УДК 517.537.72

L. YA. MYKYTYUK, M. M. SHEREMETA

ON THE REMAINDER OF DIRICHLET SERIES

L. Ya. Mykytyuk, M. M. Sheremeta. On the remainder of Dirichlet series, Matematychni Studii, 19 (2003) 55–60.

For Dirichlet series $\sum_{n=1}^{\infty} a_n \exp\{s\lambda_n\}$ with nonnegative exponents an asymptotic behaviour of the remainder $\sum_{k=n}^{\infty} |a_k| \exp\{\sigma\lambda_k\}$ as $n \to \infty$ is investigated.

Л. Я. Микитюк, М. М. Шеремета. Об остатке ряда Дирихле // Математичні Студії. — 2003. — Т.19, №1. — С.55—60.

Для ряда Дирихле $\sum_{n=1}^{\infty} a_n \exp\{s\lambda_n\}$ с неотрицательными показателями исследовано асимптотическое поведение при $n \to \infty$ остатка $\sum_{k=n}^{\infty} |a_k| \exp\{\sigma\lambda_k\}$.

1. Let (λ_n) be an increasing to $+\infty$ sequence of nonnegative numbers and a Dirichlet series

$$F(s) = \sum_{n=1}^{\infty} a_n \exp\{s\lambda_n\}, \ s = \sigma + it, \tag{1}$$

has an abscissa of absolute convergence $\sigma_a \in (-\infty, +\infty]$.

In the note we investigate an asymptotic behaviour of the remainder

$$R_n(F,\sigma) := \sum_{k=n}^{\infty} |a_k| \exp\{\sigma \lambda_k\}$$

for fixed $\sigma < \sigma_a$ and as $n \to \infty$. We put $\varkappa_n = \frac{\ln |a_n| - \ln |a_{n+1}|}{\lambda_{n+1} - \lambda_n}$.

2. We begin from the case $\sigma_a = 0$ and prove the following

Lemma 1. Let $\sigma_a = 0$, $|a_n| \to \infty$ $(n \to \infty)$, $\varkappa_n \to 0$ $(n \to \infty)$ and $\lambda_{n+1} - \lambda_n \ge 1$ for all $n \ge n_0$. Then for every $\sigma < 0$

$$1 \le \underline{\lim_{n \to \infty}} \frac{R_n(F, \sigma) e^{|\sigma| \lambda_n}}{|a_n|} \le \underline{\lim_{n \to \infty}} \frac{R_n(F, \sigma) e^{|\sigma| \lambda_n}}{|a_n|} \le 1 + \frac{1}{e^{|\sigma|} - 1}.$$
 (2)

2000 Mathematics Subject Classification: 30B50.

Proof. Since $R_n(F,\sigma) \geq |a_n|e^{\sigma\lambda_n}$, we have left inequality (2). On the other hand,

$$R_n(F,\sigma) = |a_n|e^{\sigma\lambda_n} \left(1 + \sum_{k=n+1}^{\infty} \exp\{\ln|a_k| - \ln|a_n| + \sigma(\lambda_k - \lambda_n)\} \right) =$$

$$= |a_n|e^{\sigma\lambda_n} \left(1 + \sum_{k=n+1}^{\infty} \exp\left\{ -|\sigma|(\lambda_k - \lambda_n) \left(1 + \frac{\ln|a_k| - \ln|a_n|}{-|\sigma|(\lambda_k - \lambda_n)} \right) \right\} \right) =$$

$$= |a_n|e^{\sigma\lambda_n} \left(1 + \sum_{k=n+1}^{\infty} \exp\left\{ -|\sigma|(\lambda_k - \lambda_n) (1 + o(1)) \right\} \right) \le$$

$$\le |a_n|e^{\sigma\lambda_n} \left(1 + \sum_{k=n+1}^{\infty} \exp\left\{ -|\sigma|(k - n) (1 + o(1)) \right\} \right) =$$

$$= |a_n|e^{\sigma\lambda_n} \left(1 + \frac{1}{\exp\{(1 + o(1)|\sigma|\} - 1\}} \right), \quad n \to \infty.$$

Hence right inequality (2) follows.

Now, we put $\Delta n(t) := \sum_{t \le \lambda_n < t+1} 1$ for $t \ge 0$.

