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A factorization of a matrix differential operator of general form into elementary factors
1s constructed in explicit form. A notion of simplest elementary Darboux transformations
is introduced. The theory of general Darboux type transformations for matrix evolutionary
differential operators of arbitrary order is developed. Binary Darboux type transformations for
such operators are also constructively represented.

0. H. Cugopenko. Paxmopuzayus mampuunvle uddepenyuaibnur onepamopos u npeobpa-
soeanus muna Jap6y // Maremarugui Crynii. — 2003. — T.19, Ne2. — C.181-192.

B saBHOM BWIe MOCTPOEHO pPa3foXkeHWe MATPUIHOTO MuddepeHINAaILHOTO OmepaTopa 06-
[IET0 BH/A Ha eleMeHTapHble MHOKHUTEN (haKTOpH!). BBeeHO MOHATHE TPOCTERIINX 3IeMEH-
TapHBIX npeobpazoBanuil Japby. KoncTpykTuBHO pasBuTa Teopus obmmx npeoGpasoBaHU
Truna [lapby mias MaTpUIHBIX SBOJIONUOHHBIX AU(QepeHINATLHLIX OTEPATOPOB MTPON3BOABLHO-
ro nopAaaka. buHapHble mpeobpasoBanna Tumna /lapby Aad TaKux omepaTopoB MpeAcTaBIeHBI
TakKXe B KOHCTPYKTHBHOM BH/JE.

INTRODUCTION

There are many mathematical and physical problems associated with the integrable dy-
namical systems. However, one of the most important results of the soliton theory — the
construction of a large variety of exact solutions (e.g. multisoliton solutions) — can be ob-
tained by using rather elementary tools applying the so-called Baecklund transformations.
These transformations were first discovered for the famous sine-Gordon equation at the end
of the 19th century [1]. Usually they are treated as nonlinear superpositions which allow
one to create new solutions of a nonlinear evolution equation from a finite number of known
solutions. In practice, however, Baecklund transformations are not very straightforward
to apply in the construction of multisoliton solutions, despite the numerous statements of
various authors.

Another, but closely related, elementary approach which also dates back to the 19th
century. The idea of this approach was originated by Darboux (1882)(see [2]) in his study of
the linear Sturm-Liouville problem. Darboux’s idea can be applied to construct the solutions
of linear and nonlinear partial differential equations including the nonstationary Schroedinger
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equation, Korteweg-de Vries and Kadomtsev-Petviashvili equations, 1 + 1 and 2 + 1 Toda
lattice equations, sine-Gordon, nonlinear Schroedinger and Davey-Stewartson equations and
many others.

It is necessary to mention that the presented technique does not allow to recover all the
solutions or to give a solution of the Cauchy problem with arbitrary initial data. But, at the
same time, it allows one to obtain rather nontrivial classes of solutions and to study their
properties in many cases where the complete analysis based on the Inverse Scattering Trans-
form method (IST), local or nonlocal Riemann-Hilbert problem approach is considerably
more complicated.

The article is organized as follows: in the first section, we will briefly review the basic
background information for the classical Darboux-Crum-Matveev transformations. In Sec-
tion 2 we present our results on factorization matrix linear differential operator of the first
order (operator of the elementary matrix Darboux-Matveev transformation) using Darboux-
type factors. These factors are called the simplest matrix Darboux-like transformations
(Theorem 1). A general form for dressing operators W (operators of transformations) is also
shown. Using results of the second section, we construct in Section 3 the theory of gen-
eral matrix binary Darboux-like transformations for the linear evolution partial differential
equations.

1. DArRBOUX, CRUM AND MATVEEV THEOREMS

Consider the Sturm-Liouville equation (the one-dimensional Schroedinger equation)

L{f} = A/, (1)
where [ := —D* + u(z),D := %,D{f} =2 .— . Df := fD+ f,, i.e. (1) has the form

oz
—feo tuf =Af.

