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In the paper we consider an initial boundary value problem for one-dimensional diffusion
equation in the domain with moving unknown boundary. By transformation of variables the
problem is reduced to a coefficient inverse problem for some parabolic equation. Existence and
uniqueness of solution of this problem are established.

H. U. Usanuos. 3adaua co ceoboduoti epanuyeti das neaunciinozo ypasnenus duddysuu //
Maremaruanai Ctymii. — 2003. — T.19, Ne2. — C.156-164.

B pa6oTe paccmaTpuBaeTca HadaJdbHO-KpaeBad 3ajada AJaA ypaBHeHusa nudgdysnn B obaa-
CTH C HEM3BECTHOW ABMKYIIelcs rpanunen. [Ipeo6paszoBanneM mepeMeHHBIX 3aqatda CBOUTCH
K Ko3(ppunmeHTHON 06paTHON 3a4ade I HEKOTOPOTO NapaboandecKoro YpaBHEHUA. ¥ CTaHO-
BIEHBI YCJIOBHA CYIIECTBOBAHUA U €[UHCTBEHHOCTH DeIeHUs TAHHOW 3aa4n.

The problem that we study in the paper may be considered as an application of the
theory of coefficient inverse problems with time-dependent unknown parameters.

In the domain Q7 = {(x,1) : 0 < 2 < h(t),0 <t < T < oo} with unknown moving
boundary we consider the diffusion equation

ur = (a(u)ug)s + f(2,1) (1)
subject to the initial condition
u(z,0) = p(z), € [0,h(0)], (2)

and the boundary conditions

u((),t) = Ml(t)v u(h(t)vt) = MQ(t)v IS [OvT] (3)

In order to determine an unknown boundary we impose the overdetermination condition

of integral type
h(t)

/ u(x,t)de = ps(t), te€][0,T]. (4)

0
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In (1)—(4) the functions «a, ¢, p;, 1 € {1,2,3}, f are given.

Note that in problem (1)—(4) we neglect why the boundary is moving and we shall deter-
mine the moving boundary only using the additional condition (4) which may be considered
as control on summary concentration of a solid in a solution.

By the solution of problem (1)—(4) we shall mean a pair of functions (h(t),u(z,t)) €
C0,T) x C*YQ7),h(t) > 0,t € [0,7T], which satisfies conditions (1)-(4). Here C1[0,T]
denotes the Banach space of continuous functions having continuous first derivative on [0, T,
and C21(Qr) is the Banach space of function continuously differentiable to the second order
with respect to x and to first order with respect to ¢.

By the transformation

y= h@ t=t (5)
we reduce the free boundary problem (1)—(4) to the problem in a rectangle:
= e S fh 0.0, (D€ Qr= 0.0 x0T ©
U(y,()) = @(h(o)y)v ye [07 1]7 (7)
v(0,8) = pa(t), v(l,1) = pa(?), [0, 77, (8)
) [ ot thdy = ). 1€ 0.7 )

where v(y,t) = u(yh(),1).

Theorem 1. Suppose that the following assumptions are fulfilled:

(A1) ¢ € C*0, hol,pi € CH0,T],4 € {1,2,3}, f € CYO([0, H{] x [0,T]),a € C[My, My];

(A2) o(x) > 0,2 € [0, hol, pi(t) > 0,¢ € [0,T], ¢ € {1,2,3}, f(x,t) > 0, (x,t) € [0, H{] x
(0,77, a(s ) o>08€[M0,M1] ag = const;

(A3) MI(O; 2(0), 12(0) = (ho), fy pl)dw = p3(0),

1(0) = a(p (0 )) ( )+a(ul(0)) ( )+ /(0,0),
15(0) = a(p2(0))¢"(ho) + a'(12(0))"* (ho) + &' (ho)h'(0) + f(ho, 0).

Then there exists a number ty, 0 < to < T, defined by given data such that problem (6)—(9)
has at least one solution for y € [0, 1],t € [0, o).

Q

2

Proof. We begin with explication of meaning of constants hg, Hy, My, My and the value h'(0)
introduced in assumptions (A1)—(A3).
Consider one of compatibility conditions

h(0)

/@wwxzmm» (10)

0

Taking into account the assumptions on ¢ and ps we conclude the existence of unique value
h(0) = ho > 0 satisfying (10). This value hq is used in assumptions (A1)—(A3).

