that connectedness is a ball property [4].

For an arbitrary ball structure B = (X, P, B) we define a preodering < on the set P by
the rule

a < g if and only if B(x,«)C B(z,f)

for every x € X. A subset P’ C P is called cofinal if, for every o € P, there exists § € P’
such that o < 8. A cofinality cfB of B is the minimal cardinality of cofinal subsets of P.
Note that cofinality is a ball property [4].

By [4], for every ball structure B the following statements are equivalent

(1) B is metrizable;

(11) B =B(X,d) for some metric space (X, d);
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(127) B is uniform, connected and cfB < V.

To approximate the uniform ball structures by means of metrizable ball structures we use
the following two constructions.

Let {By = (X\,P,B)\) : « € [} be a family of ball structures with pairwise disjoint
supports and common set of radiuses, X = [J,.; X\. For every x € X,z € X, and every
a € P, put B(z,a) = By(x, ). The ball structure B = (X, P, B) is called a disjoint union
of the family {B, : A € I}. Clearly, every uniform ball structure is a disjoint union of its
connected components. A ball structure is called pseudometrizable if it is a disjoint union of
metrizable ball structures.

Let {By, = (X, P\, B)) : A € I} be a family of ball structures with common support.
Suppose that, for any Ay, Ay € I, there exists A € [ such that By, C By, By, C B). For
every A € [, choose a copy P{ = f\(P\) such that the family {P{ : A € [} is disjoint. Put
P = U, P Forany x € X, 8 € P, 3¢c Py, put B(z,3) = By(z, fy'(3)). The ball
structure B = (X, P, B) is called the inductive limit of the family {By : A € [}. Clearly,
By C B for every A € [. If every B, is uniform, then B is uniform.

Using metrizability criterion, it is easy to show that every uniform ball structure is the
inductive limit of some family of pseudometrizable ball structures.

Let B = (X, P, B) be ball structures. A subset Y C X is called bounded if there exist
r € X, a € Psuch that Y C B(x,«). We say that B is bounded if its support is bounded.
Let B be a connected uniform ball structure, zg € X, Y C X. Then Y is bounded if and
only if there exists o € P such that Y C B(xg,a). It follows that the union of any finite
family of bounded subset of connected uniform ball structure is bounded.

Let B = (X, P, B) be a ball structure. We say that subsets Y, Z of X are asymptotically
disjoint (and write Y LZ) if, for every o € P, there exists a bounded subset U, C X such
that

BY\U,,a)NB(Z\U,,a)= 2.

We say that subsets Y, Z of X are asymptotically separated (and write Y I 7) if | for
every a € P, there exists a bounded subset U, C X such that

BY\U,,a)NB(Z\Us, ) =9

for all o, 3 € P.

A uniform ball structure is called normalif Y LZ implies Y II Z for all subsets Y, Z of X.

Let By = (Xy, P, B1), By = (X3, Py, B2) be isomorphic ball structures, f: X; — X5 be
an isomorphism, Y C X, Z C Xj. It is a routine verification that Y L7 implies f(Y)Lf(Z)
and Y II Z implies f(Y) II f(Z). Hence, normality is a ball property.

The part of continuous function on the stage of ball structures is played by the slowly
oscillating functions.

Let B = (X, P, B) be a ball structure. A function f: X — R is called slowly oscillating
if, for any ¢ > 0, o € P, there exists a bounded subset U C X such that

diam f(B(z,a)) < e

for every x € X \ U, where diam A = sup,, ¢ 4 |a — b].

In §1 we introduce some concrete classes of normal ball structures and give examples of
uniform ball structures which are not normal. In §2 we prove the counterparts of Urysohn
lemma and Tietze-Urysohn theorem for normal ball structures. In §3 we define the ball
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analogues of pseudocompactness and discreteness. In §4 we describe a corona of a uniform
ball structure and show that in the case of normal ball structure this construction is a
generalization of the Higson corona (see the survey [2]) of a proper metric space.

§1 EXAMPLES

A connected uniform ball structure B = (X, P, B) is called ordinal if there exists a cofinal
well-ordered by < subset of P. Clearly, every metrizable ball structure is ordinal.

Proposition 1.1. Every ordinal ball structure is normal.

Proof. We may suppose that P is well-ordered, cf P = |P| and B(x,a) = B*(x,«) for all
r e Xa€e P Let Y CX,ZC Xand Y L Z. Take the minimal element ag € P and
choose a bounded subset U,, such that

B(Y\Us,.,0) N B(Z\Us,, ).

