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We prove that the semigroups B,, of all binary relations and the factor-power ZP*(S,,) of
the symmetric group can be asymptotically approximated by nilpotent semigroups. Further, we
show that almost all elements of these semigroups satisfy the equation #% = 0, where 0 denotes
the full binary relation. All these facts are obtained from a careful study of the radical R, in
FP*(S,). Along this study we also derive some corollaries for doubly stochastic matrices.
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Mokazano, 9T0 Moayrpynmel ‘B, Bcex GHHAPHBIX OTHOMIEHHN U (akTop-cTenenb FPT(S,,)
CHMMETPHUYECKON TPYHOBI MOTYT OBITH ACHITOTHYECKH NPUOJNKEHBI HUIBIOTEHTHBIMEI TIO-
ayrpynnamu. [laree; mokazaHo, YTO TOYTH BCe DAEMEHTHI dTHUX MOJYTPYII YAOBAETBOPAIOT
ypapmermio z2 = 0, Tae 0 o6o3HaYaeT TOIHOE GHHApPHOE OTHOMeHWe. Bce >TH (akTHI IOTY-
YeHBI yTeM aKKypaTHOrO m3ydeHus painkaia R, B FPT(S,). B npouecce sroro maydenns
BBIBOJATCA HEKOTOPHBIE CACJACTBUA A MNBAXK AL CTOXACTUYCCKUX MaTPHI.

1. INTRODUCTION AND THE MAIN RESULT

Let T be a semigroup of (possibly partial) transformations on the set M. The Boolean
B(T) inherits from T the natural structure of a semigroup. Moreover, the equivalence relation
~ on B(T), defined as follows: A ~ B if and only if m? = m? for all m € M, appears to be a
congruence on B(T'). The corresponding quotient B(7T')/~ is usually denoted by FP(T, M).
The equivalence class of the empty set is always the isolated zero in the semigroup FP(T, M),
so we can form the semigroup FP*(T, M) = FP(T, M)\ {&}, which is called the factor
power of (T, M). Extending the action of the semigroup T on M to the Boolean B(M), we
get a natural action of FPY(T, M) on B(M).

This construction appeared first in [2] and was later studied in [3, 4, 7, 8] with the special
emphasize on the case, when T' = §,,, the full finite symmetric group with the natural action
on the set N = {1,2,...,n}. In particular, it was shown that FP*(S,) asymptotically
approximates the semigroup 9B, of all binary relations on N, moreover, FP*(S,,) has a very
nice inner description inside B,,. The semigroup FP*(S,) appears naturally also as the
quotient of the semigroup €2, of doubly stochastic real matrices. Several classes of subsemi-
groups, automorphisms and Green relations for FP*(5,,) have been already described.
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In the present paper we continue the study of the semigroup FP*(S,) with the empha-
size on its radical R,,, which is the intersection of all maximal nilpotent subsemigroups in
FPT(S,) (see [4]). Alternatively, R, consists of all 7 € FP*(S,,), such that |[7(A)] > |A]
for every proper subset A C N. The semigroup R, is nilpotent of nilpotency degree n ([4,
Theorem 6]). The main result of the present paper is the following theorem, which seems to
be quite surprising:

Theorem 1. R, asymptotically approximates FP*(S,) and B, that is,

lim 7|%n| = lim R =
n—oo |[FPH(S,)|  n—eo |B,|

1.

In other words, the semigroup *B,, is asymptotically approximated by a nilpotent semi-
group. If one recalls, see [9, 12], that an arbitrary semigroup is isomorphic to a transitive
semigroup of binary relations, then our results seem to be quite parallel with and somehow
explain the main result in [11], where it was obtained that 99% of all semigroups of order 8
are nilpotent.

The paper is organized as follows: we prove our main theorem in Section 2. In Section
3 we discuss some corollaries, analogous results and other applications of the radical R,,. In
particular, we derive a result about a kind of “row-column symmetric” behavior of doubly
stochastic matrices. Finally, we formulate several conjectures and open problems in Section 4.