Let w(x) := u[l], f = f(x,A) := f[1], L := L[1], then (1) can be rewritten as L[1]{f[l]} =

AT or = fop[U + w[1]fT1] = ASIL].
We denote the fixed solution of (1) taken at the point A = Ay by ¢1[1], ¢1[1] = @1[1](x, A1)
and define an operator W, [p;[1]] as

Welei[1]] := @1 [1Dey 1] = D — @117 ' [1]. (2)

Now the Darboux transformation (DT) f := f[1] — f[2] of an arbitrary solution of (1) is
defined by

12) = Wl 1) = £olt] - 22 gy = VAL AD
e1ll] e1[1]

where W(p1[1], f[1]) = e1[1]f2[1] — p1z[1] f[1] is the usual Wronskian.
Theorem (Darboux, 1882). The function f[2] satisfies the differential equation

LRI{ST21} = AST2); (4)

(3)

where

L[2) = =D + u[2],u[2] = u[l] — 2(In @[], (5)



FACTORIZATION OF MATRIX DIFFERENTIAL OPERATORS 183

In other words, Darboux’s theorem declares that the Sturm-Liouville equation (1) is
covariant with respect to the action of the Darboux transformation f[1] — f[2], u[l] — u[2].

It is evident that the Darboux transformation may be applied to (4) once more producing
some new solvable Sturm-Liouville equation and that this operation can be repeated an
arbitrary number of times. For the second step of this procedure we have

= (0 - 2220 - 2= = wieW Mg, ©

where (3[2] is a fixed solution of (4) with A = X,, generated by some fixed solution ¢y[1](x, A2)
of (1):
p2[2] := Welr [1[{2(1]} = o1 [1] Doy [1ps[1] =

L el Wialet)
= eulll =Pl = S50 ()

The potential of the linear Sturm-Liouville equation corresponding to f[3] is given by

u[3] = ul2] = 2(In a[2])ze = ull] = 2(lW(pr[1]; 02[1]) - (8)

Formulae (6), (8) can be generalized to include the case of N-times repeated Darboux

transformation, expressed completely in terms of the solutions of the initial equation (1)
without any use of the solutions related to the intermediate iterations of the process.

Let @1[1],...,pn[l] be solutions of (1) fixed arbitrarily at A = Aq,..., Ay respectively.
The following generalization of the Darboux theorem was discovered by Crum:

Theorem [3] (Crum, 1955). The function

SIN 1] = <D_ soNx[N]> <D_ 9ozx[2]><p P12l ]>{f[ 10 =

pN[N] p2(2] pil1]
= Wil [V WLl = Dy LD
satisfies the differential equation
—foe N 4+ 1] +u[N + 1] f[N + 1] = Af[N + 1] (10)
with potential
u[N + 1] = u[l] = 2(In W(ey[1], ..., on[1]))ue- (11)

The Darboux theorem follows from the result of the Crum theorem in the case of N = 1.

The property of the Darboux covariance is even more general, it is not restricted by
the second order scalar differential equations. The remarkable fact, first established by
V. B. Matveev, is that the Darboux covariance holds also for the case of an arbitrary linear
partial differential equation of the form

L} =00 = ad = 3w, /D', D{f} —glz, oL f} —a—f acC  (12)

=0

even if the coeflicients u; are matrix-valued functions of z and ¢t. In the case of N x N
matrix coefficients w;(x,t) V. Matveev has defined the elementary Darboux transformation
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by the same formula analogous to the scalar case, taking for f a matrix solution of (12) and
defining ¢ to be a fixed invertible N x N matrix solution of (1), i.e.,

f=100 = f2] = 1] = o f[1] := WIeDH{ ]}, o = ealle™ 1], (13)
Wiell]] := ¢[lJDe™ 1] = D — @[l [1].

