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Haiitener HOBBIE ONEHKN BEJUYHHBI NCKIIOYNTEIHLHOTO MHOXECTBA B aCHMITOTHTHYIECKOM
PaBEHCTBE MEHTPATHLHOTO MOKAZATESA U JOT aPU(MIIECKON TPON3BOTHON MAKCHMYMa MOV
neqoro paga [lupuxie.

Let S(A) be the class of entire (absolutely convergent in the complex plane) Dirichlet
series of the form

o0

F(z) =) a,e™, (1)

n=0

where A = (A,), 0= X < A, T 400 (1 <n T +4o0).

Let us introduce some notations for F' € S(A) and 0 € R: M (o, F') = sup{|F (o + 1y)| :
y € R} is the maximum of modulus, u(o, ) = max{|a,|¢’** : n > 0} is the maximal term,
A(o) = Ao, ) = max{)\, : |a,|e"* = u(o, F')} is the central exponent.

It is known ([1, p.145], [2]) that the function In M (o, F') is convex, that is why in the
case F' € S()) it has a nondecreasing derivative from the right, L(o, F') = (In M (o, F)) ;.

Let L be the class of positive continuous functions increasing to 400 on [0; +00) and Lo
be the class of positive functions V(¢) nondecreasing on [0; +00) such that

+oo
dV (i
A:/ Vt()<—|—oo;

0

Let L1 be the class of continuous positive nondecreasing on [0, +0oc) functions h such that

h(z +0(1)) = O(h(2)) (z = +00);
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Let Ly be the class of continuous positive nondecreasing on [0; +00) functions h such that

h(:z; + h(1$)> — O(h(z)) (2 — +o0).

For o € L let us denote by S, (A) the subclass of the class S(A) which contains the entire
Dirichlet series such that

(K = Krp > 0): |a,| < exp{=Anwo(KA.)} (n > ng).
For ® € L we introduce the following notations:
SN ®)={FeS\): (3K >0)(Inu(o,F) > Ko®(o), o > 00},

ST A P)={FeS\): (AK >0)(Inpu(o, F) > Ko®(o), c =0; = +00)}.
M. M. Sheremeta proved ([3], Theorem 1) that the condition

+ oo

> ni < +oo (2)

n+1

is necessary and sufficient for the relation
Lo, F) = (1 4+ o(1))A(0, F) (3)

to hold when o — 400 for every function F' € S(A) outside a certain set £ C [0, +00) of finite
Lebesgue measure. Besides, in [3, Theorem 2] it is proved that the conditions F' € S, (}),
o € Lyo and the condition

(Vn>0): lim (lnt) Z ni\n =0 (4)

n>

imply relation (3) when o — 400 outside a certain set £ C [0,4+00) of zero linear density.
In this paper we will supplement these theorems in a part of description of the exceptional
set. The following proposition is the basis of the proofs.

Lemma 1. Let F' € S(\) and there exists a function C(t) /' 400 (t — +00) such that for
alln > 0 and for all o € E the inequality

Ay, =t
12

lanle™ < (o, Fexp {_ / C(t)lnn(Zt)dt} (5)

14

holds where n(t) = > 1 is the counting function of the sequence A and v = v(o, F) =
Nn<t

max{n : |a,|exp(cA,) = w(o, F)} is the central index of the Dirichlet series. Then the
relation

F'(2) = (1+ o(1)A(0, F)F(2) (4)

holds when o — +oo (0 € E) for all z, Rez = o such that |F(z)| = (1 +o(1))M(o, F) as
o — +oc0.
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Actually, the proof of Lemma 1 constitutes the second part of the proof of Theorems 1
and 2 in [3], though nowhere this fact is mentioned explicitly. That is why the proof of
Lemma 1 is a literal repeating of arguments from [3]. The first part of the proof of Theorems 1
and 2 [3] is the proof of inequality (5) outside exceptional sets (as a matter of fact, in [3] (5)
is proved for the function C'(¢) = 10{(2t), where I(t) / 400 (t = +00) ).

So, taking into account the facts mentioned above, we may consider Lemma 1 proved
in [3].

Let h be a positive continuous nondecreasing function and £ C [0;+00) be a locally
Lebesgue measurable set of finite measure meas £ = fE dr < 400. Then define the h-
density of E as

Dy(FE) = lim h(R)meas(E£ N [R,+00))

R—+oo

and by lower h-density of F the value

dp(F)= lim h(R)meas(E N[R,+0)).

RIOO
In [4, Corollary 1] the following proposition is proved.