Suppose that for some o € P we have constructed a family {Us : # < a} of bounded
subsets such that
UW - Uﬁ? B(Y\Uwﬁy) N B(Z\Uﬁvﬁ) =4d

for all ¥ < 8 < a. Since B is connected and cf B = |B|, the subset U = [ J;_, Uz is bounded.
Choose a bounded subset U, such that

B(B(U,«a),a) CU,, B(Y\U,,a)N B(Z\U,,a) = @.

Then B(Y\Us, B) N B(Z\Us,a) = @, B(Y\U,, )\ B(Z\Us, 3) = @ for all 5 < a.
Hence, Y II Z and B is normal. O

Let X be a set and let P be a family of partitions of X. For any x,y € X and P € P,
denote by B(x, P) the set {y € X : x,y are in the same cell of P}. The ball structure
(X, P, B) is denoted by B(x,P). Clearly, B(x, P) is symmetric. Given any P, P, € P, we
say that Py is an enlargement of Py if B(x, 1) C B(x, P») for every @ € X. A ball structure
B(X,P) is multiplicative if and only if, for any P, P» € P, there exists P € P such that P
is an enlargement of P, and P,.

A ball structure B is called cellular if B is isomorphic to B(X,P) for some set X and
some family P of partitions of X. Given any ball structure B = (X, P, B), x,y € X and
a € P, we say that z,y are a-path connected if there exists a sequence xg, zy, ..., x,, Tg = z,
&, = y such that x;41 € B(a;, ), 2, € B(x41,a) for every 1 € {0,1,...,n — 1}. For any
reX,ac P, put

BB (z,0) = {y € X : x,y are a-path connected}.

The ball structure B (X, P, BH) is called the cellularization of B. By [4] a ball structure
B is cellular if and only if B = BHY. A metrizable ball structure B is cellular if and only if B
is isomorphic to B(.X, d) for some non-Archimedean metric space.

Example 1.1. Let X be a set and let ¢ be a filter on X. For any = € X, F' € ¢ put

| X\F, ifx ¢ Fy
B(x’F)_{ {z}, ifzeF,
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Clearly, the ball structure (X, ¢, B) is uniform and cellular. It is denoted by B(X, ¢). Note
that B(X,¢) is connected if and only if (¢ = @. Let Y, Z be subsets of X. Observe that
Y L 7 if and only if there exists F' € ¢ such that (Y N Z) C X\ F. It follows that B(X,¢)

is normal.

Let GG be a group with the identity e and let F be a family of subsets of G such that
e € F for every F' € F. Given any g € GG, F' € F, put

Bi(g,F)=Fg, B,(g,F)=gF.

The ball structures (G, F, By), (G, F, B,.) are denoted by Bi (G, F), B, (G, F), respectively.
A family F is called symmetric if, for every ' € F, there exists F’ € F such that F~! C F".
A family F is called multiplicative if F1Fy, € F for any Fy, Fy € F. Clearly, Bi(G,F),
B, (G, F) are uniform for every symmetric multiplicative family F. In this case the mapping
(G — G defined by g — ¢! is an isomorphism between B;(G, F) and B, (G, F).

For every infinite group G and every infinite cardinal o < |G|, denote by F, the family
of all subsets of G of cardinality < «, containing e. The connected uniform ball structures
B,(G, F,), B.(G,F,) are denoted by Bi(G, a), B, (G, ). If a > Vo, B)(G, ), B.(G, ) are
cellular. The ball structures B, (G, |G]), B, (G, |(G]) are ordinal. We shall write B;(G'), B, (&)
instead of B;(G,Rg), B, (G,Ng). Note that B;(G)=B, (&) if and only if {z7 gz : € G} are
finite for every g € (i. In this case we write B(() instead of B;(G) and B, (G).

Example 1.2. Let G = @a<w1 G, be a direct sum of nonzero cyclic groups. Let ¢, be a
generator of GG,. We show that B(() is not normal. Put © = {g, : @ < w1} and partition
X onto two subsets Y, Z such that |Y| = |Z] = | X|. Take an arbitrary finite subset F' C G
and choose ay,aq,...,a, such that pr,g = 0 for all g € F, a ¢ {a1,az,...,a,}. Then
y+FNz4+F =0 forally € Y\ {gay,Jors s Gants 2 € Z\{Gay> Gons --+» Gaur, |- Hence, Y L Z.
Assume that Y II Z. For every g € (7, choose Y, C Y, Z, C Z such that Y\ Y,, Z\ Z, are
finite and

9‘|‘ngg/‘|‘Z9’:®
for all g,¢" € G. Put

Y(Z)=|J(z+Y2)
zE€EZ
and note that Y(Z) N (y + Z,) = @ for every y € Y. Fix an arbitrary countable subset
{zn :n € w} of Z and put Y' =, ., Y.,. Since Y is uncountable and Y\ Y., is finite for
every n € w, we have Y/ # @ and {z, : n € w} + Y’ C Y (7). Take an arbitrary element
y € Y'. Since Z, contains all but finitely many elements of {z,, : n € w}, there exists m € w
such that z,, € Z,. Then y+z, € Y(Z) and z,, +y € y+ Z,. Hence, Y(Z)N(y+ Z,) # 9,

a contradiction.