2. PROOF OF THE MAIN RESULT

We have a natural chain of embeddings |, C FPH(S5,) C B,. As we have already
mentioned in the Introduction, [3, Theorem 6] states that the semigroup FP*(S,) asymp-
totically approximates ®B,. Hence, it is enough to prove that the radical R, asymptotically
approximates FPT(S,). Actually, we are not going to calculate the necessary limit but
rather would like to show that

_|_
L FP(S)\ Rl

0
oo |FPH(S,)| ’

which would clearly imply the necessary statement.

Our aim now is to find an effective upper bound for the number of elements in FP*(5,,)
which do not belong to the radical. From the definition of the radical, an element, 7, belongs
to FP*(S,) \ R, if and only if there exists A C N, A # @, N, such that |7(A)| = |A|. To
get a convenient formula, we even will leave FP*(S,,) and make the estimate in 9B,. In the
next lemma for A C N and ¢ € B,, we denote

d(A)={be N : there exists a € A such that agb}.

We call a binary relation, ¢ € B, strongly invariant provided that there exist A, B C N,
0 < |A| = |B]| < n, satisfying ¢(A) C B and ¢(A) C B.

Lemma 1. The number of strongly invariant binary relations ¢ € B, is less than or equal

n—1 2
o n 2'2_|_(n_2')2
=5 (1) e

=1
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Proof. We denote © = |A|. Then we can choose A in (7;) different ways and B in (7;)
different ways. Every binary relation ¢, which we count, is, by assumptions, a subset of
(Ax B)U (A x B). But [(Ax B)U(A x B)| =14*+ (n —1)? and to complete the proof one

has to apply the multiplication rule and sum up over all . O
Corollary 1. |FP*(S,) \ R.| < d,.
Proof. Let 7 € FPT(S,) \ R, and A C N, A # @, N, such that |[7(A)] = |A|. Then

we have s(A) = A for every permutation s € 7 (here 7 is considered as the maximal
element in the corresponding equivalence class of B(S,)), and hence s(A) = A. This implies
7(A) = A. Therefore 7 is a strongly invariant binary relation and the statement follows from
Lemma 1. 0

Denote

2 2
d = (") or*+(-1)? i n o(n=1)2+12 _ 9, 290> ~2n+2
" 1 n—1

and d! =d, — d.,.

d,
Now we can compute the limit lim 07 using ( ) < 2" and the fact that
n— 0o

i2+(n—i)2§22—|—(n—2)2:n2—4n—|—8

foralln >4 and 2 <71 <n—2:

d d/ d//
< — - <L
05 lim e = i gE tlim g
n—2 2
> ()
n29n° —2n+2 ?
<2 lm ——
<2 fim Tl S =

< lim n%2%72" 4+ lim n2%2%~4 — .

n—00 n—00
Hence
_I_
0 < lim FP(50) \ P < lim ]| = lim d—z lim & =0.

This completes the proof of Theorem 1.

3. COROLLARIES7 APPLICATIONS AND SOME OTHER FACTS FOR THE RADICAL R,

Let B, C A,, n € N, be two families of sets. We say that almost all elements of A,
belong to B, if |B,|/|A.] — 1, n — oo (we refer the reader to [6] for the corresponding
terminology in graph theory). The following statement contains several direct corollaries
from Theorem 1.
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Corollary 2. 1. B, is asymptotically approximated by a nilpotent semigroup.

2. FPT(S,) is asymptotically approximated by a nilpotent semigroup.
Almost all elements in $B,, are nilpotent with respect to the full binary relation 0.
Almost all elements in FP*(S,) are nilpotent.

Almost all elements in FPT(S,) are contained in the radical.

S Dok W

The transitive closure of almost all oriented graphs coincides with the full oriented
graph (with loops).

™

Almost all oriented graphs are connected.

8. Almost all oriented graphs are strongly connected.

Quite amazing property of the radical R,, obtained above is a good motivation to study
R, in more details. We start this study with one more asymptotic property of the radical.
We recall that the element 0 in FP*(S,) corresponds to the full binary relation N x N
in ‘B,,.