Theorem (Matveev, 1979 [4], [5]). The function f[2] satisfies the linear partial evolution
equation of the form

L2I{f[2]} = 0, (14)
where .
L[2) = ad, =) iz, 1)D'. (15)

2. FACTORIZATION OF MATRIX DIFFERENTIAL OPERATOR W[p] = ¢Dp™! =D — "

We claim that Darboux-Matveev transformation (13) is not “elementary”, therefore the

following theorem holds:
Theorem 1. 1. Every column-solution ¢ [1] := (¢1i, pais---> i) [1],4 € {1,..., N} of
the matrix solution p[1] generates the simplest elementary Darboux-like transformation

Wiles[1]], i € {L...., N}
fa= 110 = Wale {3
Wale 1@} = 0, (16)
where, for example,

en[De 1] 0
—ea[ller 1

Walp = | P ol (7)
—eni e 1]

Iy = diag(N_l)X(N_l)(l . 1).
The function f[i 4 1],

Flo+1] = Wale 000, ied{l,... N,

satisfies the linear partial evolution equation of the form
Lli + 1, 0:1]{fT: + 1]} = 0,

where

Lli+ Lpall)] = ad — 3 weli + L, (YD = Wil LI LIW3 o.lL])

k=0
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2. The differential operator Wlp[l]] (13) admits a factorization to the form

Wip[l]) := oD ' [1] = [ Wale (18)

=N

where @ i[k] := H;Zk_l Wiile.li][{ex[1]},

Wiile.lil] = Epulil Doy [i] — 1) + In + A[i, ], (19)
a1;
0 0
A[l,l]: (275 (2773 5 EZ:d1ag(5},,5f,,5ZN), (20)
0 0
an;

where
4 1, 1=7;
5 = { e
Z 0, 47 J.
Therefore, the Darboux-Matveev transformation is the composition of N simplest
Darboux-type transformations like (18)—(20).

The proofs of this and the following theorems of our paper are contained in a constructive
method of the construction of all transformations. We omit these proofs that we present
in explicit form for operators of transformations (dressing operators W;;, W, and W — see
below). An explicit form of the matrix A7, 7] (20) are presented below in the second subitem
of Theorem 2 (see formulae (25)). It allows us to check all our propositions by direct
calculations.

Define the matrix differential operators

Wi = Wi[ea[1]], Wa == Was[pa[2]]Wilea[1]],. . .,

Wit = Wi [p s [k + 1] Wilpa[1]], ..., Wy = W]e[1]], (21)

e[l] :== ¢ = (p1,0.2,..-,0.N) = (@i;) =
P11 cee L1k | P1k+1 cee PIN

e
Okt - PRk | Pk oo @rN
PE+11 Pk+1k | PEk+1k+1 -+ PE+IN

e
©N1 ONk | PNk+1 ... ©ONN

My, | Dk,N—k

= - - - ’ Z?.]E{lva}a
My_rr | Dy

where Mk is the matrix of the principal minor My : M, = deth : |Mkl DN & 1s the
matrix of tbe infe}’ior diagonal minor Dy_j of (N — k) x (N — k) dimension; My = ¢11, D, =
QONN,...,MN:DNZQO
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The matrices MN_;M and lv);“N_k are of (N—Fk)xkand kx (N —k) dimensions complement
My, and Dy_j to the matrices (¢1,92,...,9x) and (pi,...,o.N), respectively.
Remark. Tt is evident that the following formulae hold:

Loernalk+1] = Wi{ernll]}, ke {l,...,N -1}
2. Wi{p[1]} =0, forj <k;
3. Winlp k]l = WW, !, ke {l,....N}.

Corollary. The function f[i 4 1],

fi+ 1] =W}, e{l,....N}, (22)
satisfies the linear partial evolution equation of the form
Lli+ L[ fli + 1]} = 0,

where
n

Lli + 1, (1)) := WiL[IW, " = a0y — Y igli + 1] (2, ) D",
k=0
Formulae (19)—(22) can be expressed completely in terms of the solutions ¢ = ¢[1] of the
initial equation (12) without any use of the solutions related to the intermediate iterations
of the process.

