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For a Dirichlet series F(s) = > 0 anes*n, s = o +it, 0 < A, T +00, such that G, (o, F) :=
(5200 lan|Pe??=P)L/P < foo for every o € R, a necessary and sufficient condition on (ay)
is established in order that Gp(o, F) < (1 4 o(1))Gq(o, F)h(InGy(o, F)) as 0 — +oo, where
g > p >0 and h is a positive continuous function on R. This result is applied for establishing
estimates of exceptional sets in some relations between characteristics of Dirichlet series and
for obtaining relations between the maximum modulus and the Nevanlinna characteristic for
power series with gaps.

II. B. ®unesnd. Acumnmomuueckue coomuoutenus mexcoy cpednumu pada Jupurie u uzx
npumenenue // Maremaruuni Cryaii. — 2003. — T.19, Ne2. — C.127-140.

Nas paga dupuxae F(s) = S °7 jane™, s = o +1it, 0 < A, 1 400, Taxoro, 4ro
Gplo, F) = (3002, lan|Pe??nP) P < doo pas moboro ¢ € R, mogyduenbl HeoGXoAUMbIE I
JZOCTaTOYHBlE YCIOBHA Ha (a5 ), IpH KOTOpHX Gp(o, F) < (1 + o(1))G,(o, F)R(InGy(c, F)),
o — +oo, Tae ¢ > p > 0, a h — monoXuTelbHad, HepepbiBHad Ha R (PYHKIHA. DTOT pe-
3yJIbTaT NPHMEHEH A YCTAHOBICHIA OICHOK MCKIFOUNTEILHEIX MHOXKECTB B HEKOTOPBIX COOT-
HOIICHUAX MeXKJy XapaKTepHCTHKaMH pAfga JnpHuxie, a TakxKe JIA NOJIy9eHHA COOTHONICHMIT
MEXK Iy MaKCHMYMOM MOJYJA M XapaKTepHCTHKOH HeBaHIMHHBI 1A JaKyHapHBIX CTENeHHBIX

pANOB.

1. Introduction. Let A be the class of nonnegative increasing to 400 sequences A =
(An)o2,. For every number p > 0 and a sequence A € A by S,(A) we denote the class of

Dirichlet series
o0

F(s)=)Y ae™  (s=o0+it) (1.1)

n=0

such that [{n > 0:a, # 0}| = 400 and
o 1/p
VoeR: Gplo, F) = (Z |an|peUA"p> < 4oo. (1.2)
n=0

Let p > 0. It follows from (1.2) that |a,|e* — 0 as n — oo. Hence, for each Dirichlet
series I € S,(\) and every o € R we can define j(o, ') = max{|a,|e’* : n > 0}. Tt is clear
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that p(o, F) < Gy(o, F). If p > 1, then M(o, F') = sup{|F(oc +it)| : t € R} < 400 and
w(o, F) < M(o, F') for each o € R.

As it is easily seen,
Gilo, F) < p* (o, F)G (o, ) (¢ > p>0). (1.3)
Therefore, G, (o, F') < Gy(o, F') and S,(A) C S,(A).

By €'y we denote the class of continuous positive functions on R, and let L be the subclass
of nondecreasing functions /(o) from the class C with the property (o) — 400 (0 = +00).

For a sequence A € A and a function ¢» € L by S,(A, 1) we denote the class of Dirichlet
series (1.1) for which condition (1.2) holds and

la,| < e~ (An) (n > no(F)). (1.4)
Put | |
nn — Inn
(M) =lim s=rmss () = lim

If e(A,¢) < p and condition (1.4) holds, then also condition (1.2) holds (see Lemma 1
below). Hence, if (A, ¢0) = 0, then S,(A, ) = S,(A, ) for every p > 0 and ¢ > 0. In the
case T(A) < oo we have S,(A,¢0) = S,(A, ) and S,(A) = S,(A) for every ¢ € L, p > 0 and
q > 0.

In [1,2] there was considered a problem of the establishing conditions on the coefficients
a, of Dirichlet series (1.1) under which some asymptotic relations between M (o, F') and
p(o, F) are fulfilled. In particular, in [1] the following assertion is proved.

Theorem A [2]. Let A€ A, € L, (A, ¢) < 1 and h € Cy. In order that
(VF € i)Yo = oo(F)) : M(a, F) < plr, F)h(ln (o, F)
it is necessary and sufficient that

(V71,72 € L)(Vn = no(71,72)) = 7 < yi(n) + h(72(n)e(An)).