Theorem 1. Let $\sigma_a = 0$, $|a_n| \to \infty$ and $\varkappa_n \to 0$ as $n \to \infty$. Then for every fixed $\sigma < 0$

$$\overline{\lim_{n \to \infty}} \frac{\ln \left(R_n(F, \sigma) e^{|\sigma| \lambda_n} \right)}{\ln |a_n|} = 1 + \overline{\lim_{n \to \infty}} \frac{\ln \Delta n(\lambda_n)}{\ln |a_n|} \tag{3}$$

and

$$\underline{\lim_{n \to \infty}} \frac{\ln \left(R_n(F, \sigma) e^{|\sigma| \lambda_n} \right)}{\ln |a_n|} \ge 1 + \underline{\lim_{n \to \infty}} \frac{\ln \Delta n(\lambda_n)}{\ln |a_n|}.$$
 (4)

Proof. Let $\varepsilon > 0$ be an arbitrary number and $n_0 = n_0(\varepsilon)$ be such that $|a_n| \geq e$ and

$$|\ln |a_n| - \ln |a_{n+1}|| < \varepsilon(\lambda_{n+1} - \lambda_n) \text{ for } n \ge n_0.$$

Then

$$|\ln |a_n| - \ln |a_p|| < \varepsilon |\lambda_n - \lambda_p| \text{ for } n \ge n_0, p \ge n_0,$$

and if $|\lambda_n - \lambda_p| < 1$ then

$$|a_n|^{1-\varepsilon} \le |a_p| \le |a_n|^{1+\varepsilon}, \quad n \ge n_0, \ p \ge n_0.$$
 (5)

Therefore,

$$R_n(F,\sigma) \ge \sum_{\lambda_n \le \lambda_n \le \lambda_n + 1} |a_p| e^{\sigma \lambda_p} \ge |a_n|^{1-\varepsilon} e^{\sigma(\lambda_n + 1)} \Delta n(\lambda_n), \quad n \ge n_0,$$

and

$$\frac{\ln\left(R_n(F,\sigma)e^{|\sigma|\lambda_n}\right)}{\ln|a_n|} \ge \frac{\ln\Delta n(\lambda_n)}{\ln|a_n|} + 1 - \varepsilon + \frac{\sigma}{\ln|a_n|},$$

whence in view of arbitrariness of ε we obtain (4) and

$$\overline{\lim_{n \to \infty}} \frac{\ln \left(R_n(F, \sigma) e^{|\sigma| \lambda_n} \right)}{\ln |a_n|} \ge 1 + \overline{\lim_{n \to \infty}} \frac{\ln \Delta n(\lambda_n)}{\ln |a_n|}.$$
(6)

Now, let

$$\overline{\lim}_{n\to\infty} \frac{\ln \Delta n(\lambda_n)}{\ln |a_n|} = \tau < +\infty.$$

We choose a subsequence (λ_{n_k}) of sequence (λ_n) such that the intervals $[\lambda_{n_k}, \lambda_{n_k} + 1)$ are mutually disjoint and the set $\{\lambda_n\}$ is contained in $\bigcup_k [\lambda_{n_k}, \lambda_{n_k} + 1)$. For $\varepsilon > 0$ let $n_0 = n_0(\varepsilon)$ be such that (5) holds provided $|\lambda_n - \lambda_p| < 1$ and $\frac{\ln \Delta n(\lambda_n)}{\ln |a_n|} \le \tau + \varepsilon$. Then

$$R_{n_k}(F,\sigma) = \sum_{j=k}^{\infty} \sum_{\lambda_{n_j} \leq \lambda_p < \lambda_{n_j} + 1} |a_p| e^{\sigma \lambda_p} \leq \sum_{j=k}^{\infty} |a_{n_j}|^{1+\varepsilon} e^{\sigma \lambda_{n_j}} \Delta n(\lambda_{n_j}) \leq \sum_{j=k}^{\infty} |a_{n_j}|^{1+\tau + 2\varepsilon} e^{\sigma \lambda_{n_j}}.$$