Proposition 1. Almost all elements of R, (and hence of FP*(S,) and B, ) satisly the
equation z? = 0.

Proof. Because of Theorem 1 and [3, Theorem 6], it is enough to prove the statement for %B,,.
We try to estimate the number of those binary relations ¢ for which ¢* # 0. If ¢* # 0, then
there exist @,y € N (possibly = y) such that ¢* does not contain (z,y). First we assume
v # y. That ¢* does not contain (z,y) means that for every = € N the elements (z, z) and
(z,y) cannot be contained in ¢ together, that is either both (x,z) and (z,y) do not belong
to ¢ or (x,z) does not belong to ¢ or (z,y) does not belong to ¢. Hence, the number of such
& does not exceed 3™ - 272,

If ¥ = y, then ¢ cannot contain (x,x) and for every z € N either both (z,z) and (z, )
do not belong to ¢ or (x,z) does not belong to ¢ or (z,x) does not belong to ¢. Hence,
the number of such ¢ does not exceed 37~ . 27°=27+1  Therefore the number of all binary
relations ¢, satisfying ¢* # 0, does not exceed (g) L3m . on’=n gl on® =20kl Dividing
by |B,] = 2" we get

nn—1)-3"+n-3""1-4  3*(n(n—1)+ in)
22n—l—1 = 22n—l—1

Since 3% < 2°, we can rewrite and estimate the last expression in the following way:

3*(n(n —1)+ %n) 3 ‘ (n(n—1) 4+ %n) _ (n(n—1)+ %n)
92n+1 T 95n/3 9. 9n/3 9.9n/3

— 0, n—o0.

O

Since R, is a two-sided ideal of FP*(S,,), we can consider the corresponding Rees con-
gruence p = px, and the quotient FP*(S,), modulo this congruence. The semigroup
FP*(S,), is quite small in comparison with FP*(S,). Indeed, from Theorem 1 it follows
immediately that

_|_
i P50

——— = 0.
5 [FPH(S,)
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The natural embedding S,, C S,41, which fixes n + 1, extends to the natural embedding
FPT(S,) C FPT(Su41). It is obvious that the image of FP*(S,,) under this embedding does
not intersect M,+1 and hence |FPH(S,),| > |FP+(S,)|. Hence the semigroup FP(S,),
grows quicker than the radical of the previous factor power. At the same time most of
properties can be easily translated from FP*(S,) to FP*H(S,), (using the identification
of non-zero elements from FP*+(S,), with the corresponding elements in FP*(S,)). In
particular, we get the following.

Theorem 2. 1. The idempotents in FP*(S,), are equivalence relations.
2. FPH(S,), and FP*(S,) have the same maximal subgroups.
3. The Green relations on FP*(S,,), are induced from FP*(S,,).

4. There is a natural bijection between the nilpotent subsemigroups in FP*(S,), and
the nilpotent subsemigroups in FP*(S,) which contain R,,. This bijection preserves
inclusion, in particular, for n > 2 there is a natural bijection between the maximal
nilpotent subsemigroups in FP*(S,), and the maximal nilpotent subsemigroups in

FP*(S,).
5. All automorphisms of FP*(S,,), are inner.

Proof. The first statement follows from the fact that R, is nilpotent and hence contains
exactly one idempotent, which is 0. The second statement follows from the observation that
all elements of R, are nilpotent and hence R, does not intersect any maximal subgroup
corresponding to a non-zero idempotent.

The third statement follows from the fact that FP*(5,), is a Rees factor of FP+(S,).

The forth statement follows from the definition of R, as the intersection of all maximal
nilpotent subsemigroups of FP*(S,,).

The last statement can be obtained mutatis mutandis from [7] if one remarks that all
arguments used in [7] can actually be applied to the set FP*(S,) \ R,. O

We refer the reader to [8] and [4] for the description of Green relations and maximal
nilpotent subsemigroups of FP*(S,,) respectively. By Theorem 2, the same statements hold
for the semigroup FP*(S,), as well.