Lemma 2. [4] Let h € Ly, ® € L. If F' € ST(X, ®) and the condition

(Vb > 0) : h(c,o(bx))/ln;(t)dt%() (t — +00) (6)

xr

holds then there exists a function C'(t) the same as in Lemma | such that inequality (5) is
true for all n > 0 and o € [0;+00) \ £, Dy(E) = 0.

Actually, in [4] inequality (5) is proved by taking n(4t) instead of n(2t) but this strength-
ening is not essential.
Applying Lemmas 1 and 2 we may state that the following proposition is true.

Theorem 1. Let h € Ly, ® € L. If ' € ST(\,®) and condition (6) holds then relation (A)
is true when o — +o0 outside a certain set Fy of zero h-density (DpFE; = 0).

In order to obtain the similar proposition in the class S*(X, ®), we replace Dy F; = 0 by
the lower h-density dj F; = 0 in the formulation of Theorem 1.

Theorem 2. Let h € Ly, ® € L. If F € S*(\,®) and condition (6) holds then relation (A)

is true when o — +o0 outside a certain set Ey of zero lower h—density (dF; = 0).

In addition to Lemma 1 we need the following lemma in order to prove Theorem 2.

Lemma 3. Let h € Ly, ® € L. If FF € S*(\,®) and condition (6) holds then there exists
a function C(t) the same as in Lemma 1, such that inequality (5) is true for all n > 0 and
o €[0;+00) \ B, dp(F) = 0.

The assertion of Lemma 3 will be obtained from the following lemma. In order to
prove it we will use a modification of the Wiman—Valiron method proposed by T. Kovari
[16,17] and W. Hayman [14] and adapted for gap power series and entire Dirichlet series by
M. M. Sheremeta [5,18,19].
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Denote by (R](F));":Og the sequence of the jump points of central index of entire Dirichlet
series F'(z) numbered in such a way that v(o, F') = j when R;(F) < 0 < Rj11(F) and if
V(Bjp1 (1), 1) = j + p then Bipi(F) = Rjpa(F) = -+ = Rjyy(F) < Rjppq(F). Here we
avoid the formal definition of normal and exceptional points o € R (see the definitions [5],
[19, p.35]). However, we take into account the fact that the upper estimates of general term
of a Dirichlet series F' € S(A) by the maximal term are obtained from the properties of
the so called series of comparison. For a function F' € S(A) of form (1) and for a positive
continuous nondecreasing on [0, +00) function «a(t) this series has the following form:

Fu(z) = § 0, exp {ZAn 4 /OAH oz(t)dt} .

n=0

The following simple statements presented in Lemma 4 are basic ones for describing
the values of exceptional sets (i.e. the sets of those points o for which the desired upper
estimates of general term by the maximal term of the series may not hold). Remark that
these statements were repeatedly used by different authors as an intermediate stage of the
reflections (see the proof of Theorem 1 in [5], of Lemma 2 in [6], [7], of Theorems 3 and
4 in [3], of Lemmas 1 and 2 in [8], of Lemma 1 in [9], [10] etc.). We should also mention
that similar statements occur in papers on power series by different authors ([11]-[15] etc.).
Despite the brevity and elementarity of the proof, we include it for the sake of completeness
of exposition.

Lemma 4. If F, € S(A) then for all j > 0 such that R;(F,) < Rj41(F,) and for all
o € [Ri(Fa) + a(A)), Rjpa(Fa) + a();)) and n > 0

[nle™™ exp{_A “(alt) — a(Aj))dt}, (7)

oA
|ajler ’

moreover, v(o, F,) = j.

Proof. For simplicity let us put «, = fOA" a(t)dt and R, = R,(F,) where n > 0. According
to the definition of the maximal term p(o, F,), for o € [R;, Rj+1) and for all n > 0 we have

|an|€cr/\n+ozn S Iu(0_7 Fa) — |Clj|€g/\J+aJ.
Then for (0 — a();)) € [R;, Rj+1) and n > 0 we obtain

o—a(X;))Anton —a(Aj)) A+ .

! < Jaj] exp?

That is why for all n > 0 and o € [R; + a();), Rj+1 + a(};)) we have

|an|€cr/\n

<exp{—(a, —a;) + a(Aj) (A, — Aj)} =

afer™

— exp {— /:n a(t)dt + a(\;) /:n dt} — exp {— /:"(a(t) _ oz()\j))dt} .