Note that in Theorem A one can replace M(o, F') by G4(o, F'). By using this fact, we
obtain the following assertion.

Theorem B. Let A € A, ¢p € L, e(A\,¢) < p and h € C,. In order that
(VF € S0 0)(Yo = 0o(F) 5 Gy, F) < (o, F)(in p(r, )
it is necessary and sufficient that

(V91,72 € L)(Vn > no(y1,72)) + 0 < y1(n) + AP (va(n) (X)),

In order to prove Theorem B, in addition to series (1.1) we consider the series Fj,(s) =
S o lan|Pet P note that F, € Sl(Ap,@b) & F e S,(\), Gi(o, F,) = GE(o, F), u(o, F,) =
(o, F), (A ) = e(Ap,¢), and apply Theorem A with Ap, F,, h? mstead of \, I, h,
respectively.

In this paper we establish conditions on the coefficients a,, of Dirichlet series (1.1) under
which some asymptotic relations between the two means G,(o, F') and G, (o, F') are fulfilled,
where ¢ > p > 0.
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Theorem 1. Let ¢ >p, A€ A, € L, e(A,¢0) < p and h € Cy. In order that
VE € Sy(MY): Gulo, F) <(1+0(1)G, (o, F)h(InGy(o, F)) (0 — +00) (1.5)

it is necessary and sufficient that

Vye L: n'e < (L 4+ o(1))h(y(n)(A,)) (n — o). (1.6)
We derive two simple corollaries of Theorem 1, which we use below.

Corollary 1. Let ¢ > p. For every sequence X € A and each function [ € L there exists a
Dirichlet series F' € S,()\) such that

Proof. Consider a function h € C such that [(x) = o(zh(Inx)) as @ — 400, and assume
that 7(A\) < +oo (in the opposite case we consider a subsequence A\* of the sequence A such
that 7(A\*) < oo, and notice that S,(A*) C S,(A)). Then e(X,¢) = 0 < p. Choose a
function ¢ € L such that condition (1.6) is not fulfilled. By Theorem 1, condition (1.5) does
not hold, and this will mean that there exists a Dirichlet series F' € S,(A, %) C S,(A) such
that (1.7) is valid. O

Corollary 2. Let g > p. For every sequence A € A and each function ¢ € L there exists a
Dirichlet series F' € S,(\, ) such that

— G0, F)

lim

e G0, ) (18)

Proof. We may assume that 7(A) < +oo. Then (A, ¢) = 0 < p. Choose a function
h € L C C4 such that condition (1.6) is not valid. Then, by Theorem 1, condition (1.5) is
not fulfilled, i.e. there exists a Dirichlet series F' € S,(A, ) such that (1.8) holds. O

Note that Corollary 2 follows also from (1.3) and Theorem B (or Theorem A).
Theorem 2. Let ¢ >p, A€ A, o, € L, e(A, ) < p and
el +1) ~p(z) (z— +o0). (1.9)
In order that
VI e S,(M ) o(InGp(o, F)) ~ p(InGy(o, F)) (o0 — 400) (1.10)
it is necessary and sufficient that

qa—p
qp

Vyel: @(V(n)@b(AnH 1nn>~¢(v(n)¢(%)) (nooo).  (L1D)

Condition (1.9) is essential in Theorem 2. This fact follows from the following assertion.

Theorem 3. Let ¢ > p, A € A, p € L. In order that there exists a function 1» € L such
that (1.10) is fulfilled it is necessary and sufficient that condition (1.9) holds.
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Theorems 2 and 3 will be obtained from Theorem 1. Furthermore, Theorem 1 will be
applied for establishing estimates of exceptional sets in some relations between characteristics
of Dirichlet series (in particular, we prove a conjecture of O. B. Skaskiv, which is formulated
in [3]), and also for sharpening result a of A. A. Gol’dberg concerning the Paley effect for
power series with gaps.

2. Proof of Theorem 1. We begin with the following lemma (see also [1, p. 144]).

Lemma 1. Let A € A, € L, e = e(A,¢) <p. If'é6 € (g,p), c = 55, n(o) =min{n > 1:
$(An) > co}, then
Z e~ OnprAnp < (o> 01), (2.1)
n>n(o)

where K is some constant.

