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We construct a normal functor in the category Comp based on the Hartman-Mycielski
construction

T. M. Pagya. Hopmaavuwviti pynxmop, ocnosannstii Ha xowempyryuu Xapmmara-Muviyeabcro-

2o // Maremaru4uni Cryaii. — 2003. — T.19, Ne2. — C.201-207.

MocTpoer HOopMadbHBIT GyHKTOP B KaTeropuu Comp, OCHOBAHHBIN Ha KOHCTPYKINH XapT-
MaHa- MBITIeTBCKOT 0.

0. The general theory of functors acting in the category Comp of compact Hausdorft
spaces (compacta) and continuous mappings was founded by E.V. Shchepin [1]. He dis-
tinguished some elementary properties of such functors and defined the notion of normal
functor that has become very fruitful. The class of normal and closed to them functors
includes many classical constructions: the hyperspace exp, the space of probability measures
P, the superextension A, the space of inclusion hyperspaces G and many other functors ([2],
3)).

Let X be a space and d a bounded by 1 admissible metric on X. By HM(X) we denote
the space of all maps from [0,1] to the space X such that f|[¢;,¢;41] = const for some
0=ty <-.--<t, =1 considered with the metric

dnro) = | .90 g€ HM(X).

The construction HM(X) is known as the Hartman-Mycielski construction [4].
For every Z € |Comp| consider

HM,(Z) = {f € HM(Z) | thereexist 0 =1, < -+ <tpqy1 =1
with f|[titis1) = 2 € Z,i € {1,...,n}}.

Let U be the unique uniformity of Z. For every U € U and ¢ > 0, let (o, U, &) = {5 €
HM,(Z) | m{t €[0,1) | (a(t),B(t") ¢ U} < e}. The sets (o, U, ) form a base of a compact
Hausdorff topology in HM,, Z.
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Given a map f: X — Y in Comp, define a map HM,X — HM,Y by the formula
HM,F(a) = foa. The functor HM, is normal in Comp [5, 2.5.2].

For X € |Comp| we consider the space HM X with the topology described above. Gen-
erally, HM X is not compact. Zarichnyi has asked if there exist a normal functor in Comp
which has all the functors HM, as subfunctors [5]. The aim of this paper is to construct
such a functor.

The paper is organized as follows: in Section 1 for each X € |Comp| we build some
compactification H X of the space HM X and show that H is a functor in Comp, in Section 2
we prove that H is normal.

1. Let X € |Comp|. By CX we denote the Banach space of all continuous functions
¢: X — R with the usual sup-norm: ||¢|| = sup{|¢(x)| | * € X}. We denote by I the

segment [0, 1]. We shall also use the notation C'(X, I) for the subspace of C'(X) consisting
of all functions with the codomain 1.

For X € |Comp]|, let us define an uniformity on HMX. For each ¢ € C(X) and a,b €
[0, 1] with a < b we define the function ¢, : HMX — R by the formula ¢, ;) = (bi—a) fab ¢o
aft)dt. Put Sgy(X) = {dwm | ¢ € C(X) and (a,b) C [0,1)}.

For ¢1,...,¢n € Spm(X) define a pseudometric pg,

.....

Theorem 1. The family of pseudometrics P = {pg,..6. | n € Nand ¢1,..., ¢, € Spm(X)}
determines a totally bounded uniformity Ugprx on HMX.

Proof. For ¢1,..., 0, € Spu(X) and ¢y, ..., 10, € Sgu(X) we have

that fl(a,b) = 1 # 2 = g|(a,b). Choose a function ¢ € C(X) such that ¢(x;) = 0 and
¢(x2) = 1. Then we have py, , (f,9) =1 > 0.

Hence the family P defines an uniformity in the set HMX. Let us show that this
uniformity generates the topology of HM X.

Consider any neighborhood (f,U,e) of f € HMX. Let 0 =tg < t; < --- <ty = 1 such
that f|[ti—1,t;) = @; for a; € X and ¢ € {1,...,k}. Put V, ={y € X | (2;,y) € U}. Choose
a function ¢; € C(X, 1) such that ¢;(z;) = 0 and ¢;|X \ V,, = 1. It is easy to check that

Now let us consider any f € HMX and any neighborhood V; in the topology generated
by the uniformity Uy x. We can suppose that Vy = {g | py,, (f,9) < e} where ¢ € C(X).
Define an entourage of the diagonal in X x X as U = {(x,y) | |¢(x) — ¢(y)| < ¢}. One can
check that (f,U,e(b— a)/2diam ¢(X)) C V;.