J J J

Thus, inequality (7) is proved.
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Since for o € (R, Rj+1) and n # j
|an¢€akn+an <:M(07PL)7

inequality (7) for o € (R;(F,) 4+ a(A;), Rj41(Fa) + a(};)) when n # j is also strict.
The function «(t) is nondecreasing on [0, +00), hence, for arbitrary nonnegative integers
n and m the inequality

/An(a(t) — a(A))dt > 0

holds when n # m. Together with inequality (7) for o € (R;(F.)+ a(A;), Rjs1(Fa) + a(A)))
in case Rj(F,) < Rj+1(Fy) it implies
|an|eUA"
|ajler
for all n # j, i.e. v(o, F') = j. Thus, the second statement of Lemma 4 is proved, because
v(o, F') is continuous from the right. O

Lemma 5. Let V € Lo, h € Ly, ® € L.,. Suppose that F' € S*(\,®) and the condition

n——+oo t

(Vo> 0): lim h(p(br,)) /"‘OO dvit) =0 (8)

n

holds. Then for alln > 0 and o € [0, +00) the inequality

ke <oy { - [ Lavin). 0

14

where v = v(o, F') and ¢ is a function, inverse to ®, holds outside a set F; of zero lower

h-density (dyFE; =0).

Proof. Let a(t) = Ot dvf). Consider the Dirichlet series F,(z). Since V' € Lo,
o [TdV(t
Al / % < 4+
0

and for the general term of series F,(z) we have

An
la,|exp < o), —I—/ oz(t)dt} <
0
< lan| exp{(o + a(An))An} < lag|exp{(o + A)As},

ie. F, € H(A).
Let R, = R,(F,) where n > 0. Let us apply Lemma 4 to the function F,. Then, since

[ et~ et = [ 2avi,

J J

oA A
n " " An _'t
o 4|€M <expl — dV(t)
|a;le N, L

J

inequality (7) implies
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for all o € [R; + a(X;), Rj+1 + a(Aj)] and n > 0. According to the second statement of
Lemma 4, the equality v(o, F') = j holds for all o € [R; + a();), Rj+1 + «(A;)). Hence,
inequality (9) is true for all n > 0 and o € E where

+oo
B JIR; +a(h), Byt + a(X)).
7=1
Let By = [Ry + a(XM1);+00) \ E. Now we prove that dyF; = 0. Remark that if R; <
Rivi=-=Ri4p, < Rjypr1 (p>1)and 0 € [R; + a(N;), Rit1 + a(A;)) then we obtain the

following relation for the measure of the set E; N [0, +00) :

meas(F; N [o, +o00)) = Z((Rk-l—l + a(Aeg1)) = (Brga + (i) =
- Z (Akg1) — (M) /A . dV /A i dVT(t) (10)

If o € [Rjp1+ a(Aj), Rjy1 + a(Aj4,)) then

meas( £ N [U +00)) <meas(E N [Rjp1 + a(Aj), +0)) =
v

—Z e

J

We have F' € S*(A, ®), thus, there exist a number K = Kp > 0 and a sequence (0']‘);_208

increasing to +0o when j — 400 such that
Koj®(o;) <lnp(o;, 1) (5 =1).
Note that for all 0 € R
An
In u(o, F,) = max{ln |a,| + / at)dt + oA, } >
0
> max{ln |a,| + oA, } = Inu(o, F).
Hence, F, € S*(A\, @) and
Koj®(o;) <Inp(oj, Fo) (5 21).

Since

In w(o, ) = In u(0, F,) —I—/ At Fydt <200 (60,72
0

we haVe
< —2 A (11)
a; vioy; —
J = K (0;—0,Fa)

with 7 > 0 where ¢(t) is the function inverse to ®(¢).
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Let the sequence (0‘;);:8 be defined by the equality
0; =o;+ oz()\n]),

where n; is the number of the interval [R,, R,4+1) which contains ;. Then R,, < R, 41 and
07 € Ry, +a(A,), Rojy1 + a(A,;)). On account of inequality (11) we obtain

h(07) = h(oj + a(As,)) <

2 A dV (x 20,
<o (rmomn) + [ 757 21 (¢ (F) +4).
0

because v(o — 0, F,) < j with o € [R;, Rj41).
Taking into account (10) and the assumptions of lemma h € Ly and (8), we conclude

h(a;)meas(El N [0‘;, +00)) = o(1) (J = +o0),
i.e. dpFy = 0 and this completes the proof of Lemma 5. 0