Proof. Let e; € (g,6). Then, from the condition (), ) < 1, we have
Inn < e A0 (A) (n > nq). (2.2)

Since the function n(o) is nondecreasing to +00 on R, n(c) > ny for o > o1, and hence, by

the definition of n(o) and by (2.2),

Z —Ant(An)p 7P < Z =Mt (An)p pAnt(An)/e _

n>n(o) n>n(o)
— Z —5An’t[/ < Z —511171/61 < Z n—d/sl — ,7
n>n(o) n>n(o) n>1
for every o > 0. O

Now, we will prove Theorem 1.

Sufficiency. We assume that condition (1.6) is satisfied. Suppose that (1.5) is not fulfilled,
i.e., there exists a Dirichlet series F' € S,(A,¢) of form (1.1), a number n > 0 and an
increasing to +oo sequence (o) such that

C(on F) = (14 0)Gylon, (I Gy(on F)) (k= 0). (2.3)

Since F' is not an exponential polynomial, ¢ = o(lnG,(o, F)) as ¢ — +oo. But
V(Apoy-1) < co for 0 > o, where n(co) is the function from Lemma 1. Therefore,
V(Apoy-1) = o(InGy(o,F)) as ¢ — 400, and hence there exist a function v € L and a
sequence (oy,,) such that [(n(0r,,) = DY (An(oy, )=1) = In Gy(0p,,, F) for each m > 0. Then,
by (1.6),

n(akm)% < (14 o(1)h(In G (o, F)) (m — o). (2.4)

Put oy = min{o > o1 : n(0) > no(F)}, where oy and ng(F') are the numbers from (2.1)

and (1.4), respectively. Then, by (2.1), (1.4) and the Holder inequality, we have

Z |a |p U/\np_l_ Z |a |p crAnp<

n<n(o) n>n(o)

( Z |a, |7 WJ) +K <07 (0)G(0,F)+ K.

n<n cr
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Therefore, by (2.4),
— Gyo(op, . ) 0w (on,)
1 14 m < 1 m <1
0 Gy (1, VA0 Gy (01,0, )~ mmroo h(In Gy(o,,, F)) —

that contradicts to (2.3). The sufficiency of condition (1.6) is proved.
Necessity. Suppose that condition (1.6) is not fulfilled, i.e., there exist a number § > 0 and
a function v € L such that the set

4—p

E, = {n >1l:nw >(1+ 5)h(7(n)¢()‘n))}

is not bounded. We will prove that in this case (1.5) is not fulfilled.
Consider the function hy(x) = €”h(x) and show that there exists a Dirichlet series F' €
Sp(A, ) such that
Tm Gylo, F')
a—+oo hy(InGy(o, F))

> 1. (2.5)

If lim hq(x) < 400, there is nothing to prove (in this case inequality (2.5) holds for

r—r400

each Dirichlet series F' € S, (A, ).
Assume that hy(x) — +oo as @ — +oo. Put [(2) = min{h(¢) : t > x}. It is clear that
[ € L. Since () < hy(x) = €"h(x), the set

Fy = {n >1: n'w > (1+ 5)5(7(71);/}()\71))e_W(n)w(/\")}

contains the set F;. Hence, F; is not bounded too.

We fix some ng € £y and put mg = ng, no = »_1 = g9 = 1. Suppose that for certain
k > 0 integer numbers ny € Ey and my and real numbers ny, ;1 and ¢, are defined. Then,
we choose integer numbers nyy 1 € Fy and myyq so that for them and for

An
sy = V(nk-l-l)qvb( k+1) + 5k¢()\nk) (26)
)\nk+1
the inequalities
)\mk+1 > 2)‘7%7 ) 2 277Z)()\nk+1)7 Ng+1 > VvV Mkt+1,  Mkt1 > n(%k—l)v (27)
> 92 Uk ! 2.8
> 2y, R WS Wy < 1 (2.8)
are fulfilled, where n(o) is the function from Lemma 1. Furthermore, we put
V(nk-l-l)()‘nkﬂ - )\nk) ¢(Ank)
k41 = + & . (29)
)\nk+1 )\nk 77Z)()\77‘k-|-1)
Define b, = e=s*u¥() for every k > 0, and let
by = by, e gy k), k>0, (2.10)

Let b, = 0 in the other cases.
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Consider the auxiliary Dirichlet series