Theorem 2. |[.
My DMZ, | 0
Wk-|—1 = Wk+1[99[1]] = - - - ’ (23)

ST
~ M Ml | Inoees

My DM 0
Wi = Wik lell)] = - - - : (24)

S
M DM | Ivoges

Witk [prsilk + 1)) = Erpr(rgreri [k + Doy [E+1] = 1) + In + Ak + 1,k + 1],

A1k+1

0 : 0

A4+ 1L,k +1) = | arerr.-. arpirm , B = diag(Sy s 800y Ohpy)s

0 : 0

ANk+1
where
g1, = (Gk+11, sy Clk+1k) = (S«Qk+117 sy ¢k+1k)Mk_la
Apyr i= (Aipyty .o ANEp1) | = ( Ajélkﬂx > Mk__l_llek-l—la (25)
k+1

. 1 7 N T
Ck+1 = (5k+17 .- '75k+17 .- '75k+1) :
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3. BINARY DARBOUX TRANSFORMATION

Let g = g[1](x,t) be an arbitrary solution and ¢ = ¥[1] be a fixed invertible (N x N)
matrix of solutions of the transposed linear evolution equation

LT1{g[1]} = 0, (26)
where
LTH::-—a&——ﬁé(—lYD%uUKxJ) (27)
The following theorem holds: .
Theorem 3. The functions
gli + 1] := Wii[va[1]]{g[1]}, (28)
" gli + 1] :== Wil [1]Hg[1]}, (29)

satisfy the linear evolution equations of the form

LT+ L oa[1Hgli + 1]} = 0, (30)

Lli+Lo{gli 1]} =0, ie{l,... N}, (31)

respectively.

Consider the transformations of the linear operators
willl s L] = Ll + 1] := Lt + 1, 0u[1]] = (Lli + L [1])7 o= L7 + 1w, [1]],

ViUl LT = L7+ 1] := L7[e + L ops[1]] = (L7[e + 1,0 [1]])7 := L[ + 1, ¢0,[1]]
and

L1 = L7[i+ L[]} = L7[i + Lo [1], @ [1]) = L+ Lo [1] waf1]], (32)
where
Li + 1,91, 1)) = Wi T (Wl (LW o W 1]
The following theorem holds:
Theorem 4. The function F[i 4 1],
Fli 4+ 1] = Wi [ (Wl KT} =
= fl1] = 07 [all], wal1]]QUa1], F1]] =
= (1= [P TR0 ™ DT ) L) (33)
satisfies the linear partial differential equations

Lli+ 1L oa(t], £ 1H{Fl + 1]} = 0, (34)
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where the scalar potential function ) is defined by
($7t)

Q[ 3[1], ¢[1]] := DTH 1w a[1]} = ¢ + / Pdxr + Qdt, ¢ = const, (35)
(zo,t0)
Py = (av ! [1]g.[1): ( 2 F( T, ) ﬁm’“))- (36)

Theorem 5. The function F[i + 1],
Fli 1] = W Wi [ 11} =
= (I = (¢4, 92,0 ) D (s, o)) {F11]} (37)

satisfies the equation
L+ 1] {F[@' n 1]} —0, (38)

where

(,)
0O=C+ / (Y109 b ) (01,02, p)de + Qdt (39)

(zo.to)

is an (i x i)-matrix potential function.
Theorem 6. The binary Darboux transformation
fI1 = Wil ¢} = f([2, N),
L[1] = Wp[t], o [UIL[W ™ e[1], v [1]] == L([2], N), (40)

where
Wie[1],¢[1) := I — [1] (Do [1][1]}) D~ 1]

admits a factorization by the simplest elementary binary Darboux-like transformations to

the form )
Wle[l], ¢[1]] = H Wiilp.ilt], .le]] :=
=TI (1w (o7 ) 0700, (1)
S‘Bk 1] := S‘Qk[l]v 77[}]6[]‘] = ¢.k[1]7 k€ {17 7N}7 (42)
Pulk] = H Wial@.li], il 511}, (43)
@Zk[k] = H M/ZZ_ITI:SE Z[Z]vi)z[l]]{@b k[l]}v k€ {27 7N}7 (44)
and
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Theorem 7. Let f be an arbitrary solution of the evolution equation (12); ¢, ¢ be
a fixed (N x K)-matrix solutions of (12) and (26) respectively, D™ {v'" o} = Q[b, ] be
a (K x K)-matrix potential function (39). Then the function

f= W= = o (D7 07" D07 (£} (46)
satisfies the linear evolution differential equation
{fy=0, L:=wLw™, (47)

and
W= 1_1 [1 gl (D7 {OTe ) D‘%f] : (48)

where ¢ ;[i],.[i] are defined by formulae (42)—(44) for k € {1,...,K}.