Let (G be an arbitrary uncountable Abelian group. It is well known that GG has a subgroup
which is a direct sum of uncountably many cyclic groups. In view of Example 1.2, in order to
show that B((7) is not normal, it suffices to check that normality is inherited by substructures.

Let B = (X, P, B) be a ball structure, Y C X. For any y € Y, a € P put By(y,a) =
B(y,a)NY. The ball structure By = (Y, P, By ) is called a substructure of B. If B is uniform,

then By is uniform. If B is connected, then By is connected.

Proposition 1.2. Every substructure of a normal ball structure B = (X, P, B) is normal.
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Proof. Let Y C X, Y5 C VY, Y] CVY and Yy, Y] asymptotically disjoint in By . For every
a € P, choose a bounded subset U, of X such that

By (Yo \ Uy,a) N By (Y1 \ Uy, a) = @.
Since B is a multiplicative, there exists a mapping v: P x P — P such that

B(B(z,a),8) € B(z,7(e, 3))

for all # € X, a,8 € P. Since B is symmetric, we may suppose that B(z,a) = B*(x, «) for
all x € X, a € P. Then

B(}/O\Uw(a,oz)v Oé) N B(K\Uw(a,a)7 Oé) =4

for every o € P, so Yy and Y] are asymptotically disjoint in B. Since B is normal, Yy and Y;
are asymptotically separated in B. Hence, Yg, Y] are asymptotically separated in By and B
is normal. O

In §2 we show (Lemma 2.3) that a disjoint union of an arbitrary collection of normal
ball structures is normal. Hence a uniform ball structure is normal if and only if every its
connected component is normal.

§2 SLOWLY OSCILLATING FUNCTIONS

Theorem 2.1. Let B = (X, P, B) be a normal ball structure, Yy, Y1 be disjoint subsets of
X such that Yy L Y]. Then there exists a slowly oscillating function f: X — R such that
f |Y0 9, f |Y1— L.

In order to prove this asymptotic counterpart of Urysohn lemma we need some auxiliary
results.

Let B(X, P, B) be a ball structure, Y C X and let {U, : @ € P} be a family of bounded
subsets of X. The set

V=BV \ U0
aeP

is called a pyramid with the core Y determined by the family {U, : o € P}.

Lemma 2.1. Let B = (X, P, B) be a uniform ball structure, Y, 7 be subsets of X. Then

the following statements are equivalent
(i) X L Z;
(ii) there exists a pyramid Y with the core Y such that Y N Z = .

Proof. (1) = (11). For every o € P, choose a bounded subset V, such that B(Y \ V,,a)N
B(Z\ V,,a) = @. Put U, = B*(V,, ). Since B is uniform, U, is bounded. Denote by Y
the pyramid with the core Y determined by the family {U, : « € P}. Then Ynz=0o.

(11) = (2). Since B is multiplicative, there exists a mapping v: P x P — P such that
B(B(z,a),3) C B(x,y(a, 3)) for every & € X. Since B is symmetric, we may suppose that
B(z,a) = B*(x,a) for all € X, o € P. Let a family {U, : o € P} of bounded subsets
determine Y. Since Y N Z = &, we have

BY\Uya,a), (0, 0)) N Z =@
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for every a € P. It follows that
B(Y\Uw(aﬂ), a)N B(Z,a) =9
for every o € P. Hence, Y | Z. O

Lemma 2.2. Let B = (X, P, B) be a normal connected ball structure, Y, 7 be subsets of
X. Then the following statements are equivalent
(i) Y_LZ;
(ii) there exist pyramids Y, Z with the cores Y, Z such that Y N Z = @ and Y LZ.
Proof. (1) = (i1) By normality of B, Y I Z. For every a € P, pick a bounded subset U,

such that
BOY\Usya) 0 B(Z\Us, §) =

for all a, 8 € P. Denote by Y1, Z; the pyramids with the cores Y, Z determined by the family
{U, : o € P}. Clearly, Y1 N Z; = @. By Lemma 2.1, Y L(X\Y}), ZL(X\Z1). By normality
of B, Y I (X\Y1), Z I (X\7Z;). Repeating the arguments, we construct the pyramids Y,
Z with the cores Y, Z such that YJ_(X\Yl), 2L(X\Z1). Since B is connected, the union
of any two bounded subsets of X is bounded. It follows that Y, 7 can be chosen so that
Yg)/l,Zng. Then Y NZ =@ and Y LZ.