F(s) = ibneM" = i i b, e (2.11)
n=0

k=0 n=my

and show that F* € S,(A,¢). By (2.10) and (2.7), for each n € [my41, nk41] and & > 0 we

have

—Inb, = —1Inb,, + (A, — Ay, )oex >

A Am

Consequently, |b,| < e”*"¥n) for every n > 0. Then F* € S,(), ), by Lemma 1.
Now, we prove that

Inb,, —lnb,
Bom 7 Wm0 (k> 0), (2.12)
)\nk+1 - )\nk

We multiply the two sides of equality (2.9) by the expression A, ¥(An,,,). Then, by (2.6),
we obtain

Y(rg1 )0 (A,
\ = ()\nk+1 - )\nk) + 5k)‘nk+1 ¢(Ank) =
N
= (%k - €k¢(Ank))(Ank+1 - )\nk) + 5k)‘nk+1 ¢(Ank) =
= ()\nk+1 - )\nk)%k + gk)‘nkqvb()‘nk) = ()\nk+1 - )\nk)%k —In bnk

This implies (2.12).

By (2.8), s, — 400 as k — co. Moreover, b, < bnke(A"k_A")”k for every n € [ng,ngi1)
and £ > 0. From this and from (2.12), as is well known, it follows that for Dirichlet series
(2.11) the equalities g = p(3ex, F*) = by, € "+1 hold for every k > 0. Hence, by (2.6),

NE41

— ln bnk+1 = 5k—|—1)\nk+1 77Z)()\77‘k+1) =

we have
pu, = e~V O et — eV ngn) (> (), (2.13)

Next, we note that for a fixed number r > 0, by (2.10),

ng41—1 ng41—1
N = N W = (g — )y (k2 0). (2.14)
N=mMEg41 N=mMEg41

Furthermore, it can be easily verified that

max b, = bnk_le””"k‘l (k >0),
0<n<n,—1

by (2.10) and (2.12). Therefore, by (2.8), we obtain

nk—l e A
bq e’k ngd
9 »pAng q M An, —19 __ g N Mk
E_O bne k < nkbnk—le EAng—19 e(%k—%k_l)(/\nk—/\nk—l)q < 1 (k‘ > 0) (215)

Put kg = min {k >0: ﬁ + i% < 1}, where K is the number from Lemma 1. Let & > 0.
k

We put Nk_Hzlfor()gkgkoandl\ka:min{n21:ﬁ—l—w—l—%§l} for
k

n

k > ko. Then, by (2.7), Nyy1 ~ ngs1 — Mpgpr ~ Npyr as k — oo.
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Define a,, = b /Nk_{_q1 for every n € [mgq1,nk41) and £ > 0, and let a, = 0 in the other

cases. Consider the Dirichlet series

co Mrt1—1

F(s) = ianeM" = Z Z a,e*n
n=0

k=0 n=mg4
By (2.15), (2.14) with r = ¢, (2.7) and Lemma 1, we obtain

nE— 1 nk+1 1

n=mrg41 n>mk+2

/«Lk Ngy1 — Mi41 sep
ST + Nemt My + g € =

n>n(sy)

1 N1 — M1 K
7 + + — 1< k> ko). 2.16
(o™t ) <l (k2 k) (2.16)

On the other hand, by (2.14) with r = p, we have

nk+1 1
21 A N1 — M1
GP (e, ) > T bt = T,ﬂ; (k > 0). (2.17)
k+1 n=mp4q k+1

Since ngy1 € Ey, from (2.16), (2.17) and (2.13) we obtain

T Gyp(ser, F) > Tm (Nk+11 Mpt1)? [k T nkfleﬂnk“wunkﬂ) N
k— 00 l(lnG (%k, )) k— 00 Nk_{_qll(lﬂﬂk) k— 00 l( (nk+1)77/)()\nk+l))

This implies (2.5). Indeed, from the definition of the function [ and from the continuity and
the monotonicity of the function In G, (o, F) it follows that for every & > 0 there exists a
point oy > s such that I(In Gy (s, F')) = hi(In Gy (e, F')). Then,

G(O‘k,F) —_— G(%k,F)

> >
kliglo hi(ln Gy (o, F)) klggo [(In Gy (o0, 1)) — e

i.e. (2.5) holds. This completes the proof of Theorem 1.

3. Proof of Theorem 2. We can assume, without loss of generality, that the function
¢ € L is increasing on R.

Sufficiency. Suppose that conditions (1.9) and (1.11) are fulfilled, and prove that (1.10)
holds.