Definition 1. Transformation (46)—(47) is called a general binary matriz Darbouz-like
transformation.

Definition 2. A composition of simplest elementary binary Darboux-like transformations
(48) is called a canonical factorization of the general dressing operator W (46).

Theorem 8. 1) Let ¢ = (p1,92,...,9,) € Matyyun be an (N x nN)-matrix-valued
function of v € R, or = (vijr); .7 € {1,....N}; k€{l,...,n}; and W(p) # 0, where
W(y) is the usual block Wronskian determinant.

2) Let W{e| be the n-order (N x N)-matrix differential operator of the form

Wle] :=D" + i: wi(:zj)Di, (49)
and Wlel{¢} = 0.
Then
Wel = [ eelklDer '] = ] H Wiilp.anlil], (50)

where Wi;[p i1[1]] are defined by formulae (19), (20), (25).
This theorem is a corollary from the statement of Theorem 1.

Definition 3. The composition of simplest elementary Darboux-like transformations (50)
will be called a canonical factorization of the n-order (N x N)-matriz differential operator

(49)-
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CONCLUDING REMARKS

1. In papers [6-9] we used a particular case of the general dressing operator W (46)
for integration of the Lax-Zakharov-Shabat equations in a matrix algebra of differential
operators. This particular case corresponds to a (K x K)-matrix potential function 2 of the
form

A, ] =Dy ¢} = C + i v (s, t)p(s, ) ds.

Such a case of the potential ) permits to construct the classes of exact solutions for
corresponding nonlinear dynamical systems of the soliton theory which may be obtained by
traditional method of solvation of the Gelfand-Levitan-Marchenko equation or by dressing
method of Zakharov-Shabat.

Using general transformation (46) (that corresponds to simple substitution of the poten-
tial © in the formulae for solutions) as it is used to dressing by Darboux transformations [5],
allows us to construct much more wide classes of solutions for nonlinear integrable systems.

2. It is possible to apply transformation (46)—(47) not only to the evolution differential
operators. We used this transformation for investigation of nonlinear integrable systems
from so-called constrained Kadomtsev—Petviashvili hierarchy (¢cKP) [10-16] in our papers
[17,18] (see also [19-22]).

3. A modified transformation like (46)—(47) allows us to construct wide classes of exact
solutions for the modified (non-standard) constrained KP hierarchy (m-cKP) (see e.g. [23,
24]).

4. The so-called inverses and elementary binary Darboux-Baeklund transformations for
the Kadomtsev—Petviashvili equations has been noted in [25] and for the Davey-Stewartson
equation in [5,26] (see also [27,28]).

5. The spectral properties of binary Darboux transformation (a composite transformation
formed from an application of the basic elementary Darboux transformation with the second
inverse transformation) are described for the “time”-dependent Schroedinger operator in
[29]. The analytical and spectral theory of generalized Baecklund-Darboux transformations
has been developed in [30-33] .

6. The Darboux transformations can be applied to constructing the solutions of linear
and nonlinear partial differential equations of different types from being investigated in this
paper (see, [34,35]). The author hopes that the explicit formulae for the composition of
matrix binary Darboux transformations obtained in Section 3 will allow us to construct
more wide classes of exact solutions for the self-dual Yang-Mills equations than those in [34].
(The solutions from [34] in SU(N) are parameterized by matrices ¢, ¢ of dimension N x K
only for the case K =nN.)

We also hope that the results of this paper will be useful for generalizations onto the
matrix case of the theory of finite-gap integration of non-linear system from the soliton
theory, a new view on it is proposed in papers [36-39].

Acknowledgement. The author thanks A. Sakhnovich and E. Belokolos that directed
his attention to papers [34,35] and [36-39], respectively. I am also indebted to E. Belokolos
for fruitful discussions.
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