Proof of Lemma 3. Let 3(t) be a nonnegative function satisfying the condition

(Vb > 0) : h(p(bx)) /+OO @dt —0 (x = 400), (12)

xr

i.e. (12) implies condition (8) for 3(¢) = Inn(t).
Let

[(x) = / h t723(4t)dt, li(z) = h(e(bx))l(z).
Then according to (12),
[i(z) = 4h(e(bx)) /4+OO t_zﬁ(t)dt =o(1) (x = 400)

and, therefore, the function C'(x) defined by the equality

def

C(2) Y (max{L(t): t > 2})77,

is nondecreasing and C(z) /* 400 when 2 — 4o0.
Remark that

o o gy
h{@(bA,)) /n t72C ()B4t dt < h(w(bAy)) /n tQ(h(c,o(bt))l(t))zldt <
<~V | % = 2/L0n) = of1)

when n — +o00. Hence, for
V(z) = / t71C(4)B(4t)dt,
0

we have

h{p(bA,)) /+OO t_QC(t) Inn(4t)dt = o(1) (n — 400).
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This yields that the function

V(z) = /Oxt_IC(t)ln n(4t)dt

satisfies the assumptions of Lemma 5 the applying of which completes the proof of Lemma 3.

O

Applying Lemmas 1 and 3 we immediately state that the assertion of Theorem 2 is true.
In order to derive the statement on relation (3) from Theorem 1, we will obtain the
statement on the following relation:

F'(z) = (1+o(1))L(o, F) F(z). (B)
The proof will repeat the scheme of the proof of Theorem 1.3.17 from [1].

Theorem 3. Let & € L, h € Ly be such that h(r) = o(®(r)) (r — +o0). If F' € S(A) and
L(o,F)> ®(0) (0 > 09) then relation (B) holds when 0 — 400 (0 ¢ E, Dy(F) = 0) for all
z, Rez = o such that |F(z)| = (1 + o(1))M (o, F') with 0 — +o0.

In order to prove Theorem 3 we will use the following version of the Borel-Nevanlinna
lemma.

Lemma 6. Let a semicontinuous from the right, increasing on [rg,4+00) function u(r) and
functions ® € L, h € Ly be such that

u(r) > ®(r)(r >r9), h(r)=o0(®(r)) (r— +o0).

Then there exists a function é(u) T 400 (u — +00) such that the set

petrzn (e 2 0) = (14 g ) o)

has zero h-density, i.e. Dy(F) = 0.

Proof. Let us start with proving that for all § > 0 the set

L) = {r > 1o u <r+ u(i)> > <1+§> u(r)}

is of zero h—density. There is no loss of generality in assuming that the set £(4) is unbounded.
In the opposite case the assertion of the lemma is trivial. Let FE(d,r) = F(J) N [r;+o0),
ry = inf{r: r € E(§,1)} and r; = r + &/u(ry). Suppose that ry,...,7, and r|,...,7 are
defined. Let us define r,41 = inf{r : r € E(J, r;) , r;_l_l = rpt1 + 6/u(rnq1). It is clear that

(see [20, p.67])

+ oo

E@) | rar

n=1

!

-
Now remark that

w(rapr) 2 ulry) = ulra +6/u(r,)) 2 (14 1/8)u(r).
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This implies r, T 400 (n — +00) and

sl —ulr)

u(ry) N
Therefore, for r € [r;r,41] we obtain
meask(d,r) < —li.i (r —rg) < —|—5 Z — u(rp-1) —
T P g U(rnt1) u(rp-1)
1 20 20
u(rpt1) Z u(rp-1) (rk)) wW(rpg1) = @(rnga)
Similarly, when r € [r,,, 7] we get
e —u(rp—1)
measF(d,r) < Z (rp, — %) =
k=n k=n+1 Tk 1)

26 - 26
Cou(r) T O(r)
Now it remains to note that h(r) < h(rn,41) (r < rpq1) and

when < 7, n — +oo. Here we successively applied the conditions u(r) > ®(r), h(r) =
o(®(r)) (r = 4o00) and h € Ls.
Thus, we conclude that for all r € [r,;r,41]

h(rn) . h(ret)
®(r,) " P(rap)

h(r)measE(S,r) = O (max{ }) =o(1) (n— +00),

i.e. Du(E(6)) = 0.