Since $\frac{\ln |a_{n_k}| - \ln |a_{n_{k+1}}|}{\lambda_{n_{k+1}} - \lambda_{n_k}} \to 0, k \to \infty$, and $\lambda_{n_{k+1}} - \lambda_{n_k} > 1$, by Lemma 1 in view of arbitrariness of ε we have

$$\lim_{k \to \infty} \frac{\ln\left(R_{n_k}(F, \sigma) \exp\{|\sigma|\lambda_{n_k}\}\right)}{\ln|a_{n_k}|} \le \tau + 1. \tag{7}$$

Let $n \in \mathbb{N}$ be an arbitrary number and $\lambda_{n_k} \leq \lambda_n < \lambda_{n_k} + 1$ for some k. Then

$$R_n(F,\sigma)e^{|\sigma|\lambda_n} \le e^{|\sigma|}e^{|\sigma|\lambda_{n_k}} \sum_{j=n_k}^{\infty} |a_j|e^{\sigma\lambda_j} = e^{|\sigma|}R_{n_k}(F,\sigma)e^{|\sigma|\lambda_{n_k}}$$

and

$$\frac{\ln\left(R_n(F,\sigma)\exp\{|\sigma|\lambda_n\}\right)}{\ln\,|a_n|} \leq \frac{|\sigma|}{\ln\,|a_n|} + \frac{\ln\left(R_{n_k}(F,\sigma)\exp\{|\sigma|\lambda_{n_k}\}\right)}{\ln\,|a_{n_k}|} \frac{\ln\,|a_{n_k}|}{\ln\,|a_n|}.$$

Hence in view of (5), (7) and arbitrariness of ε we obtain

$$\overline{\lim_{n \to \infty}} \frac{\ln (R_n(F, \sigma) \exp\{|\sigma| \lambda_n\})}{\ln |a_n|} \le \tau + 1.$$
(8)

For $\tau = +\infty$ inequality (8) is obvious. From (6) and (8) we have (3).

Corollary 1. Let $\sigma_a = 0$, $|a_n| \to \infty$ and $\varkappa_n \to 0$ as $n \to \infty$. In order that

$$\lim_{n \to \infty} \frac{\ln (R_n(F, \sigma)e^{|\sigma|\lambda_n})}{\ln |a_n|} = 1,$$

it is necessary and sufficient that $\lim_{n\to\infty} \frac{\ln \Delta n(\lambda_n)}{\ln |a_n|} = 0.$

Let a_n^0 be coefficients of Newton's majorant [1] of an arbitrary Dirichlet series (1) with $\sigma_a = 0$ and $|a_n| \to \infty$ as $n \to \infty$. Then $a_n^0 \to +\infty$ $(n \to \infty)$, $|a_n| \le a_n^0$ for all n, $|a_{n_k}| = a_{n_k}^0$ for some increasing sequence (n_k) and

$$\varkappa_n^0(F) = \frac{\ln |a_n^0| - \ln |a_{n+1}^0|}{\lambda_{n+1} - \lambda_n} \nearrow 0, \quad n \to \infty.$$

We put $R_n^0(\sigma) = \sum_{k=n}^{\infty} a_k^0 \exp\{\sigma \lambda_k\}$. If $\lim_{n \to \infty} \frac{\ln \Delta n(\lambda_n)}{\ln |a_n|} = 0$, then $\lim_{n \to \infty} \frac{\ln \Delta n(\lambda_n)}{\ln |a_n|} = 0$, and by Corollary 1 $R_n^0(\sigma)e^{|\sigma|\lambda_n} = (1 + o(1))a_n^0$, $n \to \infty$. Since $R_n(F, \sigma) \le R_n^0(\sigma)$ and $|a_{n_k}| = a_{n_k}^0$, we have $R_{n_k}(F, \sigma) \exp\{|\sigma|\lambda_{n_k}\} \le (1 + o(1))|a_{n_k}|$, $k \to \infty$, that is

$$\lim_{n \to \infty} \frac{\ln \left(R_n(F, \sigma) e^{|\sigma| \lambda_n} \right)}{\ln |a_n|} \le 1.$$

Therefore, in view of (4) we obtain the following

Corollary 2. Let $\sigma_a = 0$, $|a_n| \to \infty$ as $n \to \infty$. If $\ln \Delta n(\lambda_n) = o(\ln |a_n|)$, $n \to \infty$, then

$$\lim_{n \to \infty} \frac{\ln (R_n(F, \sigma)e^{|\sigma|\lambda_n})}{\ln |a_n|} = 1.$$