The totally boundedness can be proved using arguments from [6, 8.3.4]. 0

Lemma 1. For each compactum X of infinite weight we have w(Upnpx) < w(X).

Proof. There exists a dense subset D C C(X) such that |D| < w(X) [2]. Put Dyy =
{0 | ¢ € Dand a,b € [0,1]NQ}. Let us consider the family of entourages B = {{(f,g) €
HMXxHMX | psy...on(frg) <1/k} | d1,...,0n € Dun, k € N}. We see that |B| < w(X).
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Let us show that B is a base of uniformity Uyp;x. We have B C Uyprx. Consider any
U € Upnrx. Without loss of generality we can assume that

U:{(f,g)eHMX « HMX | 1/(b—a)|/abgbofdt—/abqbogdt|<€}

for some ¢ € C'(X), e > 0and a < b, a,b € [0,1]NQ. Consider any n € N with 3/n < 1/e
and ¢ € D such that max,ex [¢(x) — ()| < 1/n. Let us define B € B by B = {(f,g) €

HMX x HMX | 1/(b—a)|fab;/)ofdt—fab¢ogdt| < 1/n}. Let us show that B C U.

Consider any (f,g) € B. We have
1 b b 1 b b
—/gbofdt—/qbogdt < — /¢ofdt—/¢ofdt+
b—al/, u a—>b u u
> 3
< —=—<¢€
n

/ab¢ofdt—/ab¢ogdt‘+ /ab¢ogdt—/ab¢ogdt

or (f,g) € U. O

_|_

For each compactum X we consider the uniform space (H X, Uy x ) which is the completion
of (HM X,Upnx) and the topological space HX with the topology induced by the uniformity
Upx. Since Uprx is totally bounded, the space HX is compact. We see also that w(Upyx) <
w(Upmx) [6, 8.3.12], hence w(HX) < w(X) for each compactum X of infinite weight.

Let f: X — Y be a continuous map. Define the map HMf: HMX — HMY by the
formula HM f(a) = foa for a € HMX.

Lemma 2. For each v € C(Y') and a,b € [0,1] we have i, 0 HMf = (¢ 0 ).

Proof. Consider any o € HMX. We have ¢, pyo HM f(a) = 1/(a—b) fab Yo HM f(a)(t)dt =
1/(a=b) [/ o foalt)dt=(vo flunla). 0

The following lemma is an evident corollary of Lemma 2.

Lemma 3. For each continuous map f: X — Y the map
HMf (HMX,UHMX) — (HMY,UHM)/)

is uniformly continuous.

Hence there exists the continuous map Hf: HX — HY such that Hf|[HMX = HM f.
It is easy to see that H: Comp — Comp is a covariant functor and H M, is a subfunctor of

H for each n € N.

2. We are going to prove that the functor H is normal. In what follows we will need
some notions from the general theory of functors.

Let F': Comp — Comp be a covariant functor. A functor F' is called monomorphic
(epimorphic) if it preserves monomorphisms (epimorphisms). For a monomorphic func-
tor F' and an embedding i: A — X we shall identify the space F'(A) and the subspace
F(@)(F(A)) C F(X).

A monomorphic functor F' is said to be preimage-preserving if for each map f: X — Y

and each closed subset A C Y we have (F(f))"'(F(A)) = F(f~'(A)).
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For a monomorphic functor F' the intersection-preserving property is defined as follows:
F(({Xo|a€e A}) = ({F(X,) | @ € A} for every family {X, | a € A} of closed subsets of
X.

A functor I is called continuous if it preserves the limits of inverse systems S = {X,,, p?, A}
over a directed set A.

Finally, a functor F' is called weight-preserving if w(X) = w(F (X)) for every infinite
X € Comp.

A functor F'is called normal [1] if it is continuous, monomorphic, epimorphic, preserves
weight, intersections, preimages, singletons and the empty space.

It is obvious that H preserves singletons and empty set.

Proposition 1. H is a monomorphic functor.

Proof. Let f: A — X be an embedding. Since H f is an uniformly continuous extension of
HMf, it is enough to show that HM f: HMA — HM(f)(A) = HM(f(A)) is a homeomor-
phism. It is easy to see that HM f is injective. Let us show that HM f: HMA — HM(fA)
is open. Consider any open neighborhood (o, U,e) of « € HMA. Then (f x f)(U) is an open
entourage of the diagonal in fAx fA. We can choose an entourage of the diagonal V" C X x X
such that VN (A x A) = (f x f)(U). One can check that (HM f(«a),V,e) N HM(fA) =
HMf(o,U,e). O

Proposition 2. The functor H is epimorphic.