We fix an arbitrary number § > 0. From (1.11) we obtain

. q—p
(V7 € L)(¥n > n) : so(v<n>¢<m+ — 1ﬂn>§(1+5)¢(7(n)¢(%))- (3.1)

Introduce the function
hs(x) = exp{e™ (1 + 8)p(x)) — z}. (3.2)
Then condition (3.1) can be written in the form

4—p

(Vy € L)(¥n = no) s 05 < ha(y(n)b(n).
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As is easily seen, for the function h(x) = hs(z) condition (1.6) is fulfilled. By Theorem 1
(VE € S,(0\ ) (Yo > oo(F)) : Gylo, F) < eGylo, F)h(In Gy (o, F)). (3.3)
Using (3.2), we rewrite (3.3) in the form
(VE € S,(\0))(Vo > oo(F)) : @(InGy(o, F) — 1) < (1 + 8)p(In G, (o, F)).
Thus, by (1.9), we have

VE € S.(\.4b) : i G0 F) e p(lnGy(o, F))
€ Sp(A¥) 1§0_Too o(InGy(o, F)) §0_>+oo o(InGy(o, F))

<1434 (3.4)

Since 6 > 0 is arbitrary, from (3.4) we obtain (1.10). The sufficiency of condition (1.11) is
proved.

Necessity. We assume that conditions (1.9) and (1.10) are fulfilled. Suppose that (1.11)
is not fulfilled, i.e. there exist a function v € L, a number § > 0 and an increasing to +oo
sequence (ny) such that

q—0p
so(mwwm — 1nnk)z<1+5>¢<v<nk>¢<xnk>> (k>0 (35

Using (3.2), we rewrite (3.5) in the form

4—p

" 2 hs(y(ne)Y(Any)) (k2 0).

Hence, for the function h(z) = e *hs(z) condition (1.6) is not fulfilled. By Theorem 1, (1.5)
is not fulfilled. Then there exist a Dirichlet series F' € S,(A,%) and an increasing to 400
sequence (o}) such that

Gplo, F) > Gy(op, FYW(In G (op, F)) = e 'G (o, F)hs(In G, (o, F)) (k> 0).
This inequality can be written in the form
e(InGylop, F)—1) > (14 §)p(In Gy(ok, F)) (k >0).

Then, from this and (1.9), we see that (1.10) is not fulfilled, but this is impossible. Theorem 2
is proved.

4. Proof of Theorem 3. We can assume, without restricting generality, that the
function ¢ € L is increasing on R.

Necessity. Suppose that for the function ¢ there exists a function ¢» € L such that (1.10)
is fulfilled. Condition (1.10) holds true if we replace A by some subsequence of A. Hence, we
can assume, without loss of generality, that 7(A) < 400 and therefore (A, ¢)) =0 < p.

Suppose that condition (1.9) is not fulfilled. Then there exist a number § > 0 and
a positive increasing to +o0o sequence (z,) such that

plen+1) 2 (1 +0)p(e,)  (n20) (4.1)

and x,/¢¥(\,) T 400 as n — co. Therefore, there exists a function v € L such that v(n) =
xn, /0 (A,) for every n > 0. Using (3.2), we rewrite (4.1) in the form 1 > hs(y(n)y(An)),
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n > 0. From this it follows that for the function h(z) = 2hs(x) condition (1.6) is not
fulfilled. By Theorem 1, there exist a Dirichlet series F' € S,(A, ) and an increasing to 400
sequence (oy) such that Gp(ok, F') > Gy(ok, F)hs(InGy(ok, F)) for & > 0, i.e., using (3.2),
we obtain ¢(In Gy(ok, F')) > (1+0)e(In Gy (o, F)) for k > 0, that contradicts to (1.10). The
necessity of condition (1.9) is proved.

Sufficiency. We assume that for the function ¢ € L condition (1.9) holds. Then there
exists a function o € L such that p(z + a(x)) ~ p(x) as * — +oo. Consider functions
1,9 € L such that ¥(),) = o™ (% lnn> and t2(A,) = Inn for every n > ng. Put
Y(x) = max{ey(x),¥e(x)}. Then b € L, e(A,¢0) = 0 < p and for each function v € L we

have

o (i) + 21 ) el + a(ii(A)

e 8 B R v ey iy R
A1) + oy (M) — ple+alx))
ST G0 AR e

i.e. for ¢ condition (1.11) is fulfilled. By Theorem 2, for ¢ condition (1.10) holds. Hence,

Theorem 3 is proved.