(11) = (1). Let the pyramids Y, Z be determined by the families {U, : a € P},
{V, : @ € P} of bounded subsets. Since V' N Z =@, we have

B(Y\Ua.a) N B(Z\V;,8) = @

for all o, 3 € P. Put W, = U, U V. Since B is connected, W, is bounded and
BOY\W,,a) N B(Z\W,,a) =

for every a € P. Hence, Y L Z. O

Lemma 2.3. Let B(X, P, B) be a disjoint union of the family {By = (X\,P,B)) : A € I}
of connected uniform ball structures and let Y, Z be subsets of X such that Y 1 7. Then
there exists A\g € I such that, for every A € I, X # Ao, Y N X\ # @ implies Z N 7, = @.

Proof. Suppose the contrary and choose Ao, A\; € I, A\g # A\; such that
YNX\,#9, ZNX,,#9, YNX\, #93, ZNX, #J.

Put Yo =YNX,, Zo=720X,, Y1 =YNX,\, Z1 =7ZnNZ,. Take any elements
Yo € Yo, 20 € Zo, y1 € Y1, 21 € Zy. Since By, By, are connected and uniform, there exists
o € P such that
20 € B(yo, ), 21 € B(y1, ).

Choose an arbitrary bounded subset U of X and note that U is contained in some
connected component X, of X. Hence, at least one of the following two statements holds:

BY\U,a) N (Z\U) £ @, B(Y\U,a) N (Z\U) # @

Thus, Y and Z are not asymptotically disjoint. O
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Proof of Theorem 2.1. Since every uniform ball structure is a disjoint union of its connected
components and each connected component of normal ball structure is normal, in view of
Lemma 2.3 we may suppose that B is connected. Applying Lemma 2.2, choose the pyramids
YO, Y, with the cores Yy, Y} such that VoY, = a, VoY, = a, YOJ_Yl Put Z(0) = Yo,
Z(4) = Yo U Yo, Z(1) = X\Y1. Then

Z(0) C Z<%> C Z(1), 7(0) L <X\Z<%>>, Z<%>L(X\Z(1)).

Assume that we have chosen the family Z(0), Z(55), ..., Z(T;;l), Z(1) such that
Z< >CZ<z—|—1> Z(i)J_(X\Z(H—l))
2n A 2n 2n
for every i € {0,1,...,2" — 1}.. Apply Lemma 2.2 to each pair Z(Ln) X\Z(g"—,}) and choose

a subset Z(gf{ﬂ) of X such that
<z> <2z—|—1> <z—|—1>7
2n 2+l 2n

i 2041 2041 2041
2(5) k(N2 () 2 ()= (02 (550))
Thus, for every natural number n and every ¢ € {0,1,...,2"} we have defined the subset

Z(—n) ofX
If e ¢ Z(1), put f(x) =1. If 2 € Z(1), put

f(z) = inf{QLn Lz € Z(Qin), neN, ie{0,1,..,2" - 1}}.

Clearly, f |y,=0, f |y,= 1. Show that f is slowly oscillating.
Fixanya e P, e >0 and choose a natural number n such that 5 < e. Since Z(Ln)
(X\Z(H'l)), 1€ {0, 1,...,2" — 1}, there exists a bounded subset U; such that

1+ 1 1 1+ 1
B (Z(—)\Ui,a) C Z

7
B(Z(5:\Ui @) € Z( )-
Put U = Uy UU; U---UUsn_y. Since B is connected U is bounded. Take an arbi-
trary element x € X\U. If @ € Z($\Z(55), then &= < f(z) < S 1t follows that

diam f(B(z,a)) < =, so f is slowly oscﬂlatmg O

2mn )

Let B = (X, P, B) be a ball structure, ¥ C X. We say that a function f: Y — R
is slowly oscillating if, for all o € P, there exists a bounded subset /' C X such that
diam f(B(y,a)NY) < e for every y € Y\ U.