In order to explain the origin of constant Hp, note that by the maximum principle [1]
we have the following estimate for a solution of problem (1)—(3) for any continuous positive
function a(s):

0< My <u(z,t), (x,t) € Qr or 0< My< v(y, 1), (y,1) € @T, (11)
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where M, = min{min[07h0] @(), ming 77 1 (1), ming 71 Mz(t)}.
Estimate (11) allows us to reduce (9) to the form

113(t)

h(t) =5 t¢€ [OvT]v (12)
Jo v(y, O)dy
and, hence, to establish the estimate
h(t) < Hy < oo, t€1]0,7], (13)

where H; = MLOI[%E%)]( ps(t). It follows from (13) that

0 < flyh(t),t) < Cr < oo, (y.t) € Qr,

with a known constant €'y > 0. Once more applying the maximum principle to the problem
(6)—(8) we obtain the estimate from above

v(y,t) < My < oo, (y,t) € Qr, (14)

where

M :max{max ), max (), max pu(t), max x,t }
1 maxp(v), max p(t), maxpa(l), max  flz,t)

Then we can also establish the estimate
h(t) > Hy >0, tel0,T], (15)

with an evidently defined constant Hg.
Finally, if we differentiate condition (4) with respect to ¢, use equation (1) and put ¢ =0
then we get

W@Mﬂ@+GWNW¢@®—GWN®MVU+/f@ﬁM$Zm@)

From this equality we determine the constant 2’(0). So the meaning of the constants hg, Hy,
My, My, h'(0) is clear.

Now we turn to the existence of solution of problem (6)—(9). For this aim we reduce
problem (6)—(9) to a system of equations and then we shall apply to it the Schauder fixed-
point theorem.

By differentiating condition (9) with respect to ¢ and using equation (6) we get

1

W) [ty + i | (“‘(”)”y)y N LAOMN f<yh<t>,t>) dy = (1)

h*(t) h(t)
After integrating by parts we obtain the equation

1
112(t)

W) (“(”1(t>>vy(07t) - a(uz(t))vy(lat)», te0,7]. (16)

W(t) = (ugu) —h(t) [ S0, 0y +



FREE BOUNDARY PROBLEM FOR NONLINEAR DIFFUSION EQUATION 159

Denote p(t) = h'(t). Now we can rewrite equations (6) and (16) as follows:

Uy = hz(t) + h(t) vy + f(yh(t),t), (y,t) € QTv (17)
1 , /
i = (u3<t> () / Flyh(t), )y +
1
o (a<m<t>>vy<o,t> - a(m(t))vy(l,t))), Ve 0,71, (18)

Hence, problem (6)—(9) is reduced to equations (12) and (18) where v = v(y,t) is a solution
of problem (17), (7), (8) which corresponds to given functions (h(t),p(t)) € C[0,T]x C[0,T].
It is known [2] that under assumptions that we made, a solution of problem (17), (7), (8)
exists and is unique in C%'(Qy) for each pair of functions (h(t),p(t)) € (C[0,T])%

To apply the Schauder fixed-point theorem to system (12), (18), we need estimates of
its solution. We have already established estimates (11), (13)—(15). Now we are going to
evaluate the first derivative v,(y,1). For this purpose we shall use a special representation of
the solution of problem (17), (7), (8) and its derivatives.

Let £ € [0,1] be an arbitrary fixed point. We represent equation (17) as follows:

(&), - (el ;2?t<)v<&t>>vy>y T %) + f(wh(D),1), (y,1) € Qr. (19)

If the solution v = v(y, ) is known we may consider the coefficient a(v(¢, 1)) as given function
of t (the point ¢ is a parameter) and construct the Green function G§ = Gﬁ(y,t,n,r) of
initial-boundary problem (7), (8) for the equation

ve = a(v(&,1))vy, + f(yh(t),1). (20)

It is easy to check that G§ is determined by the formula

Gyt m,7) = — ! =3 e | (y —n +2n)? -
(Wfa(v(f,a))h—z(a) da) e 4 [ a(v(& 0))h=2(0)do
— exp t (y /A 2n)2 , VEE [07 1]'