Proof. Let f: X — Y be a surjective map. Since HMY is dense in HY, it is enough to
prove that HMY C Hf(HX). Consider any « € HMY'. Let {y1,...,y,} = ([0,1)). Since
[ is surjective, we can choose the function g: {y1,...,y,} — X such that fog =idyg, ..}
Define 8 € HMX by the formula 8(t) = g(a(t)) for t € [0,1). It is easy to see that

Hf(B3) = o B
We will need some notations. For ¢ € C(X) and (a,b) C [0,1) by qgab HX —» R

we denote the uniformly continuous extension of the function ¢, ) H MX — R. It follows

from Lemma 2 that for each f: X — Y, for each ¢ € C(Y') we have (¢ 0 f)(mb) ;/; (apoHf.
Proposition 3. H is a continuous functor.

Proof. Let X = @S where S = {X,, 77, A} is an inverse system where all X,, are compact.
Denote by Y the limit space of the inverse system H(S) = {H(X,), H(7?), A} and by
m: H(X) — Y the limit of the maps H(m,), where m,: X — X, are the limit projections of
the system S.

Let us show that 7 is a homeomorphism. Consider any v, 3 € HX with v # 3. Then
there exists a function ¢ € C'(X) and «a,b € [0, 1) such that |qb apy(7) — qb n(B)] =¢e>0. By
the Stone-Weierstrass theorem there exists a € A and ¢ € C( a) such that ¢ — v omal <
/8. Choose vy, 31 € HM X such that |¢ab(’71) ap(7)] < e/8and |¢ab([31) qb n(B)] <
¢/8. Then we have

e = [dun(7) = Pan(B)] < [bun (1) = dan(Bi)l +e/4 <
< (¥ o ma)(apy (1) = (¥ 0 Ta)(ap) (Br)] + /2 <
< (¥ 0 ma) 0 (7) — (%/Jom) n(B) +3e/4 =

= [as) 0 H(ma)(7) = ¥an) 0 H( (3] + 32 /4.
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Hence, H(7o)(y) # H(mo)(B) and 7(«) # 7(3) We have just proved that 7 is an embedding.

Since the functor H is epimorphic, the map 7 is a surjection. O

Let A be a closed subset of a compactum X. We say that p € HX is supported on A if
pwe HAC HX.

Lemma 4. Let u € HX and let A be a closed subset of X. Then y is supported on A iff
for each ¢, ¢ € C(X) and (a,b) C [0,1) with ¢(4p)|A = (p|A we haveqb apy (1) = ¢(a7b)(u)

Proof. Let us consider any y € HX such that qb(mb)(/,c) = ¢(a7b)(u) for each ¢, » € C(X) and
(a,0) C [0,1) with ¢, 4)|A = (a5 A. Let us show that p € ClUHMA) C HX.

It is enough to show that for each ¢1,...,¢, € C(X), (a1,by),. (an, b,) with (a;,b;) C
[0,1) and each ¢ > 0 there exists 3 € HM A such that |§gi(ai,b, (p )—1/ f pofdt] < e
for each ¢ € {1,...,n}. We will consider only the case a; = 0 and b; = 1 The proof of the
general case is the same.

Let us consider the set O; = {x € X | there exists a € A such that |¢;(a)—¢;(z)] < £/4}.
Put O = (N, O;. For each i € {1,...,n} choose the function ¢; € C(X) such that

Uil A = 6, X\ O = 6+ 1 and @ > dr. Put k = max{l, max,ex e, 206:(2)]}. By
&; and ; we will denote the functlons qb 0,1) and ;/) 0,1) Since HMX is dense in HX, there
exists v € HM X such that |di(u fo ;0 ’ydt| < e/4k and [ (s fo ;0 ydt] < e/4k for
each 1 € {1,...,n}.