Theorem 2.2 For every uniform ball structure B = (X, P, B), the following two statements
are equivalent

(i) B is normal;

(ii) for every subset Y C X and every bounded slowly oscillating function f: Y — R,
there exists a bounded slowly oscillating function g: X — R such that gy = f
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Proof. (1) = (i1). Using the arguments from the standard proof [1, p.91] of Tietze-Urysohn
theorem with Theorem 2.1 instead of Urysohn lemma, we can construct a sequence (g, )new
of slowly oscillating functions g,: X — R such that, for every ¢ > 0, there exists a natural
number N such that

|gn($) - gm(l')| <
for all € X, n,m > N and the sequence (g,(y))nec. converges to f(y) for every y € Y. For
every @ € X, put g(x) = lim g,(x). Clearly, g is an extension of f. Prove that g is slowly
n—» o0

oscillating.
For every ¢ > 0, choose a natural number n = n(e) such that

9(2) = gnla)] < 2

for every € X. Since g, is slowly oscillating, for every a € P, there exists a bounded
subset U, such that

diam g¢,(B(z,a)) <

W] ™

for every x € X \ U,. Now let « € X \ U,, y € B(z, ). Then

l9(z) = g(y)| < lg(x) = gn(2)| + [gn(2) = g ()] + l9n(y) — 9(y)| < c.

Hence, diam ¢(B(x,«a)) < 2¢ for every @ € X\U, and g is slowly oscillating. If ¢ is
unbounded, choose a,b € R such that f(Y) C [a,b]. For every # € X put

g(z), g(z) € [a,b];
g(z) =< b, g(x) > b;
a, g(x) < a.

Then ¢ is a bounded slowly oscillating extension of f.

(11) = (¢). In view of Lemma 2.3 we may suppose that B is connected. Let Y, Z be
subsets of X, Y 1L Z. Note that Z NY is bounded, put Z’ = Z\Y and note that Y 1L 7/,
YNZ =@. Define f: YU Z — R by the rule f |y=0, f |z= 1. For every a € P, pick a
bounded subset U, of X such that

B(Y\Ua, )N B(Z'\Us,,0) = @.

It follows that diam f(B(x,a)N (Y U Z")) =0 for every x € (Y U Z')\ U,, so f is slowly
oscillating. Take a slowly oscillating extension g: X — R of f. For every a € P, choose a
bounded subset V, of X such that diam g(B(z,a)) < 1 for every # € X\V,. Then

B(Y\V,,a) N B(Z"\V;,3) =&

for all o, 3 € P. Hence, Y II Z'. Since B is connected and Y N Z is bounded, Y I Z and B

is normal. O

By Tietze-Urysohn theorem, every (not necessarily bounded) continuous function defined
on a closed subset of a normal topological space X has a continuous extension onto X. We
show (Example 2.1) that the asymptotic variant of this theorem is not valid for all metrizable
ball structures, but it holds (Example 2.2) for every cellular metrizable ball structure.
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Fxample 2.1. Let B(R,d) be a ball structure of the metric space (R,d), d(x,y) = |z — y|.
Put yo = 0 and define the subset Y = {y, : n € w} of R by the rule y,41 = y, + n. It is
easy to see that every function defined on Y is slowly oscillating. Put f(y,) = v, for every
n € w. Suppose that there exists a slowly oscillating extension g: R — R of f. Choose a
real number r > 0 such that

diam g(Bq(x,1)) <

[N

for every x € R, |z| > r. Then |f(y) — f(z)| < |z — y| for all positive integers y,z with
x> r, y>r. Take an arbitrary n with y, > r. Then |f(yn41) — f(yn)| = 7y Ynt1 — yn = n,
a contradiction.

Fxample 2.2. Let (X,d) be a non-Archimedean metric space, ¥ C X, f: Y — R be a
slowly oscillating function. For every n € w, put Y, = By(Y,n). Describe an extension
g: X — Rof fonto X =], Y, Put g(x) = f(x) for every € Y;. Since B(X,d)
is cellular, there exists a subset C'; C Y such that the family {Bqy(c,1) : ¢ € C1} forms a
partition of Y;. For every x € By(c,1)\Yo, ¢ € C1, put g(a) = f(c¢). Since B(X,d) is cellular,
there exists a subset Cy C Y such that the family {By(¢,2) : ¢ € Cy} forms a partition of
Y;. For every © € By(e,2) \ Y1, ¢ € Oy, put g(x) = f(¢) and so on. After w steps we get
g: X — R.

Take an arbitrary « € X and choose the minimal number £ such that x € Y. If n € w
and n > k, then

diam g(By(x,n)) = diam f(Bg(z,n)NY).