4 [a(v(€, 0))h=2(o)do

T

With the aid of the Green function we can reduce direct problem (19), (7), (8) to the
equivalent integro-differential equation

v(y,t) = vo(y,t) +
t 1

: ({a(v(.7) — a(ol& )y wplr)
+ [ [t ( e W) v, (21

0 0
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where vg(y, 1) is a solution of problem (20), (7), (8).
Integrating by parts we transform equation (21) to the form

oy, 1) = woly //( ot LET )

+ﬁ@¢mmWM”wmemw: (2)

Differentiating (22) by y and putting £ = y we obtain

(a(v(§;7) — alv(n, 7))vy(n, 7)

(yvt - UOy y7 //( 1ny yvtvan) - hQ(T) +
=y
.
+G8, b)) )ty (23)
&=y (T)

Here vy, 1s found by the formula

1 t

Uol/(yvt) :ho/Gy(y,t,n,O) /(hon)dn—/Gy(y,t70,7')/,b/1(7')d7'—|-

0
/Gy(y,t T)py(T dT+// (. tn. 7)., S (nh(7), 7)dndr,

where Gg(y, t,n, 7)is the Green function for the second initial-boundary problem for equation
(20). It is easy to verify that the following estimate holds

|v0y(y, )] < Cy < o0,

where the constant 'y > 0 is determined by the given data.
Denote V(1) = m[ax] lvy(y,1)]. Using the estimates of the Green function [2, p.469] we
velo,1

have from (18) and (23)
Ip(t)] < Cy + C3V( ), (24)

p(r
V(t) < Oy + Cy ﬁ / t_ T, e o1, (25)

After substituting (24) into (25) we obtain the following inequality with respect to V(¢) :

v <y, f WA

0

If we denote Vi(t) = V(t) + % then we have

t

Vi(t) < C?‘l-cs/

0

VE(r)dr
Vi1

(26)
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To resolve inequality (26) we square both parts of (26) and use the Cauchy inequality:

2

t
Vi(r)dr

Vlz(t) < Cy+ Cho N
T —
) vV T

Applying the Holder inequality we transform the previous inequality to the form

¢
Vi{(r)dr

Vlz(t) <Cy+Chy | —F—=.
T —
) vV T

(27)

Now we put ¢t = o in (27) and multiply the result by (¢ — 0')_%. Integrating the obtained
inequality with respect to o from 0 to ¢ we arrive to the inequality

t

t g
Vi(o)do / do Vir)dr
2] C .
/ t—oc 12+ G Vit—o Vo —T
0 0

0

Changing the order of integration we get

/ Vi(o)do / 4 / do
0 ﬁ <Cia+Cn 0/ Vi (T)dT/ \/(t = 7')' (28)

Taking into account the equality

T/w—j()j(a—r):”

and putting (28) into (26) we obtain the following inequality
¢
Vi(t) < Cia + 013/\/14(7')d7', tel0,T]. (29)

0

To resolve inequality (29) we apply Gronwall’s method. Denote W(t) = C124+C13 fg Vii(r)dr.
From (29) we find
W'(t) = Ci3Vi () < CiaWi(3).

After separating the variables and integrating from 0 to ¢ we obtain

1 1
3C7,  3W3(1)
Let the number ¢y3,0 < ty < T, be such that the following inequality holds:

< Oyl (30)

1 —3C%,Cysto > 0.
Then we have from (30)

Wi(t) < Ciz

/1 =300t

t € [0,1o].
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This means that the estimates
|Uy(y7t)| S M2 < 00, (yvt) S [07 1] X [O,to],
Ip(t)] < Hy < o0, t€]0,1), (31)

are established.
The system (12), (18) can be treated as an operator equation

w = Pw,
where w = (h, p) and the operator P is defined by the right hand parts of equations (12) and
(18). Denote N' = {(h(t),p(t)) € (C[0,%0])* : Ho < h(t) < Hy,|p(t)| < Hy}. From (13), (15),
(31) it is clear that the operator P maps A onto V. Using the method of [3] it is easy to
establish that the operator P is compact on N. This means that the conditions of Schauder

fixed-point theorem are fulfilled and, hence, there exists a solution (h(¢),p(t)) € (C[0,o])?
of system (12), (18). Substituting the known functions (h(), p(?)) into equation (6) we find

v(y,t) € 02’1(@1‘0)- O
Theorem 2. Suppose that (A2) and the following assumption holds:

(A1) a(s) € CY My, My], f(z,t) € CYO(]0, Hy] x [0,T]) (for notations see Theorem 1).