5. On exceptional sets in some relations between characteristics of Dirichlet
series. Let F' € S{(X) and m(o, F') = inf{|F (o0 +it)| : £ € R}. Then
1 T 1/2
o)< (Jim o [ e inPa) = Galo,#) < Mo,

0. B. Skaskiv [5,6] proved the following assertions.

Theorem C [5]. Let A € A. In order that for every Dirichlet series F' € S1(\) there exists
a set E(F) of finite measure such that M(o, F') ~ p(o, F) ~ m(o,F) as 0 — +oo and
o ¢ E(F) it is necessary and sufficient that

o0

— . d
DS W < +oo (5.1)

Theorem D [6]. Let A € A. In order that for every Dirichlet series F' € S1(\) there exists
a set E(F') of finite measure such that In M(o, F') ~ Inu(o, F) as 0 — +oo and o ¢ E(F)

it is necessary and sufficient that

1
> e . (5.2)

n=1

More precisely, if condition (5.1) (or (5.2)) is not fulfilled, then [5] ([6]) there exists
a number § > 0 and a Dirichlet series F' € S1(\) such that

M(o,F)> (14 6)Gz(o, F) > (1 4+ §) max{pu(o, F),m(o, F)} (o0 > 09) (5.3)

(or InM(o, F) > (14 6)Inu(o, F) for o > o9, respectively).
It is proved in [3] that the finiteness of measure is an exact description of the size of
exceptional set F(F') in Theorem C.
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Theorem E [3]. For any sequence A € A and each function | € L there exist a number§ > 0
and a Dirichlet series F' € S1()) such that for the By = {0 > 0: M(o,F) > (1+§)Gy(0, F)}
the estimate fEl [(x)dx = 400 is valid.

Furthermore, in [3] O. B. Skaskiv formulated the following Conjecture.

Conjecture [3]. For every function | € L there exist a sequence A € L for which condition
(5.2) holds, a number § > 0 and a Dirichlet series F' € S1(\) such that for the set Fy = {o >
0:InM(o,F)>(146)Inpu(o, )} the estimate fEl [(x)dx = 400 is valid.

Note that in [3] the validity of Conjecture is proved for every function [ € L such that

+0o  da
fO zl(z) < +o0.

Below we prove Conjecture in the general case. Moreover, we sharpen and generalize
Theorem E.

We first note that the following assertions are elementary corollaries from Theorems C

and D.

Theorem F. Let ¢ > p > 0 and A € A. In order that for every Dirichlet series F' € S,())
there exists a set F(F') of finite measure such that G,(o, F') ~ G,(0,F) as 0 — 400 and
o ¢ E(F) it is necessary and sufficient that condition (5.1) holds.

Theorem G. Let ¢ > p > 0 and XA € A. In order that for every Dirichlet series F' € S,())
there exists a set F(F') of finite measure such that InGy(o, F') ~ InGy(o, F') as 0 — +o0
and o ¢ E(F) it is necessary and sufficient that condition (5.2) holds.

Remark. For a sequence A € A we have (5.1) = (5.2) = 7(A\) = 0= (V¢ € L) (Vp > 0)
(Vg >0): Sp(A¢) = 54(A, ) = (Vp > 0)(Vg > 0) : Sp(A) = S5,(A).

For example, we prove Theorem F (the proof of Theorem G is similar).

Proof of Theorem F. First, we assume that condition (5.1) is valid. Let F' € S,(A) be
a Dirichlet series of form (1.1). Consider the Dirichlet series F,(s) = >.°7 |a,|Pe**? and
F,(s) =507, |an|?e**?. We apply Theorem C to the sequences Ap and Aq instead of A. We
have

Gp(av F) = Gl(av Fp) ~ M(Uv Fp)

(0, F) (0= 400, 0 & B(F,)),
Gilo, 1) = Gilo, Fy) ~ (o, Fy) = g

(v
/“Lq( 7F) (0-_>+0070-¢E(Fq))
Therefore, G,(o, F') ~ Gy (0, F) as 0 — +o0 and o ¢ E(F), where E(F) = E(F,)U E(F),).