If n € wand n < k, then diamg(By(x,n)) = 0. Since f is slowly oscillating, these
observations show that g is slowly oscillating.

The next two examples give the explicit constructions of separating slowly oscillating
functions for some special normal ball structures.

Fxample 2.3. Let (X, d) be a metric space, Yy, Y1 C X, YoNY; = @, Yo LY;. Put f(2) =0 for
every ¢ € Yp and f(x) = 1 for every « € Y;. Note that cl YgNel Y] is bounded and put f(z) =
0 for every = € (cl YoNcl¥1)\(YoUY7). Take an arbitrary element = ¢ YoUY; U (clYoNclY7)
and put

d(z, Yp)
d(z,Yy) + d(z, Y1)’

fz) =

where d(x, A) = inf{d(x,a) : « € A}. It is a routine verification that f: X — [0,1] is
slowly oscillating.

Fxample 2.4. Let B = (X, P, B) be a cellular ordinal ball structure, Yy C X, ¥; C X,
YonY: =, Y5 LY;. We construct a slowly oscillating function f: X — {0,1} such that
flv, =0, fly, = 1. We may suppose that P is well ordered and B (z,a) = B(z,a) for
every o € P. Fix an increasing family {U, : o € P} of bounded subsets of X such that
B(Yo\U,, o) NY; = @ for every o € P. Put

1, otherwise.

f(l‘) :{ 07 yE%UUaePUa;

We omit the verification that f is slowly oscillating.
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§3 PSEUDOBOUNDEDNESS AND PSEUDODISCRETENESS

A ball structure B = (X, P, B) is called pseudobounded if, for every slowly oscillating
function f: X — R, there exists a bounded subset U of X such that the restriction f|x\v
is bounded. Clearly, every bounded ball structure is pseudobounded.

Proposition 3.1. Every pseudobounded ordinal ball structure B = (X, P, B) is bounded.

Proof. We may suppose that P is well ordered. If cf P < Ry, then B is metrizable and we
may suppose that B = B(X, d), where d is a metric on X . Fix an arbitrary ¢ € X and for
every x € X put f(x) = \/d(x,20). It is easy to check that f is slowly oscillating. Choose
r >0, ¢ > 0 such that f(x) < ¢ for every x, d(x,x¢) > r. Hence, B is bounded.

If cf P > Ny, we assume that B is unbounded and show that B is not pseudobounded. In
this case B is cellular and we may suppose that BH(z,a) = B(z,a) for all z € X, a € P.
Choose an increasing family {U, : o € P} of bounded subsets of X such that B(U,,«a) = U,.
Note that X = (], cp U, take an arbitrary element z € X and choose the minimal ordinal
a with 2 € U,. If @ < w, put f(z) = a. If o is a limit ordinal, put f(a) =0. f o > w
and « is not a limit ordinal, choose a limit ordinal # and a natural number n such that
a = f+n. Put f(z) = n. Thus, we have defined f: X — w. Now take an arbitrary o € P
and observe that f(B(x,a)) = {f(x)} for every « ¢ U,. Thus, f is slowly oscillating and f
is bounded on every subset Y such that X \ Y is bounded. O

Consider an arbitrary uncountable group (. By Proposition 3.1, B;((, |G|) is not pseu-
dobounded. By Proposition 1.1, B;(G, |G]) is normal. Clearly, every countable subset of ¢
is bounded. Let us compare these observations with the standard topological statement: a
normal topological space is pseudocompact if and only if it is countably compact.

Fxample 3.1. Let GG be an uncountable Abelian group. We prove that B((') is pseudobound-
ed. Suppose the contrary and fix an unbounded slowly oscillating function f: G — R.
Choose a countable subgroup H of (G such that f(H) is an unbounded subset of R. Let
H=A{h,:n € w}, hg =0, H, = {hg : K < n}. For every n € w, choose a finite subset
F, C G such that
diam f(x + H,) < %
for every x € G'\ F,. Denote by G’ the smallest subgroup of G containing H and ], ., F.
Fix an arbitrary element ¢ € G\G’. Then f is constant on the coset ¢ + H. On the other
hand, there exists a finite subset F' of ¢ such that f({x,x + ¢g}) < 1 for every 2 € G\ F.
In particular, |f(h) — f(h+ ¢g)| < 1 for every h € H\ F. Since f(h + g) = f(g) for every
h € ', we conclude that f(H) is bounded, which contradicts to the choice of H.

Let B = (X, P, B) be a ball structure. A subset Y C X is called pseudodiscrete if every
function f: Y — R is slow oscillating. A ball structure B is called pseudodiscrete if its
support is pseudodiscrete.