Then the solution of problem (6)—(9) is unique.

Proof. Suppose that (h;(t),v;(y,t)) € C0, T] x CTYQr), i € {1,2}, are two different
solutions of problem (6)—(9). Denote p(t) = hy(t) — hz( ), q(t) = Riy(t) — Rhy(t), w(y,t) =
v1(y,t) — va(y,t). Since the functions (h;(1),vi(y,1)), ¢ € {1,2}, satisfy conditions (6)—(9),

we have
1 yhi(?) a(vy)  a(va)
= gt Tyt ((h%(t) - h%(ﬂ) Uzy(y’t)>y !

! (Zigi - Zig;) yoa(y, 1) + flyha(8),0) = flyha(0), 1), (y,1) € Qry (32)

w(y,()) = 07 yc [07 1]7 (33)

w(0,1) = w(l,t) =0, ¢e0,7], (34)

p(t) = ——— 1ol wly.dy. 1€ [0.7]. (35)
Of dy0fv2 t)dy o

Note that conditions (A2) provide v;(y,t) > 0, 7 € {1,2}, in Q. Using the Green function
G(y,t,n,7) for the linear equation

B meﬁhv y%®w
1”‘( R(1) Qy+hmw /

with conditions (33), (34) we find the solution for problem (32)—(34)

/ / o (S50 - i) o)+

)nwAmﬂ+fwmv%ﬂ—fWMﬁ%ﬂ>®¢v (36)
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Using the introduced notations we can transform (36) as follows:

a(vi(n,7)) —a(va(n, 7)) ha(7) + ha(7)
// ) (TS " TR T

Q()— h/() T v T T),.T)— T), T T
*(mw AT ) o)+ Fata(7).7) = FOiha(r), ) ) (30

Applying to (37) the well-known formula for difference of values of a function at two points

1 1

w(t) —w(r) = / %w(r +o(t—7))do=(t—71) /w’(z)

0 0

do (38)

z=140(t—7)

we get

+/77fz(772ﬁ)

0

+w(n, 7) /1 a'(z)

0

z=ho (T)+Z(h1 (T)_h2(7))d2> p(T) —I_ hl (T)

z=vs (77,7')-I—z(v1(77,7)—@2(77,7))d2> d?]dT, (yv t) S QT- (39)

Another equation is obtained if for each ¢ € {1,2} we find the expressions for hi(t),
analogous to (18) and then consider their difference:

1

1(jﬂmwﬂmwmwwwvwmmm@+

112(t)

ralpn(0) (00— D) ) (B - O et o

q(t) =

We use (38) to reduce (40) to the form

1t)<<_/1f(yhl( dy_/dy/ﬁf nz,t)

_I_Uzy(lvt) (MQ(t))_UQy(Ovt ( (t))>p(t)—|-

dz +

z=ha (T)+2(h1(7)=h2(7))

hi(t)hs(1)
a( (1)) _alpe(t)
() w,(0,1) Tl(t) y(l,t)>, te[0,7]. (41)
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Finally, we differentiate (39) with respect to y :

w0 = [ [t ((—#}12)@) - e o, +

+/77fz(772ﬁ)

0

z:hQ@j+zUn(TVJQ(ﬂ)dZ>]KT)-+ hl(T)_+
1

+uln.r) [ @2

0

Z=ws (77,7')-I—z(v1(77,7)—@2(77,7))d2> d?]dT, (yv t) S QT- (42)

Taking into account (42) it is easy to see that system (35), (39), (41) is a homogeneous
system of Volterra integral equations of second kind with respect to unknown (w, p, ¢). Since
the kernels of these equations are integrable, the system possesses the unique solution which
is trivial: p(t) = 0,q(¢) = 0,t € [0,T),w(y,t) = 0,(y,t) € Q. O
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