We would like to finish this section with one more property of the radical and an applica-
tion to the doubly stochastic matrices. Recall that there exists the canonical anti-involution

* on FP*(S,), defined for the elements 7 € FPF(S,), 7 = A € B(S,)/~, as follows:

(A) = {a! : ac A}.
Lemma 2. R =R,

Proof. Since # is an anti-involution, it is bijective on FP*(S,), and hence it is enough to
prove that (FP¥(S,) \ R.)* = FPH(S,) \ R,. Let 7 = A € FP*H(S,) \ R,. Then there
exists a proper subset, 7' C N, such that |[A(T)| = |T'|. Set T' = 7(T). Then for every
a € A we have a(T) = T’ and hence a=*(1") = T. Therefore (A)*(1") = T. In particular,
|(A)*(T")| = |T"] and thus (A)* € FPH(S,)\ R,. O

Recall that an n x n real matrix, M, is called doubly stochastic provided that it has
non-negative entries and in every row and in every column the sum of all elements is equal
to 1. The set of all doubly stochastic matrices is a semigroup under the usual matrix
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multiplication. We say that two doubly stochastic matrices are equivalent if their entries are
equal to zero simultaneously. It was shown in [3, Theorem 2] that this equivalence is, in fact,
a congruence and that the corresponding quotient semigroup is isomorphic to FP¥(S,).
We say that a doubly stochastic matrix, M, satisfies the C-condition, if for every positive
integer k and every 1 < j < n the number of zeros in the j-th column in the matrix M* is
either zero or strictly less than the number of zeros in the j-th column in the matrix AM*~1,
Analogously we define the R-condition with respect to the rows of M.

Lemma 3. A doubly stochastic matrix, M, belongs to the equivalence class corresponding
to some element in R,,, if and only if M satisfies the C'-condition.

Proof. This follows from the fact that the natural action of FP*(S,) on N is coordinated
with the natural action of doubly stochastic matrices on vectors from R’ . O

Corollary 3. A doubly stochastic matrix, M, satisfies the C-condition if and only if it
satisfies the R-condition.

Proof. According to Lemma 3, the matrix M satisfies the C-condition if and only if it
belongs to the equivalence class corresponding to an element from R,. The anti-involution
* naturally extends to the transposition of doubly stochastic matrices. The transposition of
matrices interchange rows and columns and preserves classes which correspond to R, by
Lemma 2. Now the statement follows from Lemma 3, applied to M®. 0

4. PROBLEMS AND CONJECTURES

We would like to finish the paper with a list of several problems and conjectures related
to the radical R, and the results of this paper. The first conjecture is very natural and is
motivated by Theorem 1 and the results from [11]. For a positive integer, n, let us denote by
a, the number of isomorphism classes of semigroups with n elements, and by b, the number
or the isomorphism classes of nilpotent semigroups with n elements. We also denote by a’,
the total number of semigroups on N, and by b/, the total number of nilpotent semigroups
on N of nilpotency degree at most 3. Clearly b,, < a,, and 0/, < a/,.

Conjecture 1. lim —~ = 1. In other words, almost all finite semigroups are nilpotent.
n—0o Qp,
Conjecture 1 is an “up-to-isomorphism” version of the following conjecture, mentioned
in [11] with the reference to [5], where a stronger statement (for nilpotent semigroups of
nilpotency degree 3) is formulated as a theorem, but the proof is only outlined.

/

Conjecture 2. lim = = 1.
n—00 a%

By [11], the ratio IN)S/ELS, where the corresponding numbers are counted up to isomorphism
and anti-isomorphism, is approximately %.

Further, each finite semigroup S is a subsemigroup in some *8,,. One can hardly expect
that the classical representation of S in 8, will be related to the radical. However, as it
was shown in [9], every finite semigroup is isomorphic to a transitive semigroup of binary

relations on a finite set. Further the transitive semigroups are usually contained in the
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radical and thus it is natural to expect that almost all S will be represented inside R, and
therefore will be nilpotent.

The positive answer to Conjecture 1 would clearly imply the positive answer to the
following statement, which however can be viewed as a separate claim.