Now, we suppose that condition (5.1) is not fulfilled, and show that there exist a number
e > 0 and a Dirichlet series F* € S,(A) such that

Gp(o, F7) = (1 4 ¢)Gy(o, F7) (o = 00),
i.e. condition (5.1) is necessary in Theorem F.

Since for the sequence A condition (5.1) is not fulfilled, the analogous condition is not
fulfilled for the sequence Ap. Then, as it is noted above, there exist a number § > 0 and
a Dirichlet series F' € Si(Ap), F(s) = Y07 b,e*? such that (5.3) holds. Let F*(s) =
3%, 16a]Pe* . By (5.3), we obtain

(o, ") = Gi(o, F) 2 M(0, F) > (14 6)u(o. F) = (1 4+ ) (0, F*) (o> o),
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and hence, by (1.3),

* — * * - 4=z * 1 *
Gilo, 1) < ™7 (0, F) G0, F7) < (140) 5 Gllo, ) < =G, 1)

for o > 09, where e = (1 + 5)% — 1> 0. Theorem F is proved. O

As it follows from the following assertions, the finiteness of measure is an exact description
of the sizes of the exceptional sets in Theorems F and G.

Theorem 4. Let ¢ > p > 0. For any sequence A € A and every function | € L there exist
a tunction n € L and a Dirichlet series F' € S,()\) such that for the set Fy = {o > 0 :
Gplo, F) > n(o)Gy(o, F)} the estimate fE2 [(x)dx = 400 holds.

Theorem 5. Let ¢ > p > 0. For any sequence A € A such that condition (5.2) is valid and
every tunction | € L there exist a function € L and a Dirichlet series F' € S,(\) such that
for the set Fy = {0 > 0 : InG,(0, F) > n(o)InG (o, F)} the estimate fE2 [(x)dx = +o0
holds.

Note that Theorem E and Conjecture follow from Theorems 4 and 5, respectively.
In order to prove Theorems 4 and 5, we will need some lemmas.

Lemma 2. [7, p.184] Let A € A and A > 0. If 7(A) < A, then for each Dirichlet series
F € S1()\) the relation M (o, F') = o(p(0 + A, F')) holds as 0 — +o0.

Let Q be the class of continuously differentiable on R function ® such that ®" € L. For
a given function ® € Q let ¥(z) = a — g,(é))
of Newton and let ¢ be the inverse function to ®'. It is known [8, p. 18] that ¥(z) o0

as T — +oc.

be the function associated with ® in the sense

Lemma 3. [8, p.19] Let I € Si(\) and ® € Q. In order that

In (o, F) < ®(0) (o0 > 09) (5.4)
it is necessary and sufficient that

la,| < e~ te(An) (n > ng). (5.5)

Lemma 4. Let A € A, 7(A) =0, ® € Q and ¢ € L be some function such that () =
U(p(x)) tor & > x1. Then for every number § > 0 and any Dirichlet series ' € S,(\,¢) =
S1(A) the inequality (In Gy(o, F)) < 2(0+0)®'(0+9)/§ holds for o > o((F,d). In particular,
(InG,(o, F)) <49'(20) for o > oy F).

Proof. Let F' € Si(A). Then condition (1.5) holds, i.e. condition (5.5) is fulfilled. By
Lemma 3, for F' we have (5.4). By Lemma 2 and inequality (5.4), for ¢ = §/2 > 0 and
o > o1(F,§) we obtain

e(InGy(o, F)) < /U+6(ln Gz, F))de <InGy(oc+e, F)<lnu(oc+2,F)—d(0) <
<P+ 2¢) — @(0) = /H(S '(z)dx < (0 +6)P'(c + ),

and this proves Lemma 4. O
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Lemma 5. [9] Let hy,hy € L. If @ (hi(x)/he(x)) > e > 0, then for the set £ ={x >0
T—r+00
hi(x) > ehy(x)} the estimates fEdln hi(x) = +oo and fEdln ha(x) = 400 hold.