Put S = {t E [0,1) | v(t) € X\ O}. Then we have

:/S;/;Z»o’ydt—/sgbio’ydt§/l¢io~ydt—/l¢io’ydt§
_/Ol@ofydt‘Jr qzi(,l)_;/,.( / ;o vdt <_+O+E_ﬁ'

Using the definition of the set O we can choose an element 3 € HM A such that |¢; o
B(t) — ¢ioy(t)] <e/4 foreach t ¢ S and ¢ € {1,... n} Then we have

/¢ ﬁdt‘ /gboydt‘

_/gbioydt‘—l— ioy—@oﬁ‘dt—l—/
0 [0,1\S

<§—|—m(5)k—|—%<€ for each 7€ {1,...,n}.

e

;o ~ydl — /¢ ﬁdt‘

oy — ¢ o Bldl <

The inverse implication is an easy exercise. O

Corollary 1. Let A be a closed subset of X. Then pu ¢ HA iff there exists ¢ € C'(X, 1)
such that ¢oq1)(p) > 0 and ¢(a) = 0 for each a € A.

Proposition 4. The functor H preserves intersections.

Proof. Since H is a continuous functor, it is sufficient to prove the proposition for the
intersection of two closed subsets A; and A; of a compactum X.

It is evident that H(A; N Az) C H(A1) N H(As). Let us show the inverse inclusion.
Let u € H(A1) N H(Az). Choose any functions 4, 1 € C(X) such that ¢|(A41 N Az) =
a](A1 N Ay). By Lemma 4 it is sufficient to prove that pu(1) = p(12). Consider a function
¢ € C(X) such that ¢|A; = ¢y and ¢|Ay = 9. Since p € H(Ay), we have u(¢) = u()q)
and, since u € H(Asz), we have (o) = p(thq). O
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Lemma 5. Let A be a closed subset of X. For each continuous map f: X — Y, each
¢ € C(X,I) such that ¢|f~*(A) = 0 there exists v» € C(Y,I) such that ¢»o f > ¢ and
oA = 0.

Proof. 1f ¢(x) = 0 for each x € X, we can define ¢)(y) = 0 for each y € Y. Consider the case
when ¢(x) > 0 for some # € X. We can suppose that ¢(x) = 1 for some # € X. For each
i € N define the set A; = {y € Y | max,e-1(y) #(x) > 1/(z +1)}. We obtain the increasing
sequence (A;)72, of closed subsets of Y with the property A; N A = & for each i € N. We
can choose a sequence (B;)%2, of closed subsets of Y such that A, C B;, B; C Int B;4; and
B;N A= @ for each 7 € N.

Let us construct by induction a sequence of function ;: Y — [0, 1] such that

1;) | B; > 1/1,
2i) ¥i|Bicy = iz | By,
3:) ilY\ By <1/l for each [ € {1,...,i}.

Define ¢y by the rule ¢ (y) = 1 for each y € Y. Let us assume that we have already
defined the functions ¢; for each i < n which satisfy conditions 1,)-3;).

Let us define the function t,41. Choose a function v: Y \ Int B, — [1/(¢ + 1), 1/1] such
that y(Fr B,) C {1/n} and v(Y" \ Int B,41) C {1/(n + 1)}. Define the function t,41 by the
conditions ¢, 41(x) = ¢,(x) if € C1 B, and ¢,11(x) = vy(2) if 2 € Y\ B,,.

Conditions 1,) and 3,,) imply that ¢, is well-defined and continuous. It is easy to check
that t,41 satisfies conditions 1,41)-3,41).

The sequence 1; is fundamental in the complete space C'(X, ). Thus, there exists the
limit function ¢: Y — [. Condition 1;) implies that ¢» o f > ¢ and condition 3;) implies
that ¢(a) = 0 for each a € A. O

Proposition 5. The functor H preserves preimages.

Proof. Let f: X — Y be a continuous map and A a closed subset of Y. We should show
that H(f~'(A)) = (Hf)"'(HA). Evidently, H(f~*(A)) C (Hf)"'(HA). Let us consider any
a ¢ H(f~'(A)). By Corollary 1 there exists a function ¢: X — I such that ¢(z) = 0 for each
z€ f71(A) and QB(OJ)(Q) > 0. By Lemma 5 we can choose a continuous function ¢: Y — [

such that ¢(a) = 0 for each a € A/a\ni@bof > ¢. Then we have (@/f)(m)(oz) > QB(OJ)(Q) > 0.
It follows from Lemma 2 that (¢ o f)(m)(oz) = @ZNJ(O, 1)o Hf(a). Hence Hf(a) ¢ H(A) or
ad¢ (Hf)y"'(HA). Thus, we have proved H(f~'(A)) = (Hf) ' (HA). O

The following theorem is an immediate consequence of the results of this section and
Lemma 1.

Theorem 2. The functor H is normal.
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