Conjecture 3. Let b denote the number of the isomorphism classes of semigroups with n
"

elements having exactly 1 idempotent. Then lim — = 1.
n—00 (U,

The next problem is a natural continuation of the previous one. Conjecture 1 states that
almost all semigroups are nilpotent and a motivation for this is that B, contains a very big
nilpotent subsemigroup R,. It is then natural to expect that nilpotent subsemigroups can
be represented inside R,,.

Problem 1. Which finite nilpotent subsemigroups embed into R,, for some n?

The following conjecture represents our point of view on this problem, however, we do
not have so much evidence for it as in the case of Conjecture 1.

Conjecture 4. All finite nilpotent subsemigroups embed into R,,.

Now we formulate several problems and conjectures about $R,. The semigroup R, is
nilpotent and hence it has trivial (1-element) classes for all Green relations. However, inside
FP*(S,) the picture is quite different. Of course, R,,, being a two-sided ideal, is still closed
under Green relations, but now it is possible that even H-classes in R, are quite big. Here
are the Green classes for the semigroup FPT(53) (we set N = {1,2,3}, 7—[};71 = L, NR}, and
remark that J = D):

D =ri=c=n={( ) )

H
)
W N w w
s S
TN
I
S )
o
Na——

R K{CT ) AR (ORI AR (CNETD)
AR HETEI GG
L3 {(173 1.3 2)} {(1,3 2 1,3)} {(2 1,3 1,3)}

N I S N S N S
RGOSR ERT)
S (9 (G0 KA
L3 {(173 N N)} {(N 1,3 N)} {(N N 1,3)}
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4 4 pd g4 1 2 3 1 2 3
P _RI_EI_HM_KLQ 2.3 3,1 )°\ 23 1,2 31 )

1 2 3 1 2 3 1 2 3 1 2 3 .
3,1 2,3 1,2 )\ 1,2 3.1 23 /7023 3,1 1,2 /°\3,1 1,2 2.3 )"

D {(1,3
L5 )

1 2 3
DG:Rf:Ef:H?l:{(N 2 N)}

For FP*(S3) we have Ry = D* U D* U D° U D and we see that even the H-classes of
M3, regarded as a semigroup in FPT(S5), can be non-trivial. Actually, it is easy to see that
in this case we have only 10 elements in R3 forming trivial H-classes. One can also remark
that all elements from B> satisfy z? = 0.

Problem 2. Let ¢, denote the number of those elements in R,, which form trivial H-classes

in FP*(S,). Find the asymptotic |;{—n|7 n — oo.

The following question is closely related to this problem.

Problem 3. Let 7 be an element of FP*(S,) (in particular, of R, ). Find the cardinality
of the H-class (resp. L-class, R-class or D-class) containing the element .

The next conjecture is natural after Proposition 1, where it was shown that almost all
elements in R, satisfy 2% = 0.

Conjecture 5. Almost all pairs (x,y) of elements from R, satisfy xy = 0.

Certainly, the elements satisfying 2% = 0 do not form a semigroup of nilpotency degree 2.
Denote by f, the maximal cardinality among all nilpotent subsemigroups in R, of nilpotency
degree 2.

n

Rl

Problem 4. Find the asymptotic n — oo.
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Our last collection of problems is related to the study of the so-called cross-sections for
semigroups. Let S be a semigroup and ~ an equivalence relation on S. A ~-cross-section is
a subsemigroup, T', of S, containing exactly one element from every equivalence class with
respect to ~. The most important are cross-sections with respect to the Green relations, see
[1, 10] and references therein.

Problem 5. Describe all H- and D-cross-sections of FPY(S,,).

Problem 6. Denote by ~4 and ~p the equivalence relations on R,, obtained by restricting
to R, the Green relations H and D on FPT(S,) respectively. Describe all ~y- and ~p-
cross-sections of R,,.

Connected to these problems is the following general question:

Problem 7. Describe all congruences p on FP*(S,,) (resp. R, ) and determine for which p
there exist p-cross-sections (retracts) in FPY(S,) (resp. R, ).
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