Proposition 3.2. For every uniform ball structure B = (X, P, B) and every subset Y C X
the following statements are equivalent

(1) Y is pseudodiscrete;
(17) every bounded function f:Y — X is slowly oscillating;

(1i1) for every o € P, there exists a bounded subset U, of X such that Y N B(y,«) = {y}
for every y € Y \ U,.
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Proof. (1) = (i1). Obvious.

(11) = (1i1). By Zorn Lemma, there exists a subset Z C Y such that the family
{B(z,a) : z € Z} is disjoint and for every y € Y, there exists z € Z such that B(z,a) N
B(y,a) # @. Define a mapping f: Y — {0,1} by the rule

f(y) _ { 0, ye€ UzeZ B(Zva);

1, otherwise.

Since f is slowly oscillating, f~*(1) is bounded. Denote by Z, the set of all 2 € Z such
that |B(z,a)| > 1. Suppose that Z, is unbounded. For every z € Z, take ' € B(z,a),
z' # z. Put h(z') = 0 and extend h onto Y arbitrarily. Clearly, h is not slowly oscillating.
Hence, Zq is bounded. Put U, = f~!(1) U Z, and obtain (7i1).

(1i1) = (7). Let f: Y — R be an arbitrary mapping. Then diam f(B(y,a)NY) =0
for every y € Y \ U,, so [ is slowly oscillating. O

Every ball structure B(X, ¢) defined in Example 1.1 satisfies (i7¢) of Proposition 3.2, so
B(X, ¢) is pseudodiscrete.

Frample 3.2. Let X be a set and let ¢ be a free ultrafilter on X. We show that B(X, ¢)
is pseudobounded if and only if ¢ is countably complete (i.e. ¢ is closed under countable
intersections).

Let ¢ be countably complete, f: X — R be an arbitrary mapping. Partition R onto
w subsets {A, : n € w} of diameter < 1. Choose n € w such that f~'(A,) € ¢. Then f is
bounded on the subset f~'(A,) and X\ f7'(A,) is a bounded subset of B(X, ¢), so B(X, ¢)
is pseudobounded.

Now assume that B(.X, ¢) is pseudobounded, but ¢ is not countably complete. Choose a
family {F, : n € w} of subsets of X such that Fy = X, F\, € ¢, ;11 C F,and (), ., I, = 9.
For every @ € X, choose the minimal number n such that @ ¢ F), and put f(x) = n. Since
B(X, ¢) is pseudobounded and pseudodiscrete, there exists a subset F' € o such that f |p is
bounded. Pick m € w such that f(x) < m for every € F. Then FNF,11 =@, F, F,, € ¢,
a contradiction.

64 CORONAS OF BALL STRUCTURES

Fix a ball structure B = (X, P, B), endow X with the discrete topology and consider the
Stone-Cech compactification 3X of X. We take the points of 83X to be the ultrafilters on
X with the points of X identified with the principal ultrafilters. Denote by X# the set of
all ultrafilters 7 on X such that every R € r is unbounded in B. Given any r,q € X#, we
write r || ¢ if there exists a € P such that B(R,«) € ¢ for every R € r.

Lemma 4.1. If B is a uniform ball structure, then || is an equivalence on X#.

Proof. Let r,q,s € X*, r || q, q | 5. Suppose that ¢ is not parallel to r. Then, for every
a € P, there exists (), € ¢ such that B(Q.,a) ¢ r. Put R, = X \ B(Q,a). Then
B*(R,a) N Q = @, so r is not parallel to g¢.

Since || q, q || s, there exist «, 5 € P such that B(R,«a) € ¢, B(Q,3) € s for all R € r,
@ € q. Choose y(a, 3) € P such that B(B(x,«a),3) C B(x,v(a,3)) for every @ € X. Then
B(R,y(a,)) € s for every R € r,s0r || s. O
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Denote by ~ the minimal (by inclusion) closed (in X# x X#) equivalence on X# such
that ||[C~. The compact Hausdorff space X#/ ~ is called the corona of B, it is denoted by
v(B).

Let K be a compact Hausdorff space. For every mapping f: X — K, denote by f” the
Stone-Cech extension of f onto 3.X.

Let p,q € X*. We say that p = ¢ if f%(p) = fP(q) for every slowly oscillating mapping
f: X —[0,1]. Clearly, ~ is a closed equivalence on X¥.