Proof of Theorem 4. Let A € A and [ € L. We can assume, without loss of generality, that
7(A) = 0. Consider a function ® € Q such that ®'(2z) = [(x) for x > 0, and put ¢¥(z) =
max{W¥(¢(x)),1}. Then ¢ € L and, by Corollary 2, there exists a Dirichlet series F' € S,())
such that relation (1.8) is valid. As follows from (1.8) and Lemma 5, there exists a function

n € L such that for the set Ey the estimate fE (InGy(x))'de = fE2 dInGy(x) = 400 holds.
Since, by Lemma 4, (In G,(2)) < 49'(22) = 4l(x) for © > x4, we have fE2 [(x)de = 400. O

Proof of Theorem 5. Let | € L. Consider a function ® € € such that ®'(2z) = xl(x) for
x > 1, and put ¢(x) = max{W¥(e(x)),1}. Then ¢» € L. Furthermore, since x = o(P'(x))
as © — 400, we have p(x) = o(x) as @ — +oo. Consequently, ¥ () = ¥(p(x)) = p(z) —
M = o(x) as © — 4o00. Hence, there exists a function a € L such that ¢ (za(z)) = o(x
as T — +oc.

Let (ny) be an increasing sequence of integer numbers such that no = 0, ny > 1 and
a(lnnyg) > 2% for any k£ > 1. We put A,, = 0 and \,, = a(lnny)Inn, for &£ > 1. The other
terms of the sequence (),) are defined so that the inequalities max{A,,, An,,, /2} < Ay 41 <
Az < ooe < Apppm1 < A hold for any £ > 0. Then A € A and

Tk41 Tk41
NE41 o0 nk
1
Z -y > o=y > e
n=1 k=0 n= nk—l—l n k=0 nk"'l n=ng+1 n
o] o] o]
Inngyy 1
S22 3 T g S 2w =
prrs Mg prrs lnnk_H 2

i.e. for the sequence A condition (5.2) is fulfilled.

Now, since

| |
lim Ll lim 17k = 400,

k—+co ;/)( ) k—+co ;/)(Oz(ln nk) In nk)
there exist a function y € L and a subsequence (ny,, ) such that Inng, = y(ng, )*¥ (A, )
for every m > 0. Put h(z) = exp {—x’y( )} Then

) = (St ) = { G20 Tt (T )} <

q—p =L =r
< GXP{ Sap lnnkm} = n,f:lp = o(nk‘j: ) (m — o),

and we see that for the function A condition (1.6) from Theorem 1 is not fulfilled. By
Theorem 1, there exist a Dirichlet series F' € S,(A,¢) and an increasing to +oo sequence

(o) such that
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Therefore, lim (InG,(o, F)/InG (0o, F)) = +oc0, and, by Lemma 5, there exists a function

—+oo

n € L such that for the set Iy we have

(InGy(o, 1)) _/ _
/E2 —lnGp(a, F) do = s dInln G,(o, F) = +o0.

Since, by Lemma 4,

(InGy(o, F)) < 49'(20)
InG,(o,F) — o

we obtain fE2 [(x)dr = 4o0. N

6. Relations between the maximum modulus and the Nevanlinna character-
istic for power series with gaps. Let N be the class of nonnegative increasing sequences
A = (An)22, of integer numbers. For a sequence A € N by A(X) we denote the class of entire

functions of the form .

flz) =) a2 (6.1)

n=0
For function (6.1) let M(r, f) = max{|f(z)] : [z| = r}, T(r, f) = 5= 027r In* | f(re??|dO and
Ga(r, f) = (ZZO:O |an|2r2A">1/2 be its maximum modulus, the Nevanlinna characteristic and

the mean, respectively.
A. A. Gol’dberg [4] proved the following assertion.

Theorem H [4]. For each sequence A € N there exists an entire function f € A(N) such
that @ (InM(r, £)/T(r,f)) = +oo.
r——+0o0

Using Corollary 1, we prove the following stronger assertion.

Theorem 6. For each sequence A\ € N and every function h € L there exists an entire

function f € A(N) such that

— InM(r, f) ~
N S A (6.2)

Proof. As is easily seen from Corollary 1 with p = 1 and g = 2 it follows that there exists
an entire function f € A(N) such that
— In M(r, f)

A G e (63)

Next, we use the following

Lemma 6. [10, p.116] Let o be a measurable function on the segment [a,b]. Then

1 b 1 b
- /a Int a(x)dr < In™ (b — /a oz(:z:)d:z;) + 1In 2.
By Lemma 6,

I : 1 [ .
27(r, ) = —/ In* [f(re)|2do < In* (—/ |f(rew)|2d0> +1n2 =
21 Jq 27 J,
=Int Go(r, £)* +1n2 < 2(In Gy (r, f) + 1) (r >ro)
and from (6.3) we see that (6.2) holds. O
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