Now let 4, = n and let R, be a sequence increasing to +oo such that for r > R,

1
h(r)measE(d,,r) < — =
Let §(u(r)) = nfor r € [R,; Roy1], Bo = UIZ(E ( ) [Rn; Rot1)). Then from what has
been already proved above it follows that for all r Rov1) \ Eo

(S ) =) < (s ) (1 )

Thus, for the set E defined in the formulation of Lemma 6 we have £ C FEy. Then for
r € [Rn, Roy1) with n — 400 we obtain

h(r)meas (Eo N [r;+00)) < h(r)measF(d,,r)+

+oo
1
h(Rg)measE(dy, Ri) < Z — =o(1),

n2
k=n

i.e. Dp(Ey) =0. This is the desired conclusion. O
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Proof of Theorem 3. Applying Lemma 6 to the function u(r) = L(r, F') we deduce that for
all o € [0;4+00) \ F (Dy(F) = 0) the relation

d(o) 1
L F 14+ ——= | L{o, F
(o Ty #) < (1 77) e
holds where §(0) = §(L(o, F')). From what is written above it follows that for all |7| <

(o) =46(c)/L(o, F)and o € [0;+00) \ F
|L(c + 7, F)— Lo, F)| < L(o, F)/é(0).

Let e(0) = 4+0(0 — +00) and let w = o + it be an arbitrary point such that |F(w)| >
M(o, F)(1 +&(a))~". From the convexity of In M(o, F') it follows that for all {o,h} C R

InM(oc+h, F)—InM(o, F) < hL(c+ h, F),

thus,
InM(o+h,F)—InM(o,F)—hlL(o,F) < |h||L(c+ h, F) — L(o, F)|.

Hence, for all || < ¢(0) and o € [0;+00) \ F
InM(o+7,F)—InM(o,F)—7L(c, F) < 1.
Therefore, for all o € [0;+00) \ F and nn € C, |Ren| < (o)

F(w + 77) e—nL(cr,F) <
F(w) -

<(1+4+e(o))exp{InM(c + Ren, F)—In M(o,F) — RenL(o, F)} < (1 +¢(0))e.

Obviously, this implies that the same inequality holds for all n € C, |n| < ¢¥(0), 0 ¢ F,
because {n € C: |n| < a} C{n € C: |Ren| < a}. Now let us consider the function

Flw+n) _ 10
g(n) = ﬁe e -1,

where |n| < (o), 0 ¢ E. According to Schwartz” lemma, for all |n| < ¢ (o)

_nl_
¥(o)

b
lg(m)] < (1 + (1 +€(U)))¢(U) = (o)

This yields
e een] =1 - )] > 0
where |n| < ¢(o)/c(o), 0 ¢ E, ie. |F(w+n)| > 0 for |n| <(o)/c(o).

Consider the function

B 77F’(w—I—T)T_ . _
G = [ ot Hdr — L. ). Glo) =0,

analytic in the disc {n: |n| < ¢¥(o)/c(o)}. Remark that G'(0) = Flo) _ L(o, F') and for all
nl < g <(s)/c(o)

F(w+n) —nL(o,F)
g, <
Re(?(n)—ln‘ (@) e =1In|1 + g(n)]
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<In(1+ |g(n)]) <In (1 + zz;c((aa))>

By the modified Cauchy inequality,

G(0)]g < 2sup{Re G(n) : In] < ¢} < 21n (1 ; jb(f;)

Therefore, with ¢ — 400 (0 ¢ F)

Fr(w) 1 __1‘<< ___E%jﬁjln<1'+ q0(0)> o 2o) o) — o(1)

o) Lo F) | = 4kt 00 = To Fite) ~ (kLo )
for all w = & + it such that |F(w)| > M(e, F)(1 + ¢(0))™!. The proof of Theorem 3 is
complete. O

From Theorems 1 and 3 we derive the following proposition.

Theorem 4. Suppose that the assumptions of Theorem 1 hold. Then relation (3) is true
when o — +oo (o ¢ E,Dy(F) =0).

Proof. 1t is sufficient to prove that the assumptions of Theorem 3 follow from those of
Theorem 1. Note that

o®(o) <Inpu(o, F') <InM(o, F) zlnM(ao,F)—l—/ L(t, F)dt <

<InM(og, F)+ (0 — 09)L(0, F).

Now if oy > 09 is such that In M(og, F') — ooL(o1, ') < 0 then for 0 > oy we have L(o, F') >
d(o).

Further, condition (6) implies

h(r)Inn(®(r)) T Inn(t)
sy S [ = el

when r — +oo. Hence, h(r) = o(®(r)) (r — +o0), i.e. the assumptions of Theorem 3
hold. It remains to note that if £y, Fy are two sets such that Dy(F;) =0, 5 € {1,2} then
Dy(E; U E3) = 0. Theorem 4 is proved. O

Remark. Analyzing the proofs of Theorems 2 and 3 it is easy to notice that the proposition
similar to Theorem 4 can be obtained under the conditions of Theorem 2. Moreover, it is
clear that the only estimate that may be obtained for the exceptional set is d,(F£) = 0.
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