Lemma 4.2. Let B = (X, P, B) be a normal ball structure, r, ¢ € X*. Then the following
statements are equivalent

(1) 7~ q;

(17) tor every R € r, ) € q, there exists a € P such that B(R, o) () B(Q, «) is unbounded.
(1i1) r ~ q.
Proof. (1) = (i1) Suppose the contrary. Then there exist R € r, ) € ¢ such that R L Q.
By Theorem 2.1, there exists a slowly oscillating function f: X — [0, 1] such that f|g = 0,
flo = 1. Clearly, //(r) =0, /() = 1 50 () # /*(q).

(17) = (217) Put S = B(R,a) N B(Q,a). For every x € 9, pick f(z) € R, g(z) € ) such
that f(z) € B(x,a), g(x) € B(x,a). Fix any ultrafilter s from S# and note that s || f7(s),
s || ¢°(s), so f°(s) || ¢°(z). Tt follows that for all neighborhoods R* and Q¥ there exist
1(s) € R*, ¢°(s) € Q¥ such that f%(x) || ¢°(s). Hence, r ~ q.

(i27) = (i) Since & is a closed equivalence, it suffices to show that r || ¢ implies f%(r) =
1?(q) for every slowly oscillating function f: X — [0,1]. Suppose the contrary. Then there
exists a slowly oscillating function f: X — [0, 1] such that f%(r) # f?(q). Let f%(r) = a,
f%(q)=0b, |b—a| =d. Put

Ua:{te[(),l]:|a—t|<g}, Ub:{te[o,l]:|b—t|<g}.

Choose R € r, Q € ¢ with f(P) C U,, f(Q) C U,. Since r || ¢, there exists a € P such
that B(R,a) N @ is unbounded. Put R = {x € R: B(x,a) N Q # @} and note that R’ is
unbounded. Since f is slowly oscillating there exists R” C R such that diam f(B(z, a)) < %
for every € R"”. But then B(R",a) N Q = @, a contradiction with R” C R’ O

Lemma 4.3. Let B = (X, P, B) be a cellular ordinal ball structure, r,q € X#. Then the
following statement are equivalent

(1) 7 ~q;
(1) fP(r) = fP(q) for every slowly oscillating function f: X — {0,1}.

Proof. Apply Lemma 4.2 and Example 2.4 instead of Theorem 2.1. O

Let B = (X, P, B) be a normal ball structure. Given any r € X#, denote by [r] = {q €
X# :r ~ ¢}. By Lemma 4.2, ¢ € [r] if and only if R, Q are not asymptotically disjoint for
all R € r, Q € q. To describe the topology of v(B), given any r € X# Q) C X, we write
r L @ if and only if there exists R € r such that R L (). Then the family {[r] : r L Q},
where () runs over all subsets of X, forms a base for open subsets of v(B). Using Lemma
2.2, we get the following description of neighborhoods of points in v(B). Let r € X# R e r
and let R be a pyramid with the core R. Then {[q] : 2 € ¢} is a neighborhood of [r], and
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every neighborhood of [r] contains a neighborhood of this form. By Lemma 4.2, a normal
ball structure B = (X, P, B) is pseudodiscrete if and only if X# = v(B). By Lemma 4.3,
v(B) is zero-dimensional for every cellular ordinal ball structure.

We conclude the paper with one application of coronas to the semigroups of free ultra-
filters on groups.

Let G be a discrete group, G be the Stone-Cech compactification of (. Following [3],
we extend the multiplication from G to SG. Given any r,q € G and A C &, put

Acrgifandonlyif {g€ G :g7"Acq}cr

This multiplication on 8G is associative, so GG is a semigroup and G* = G\ G is a
subsemigroup of BG. By [3, Section 6.3], for every countable group G, G* has 2° pairwise
disjoint closed left ideals in 5.

Theorem 4.1. For every countable group GG, G* is the union of 2° pairwise disjoint closed

left ideals in BG.

Proof. Consider the ball structure B = B;() and note that G#* = G*. Take any r,q € G~
and observe that r || ¢ if and only if r = gq for some element g € (. Since GG is a right
topological semigroup, it follows that every element [r] € v(B) is a closed left ideal in BG.
Clearly, |v(B)| < 2° To show that |v(B)| < 2° fix an increasing family {G,, : n € w} of
finite subsets of G such that G' = |J, ., G'n. Then choose inductively a sequence (2, )ne. in
G/ such that Gz, N Gz, = @ for all n # m. Take any r,q € G* such that r # ¢ and
{zp,:ncw}er, {o,:n €w} € ¢q By Lemma 4.2, [r] # [q], so |v(B)| > 2°. O
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