3. Now we consider entire Dirichlet series (i.e. $\sigma_a = +\infty$). In this case the following lemma is true.

Lemma 2. Let $\sigma_a = +\infty$, $\varkappa_n \to +\infty$ $(n \to \infty)$ and $\ln \frac{1}{|a_{n+1}|} - \ln \frac{1}{|a_n|} \ge 1$ for all $n \ge n_0$.

$$1 \le \lim_{n \to \infty} \frac{R_n(F, \sigma)e^{-\sigma\lambda_n}}{|a_n|} \le \lim_{n \to \infty} \frac{R_n(F, \sigma)e^{-\sigma\lambda_n}}{|a_n|} \le 1 + \frac{1}{e - 1}.$$
 (9)

Proof. We need to prove right inequality (9). As above we have

$$R_{n}(F,\sigma) = |a_{n}|e^{\sigma\lambda_{n}} \left(1 + \sum_{k=n+1}^{\infty} \exp\left\{ -\left(\ln\frac{1}{|a_{k}|} - \ln\frac{1}{|a_{n}|}\right) \left(1 + \sigma\frac{\lambda_{k} - \lambda_{n}}{\ln|a_{k}| - \ln|a_{n}|} \right) \right\} \right) \le$$

$$\le |a_{n}|e^{\sigma\lambda_{n}} \left(1 + \sum_{k=n+1}^{\infty} \exp\left\{ -\left(\lambda_{k} - \lambda_{n}\right) \left(1 + o(1) \right) \right\} \right) =$$

$$= |a_{n}|e^{\sigma\lambda_{n}} \left(1 + \frac{1}{\exp\left\{ \left(1 + o(1) \right\} - 1} \right)$$

as $n \to \infty$, whence right inequality (9) follows.

For
$$t \ge 0$$
 now we put $\Delta k(t) := \sum_{t \le A_n < t+1} 1$, where $A_k = \ln \frac{1}{|a_k|} \to +\infty$, $k \to \infty$.

Theorem 2. Let $\sigma_a = +\infty$ and $\varkappa_n \to +\infty$ as $n \to \infty$. Then for every fixed $\sigma \in \mathbb{R}$

$$\overline{\lim_{n \to \infty}} \frac{\ln R_n(F, \sigma)}{\ln (1/|a_n|)} = \overline{\lim_{n \to \infty}} \frac{\ln \Delta k (\ln (1/|a_n|))}{\ln (1/|a_n|)} - 1$$
(10)

and

$$\underline{\lim_{n \to \infty}} \frac{\ln R_n(F, \sigma)}{\ln (1/|a_n|)} \ge \underline{\lim_{n \to \infty}} \frac{\ln \Delta k(\ln (1/|a_n|))}{\ln (1/|a_n|)} - 1. \tag{11}$$

Proof. We note that $\ln(1/|a_n|) \uparrow +\infty$, $n \to \infty$, because $\sigma_a = +\infty$ and $\varkappa_n \to +\infty$ as $n \to \infty$. Since $\lambda_{n+1} - \lambda_n < \varepsilon(A_{n+1} - A_n)$ for every $\varepsilon > 0$ and all $n \ge n_0 = n_0(\varepsilon)$, we

have $|\lambda_k - \lambda_n| < \varepsilon |A_k - A_n|$ for all $n \ge n_0$ and $k \ge n_0$. Therefore, if $|A_k - A_n| < 1$ then $\frac{|a_n|}{e} \le |a_k| \le |a_n|e$,

$$R_n(F,\sigma) \ge \sum_{A_n \le A_p < A_n + 1} |a_p| e^{\sigma \lambda_p} \ge \frac{|a_n|}{e} e^{\sigma \lambda_n - \varepsilon |\sigma|} \Delta k(A_n)$$

and

$$\frac{\ln R_n(F,\sigma)}{\ln(1/|a_n|)} \ge \frac{\ln \Delta k(A_n)}{\ln(1/|a_n|)} + \frac{\sigma \lambda_n}{\ln(1/|a_n|)} - \frac{\varepsilon|\sigma|+1}{\ln(1/|a_n|)} - 1. \tag{12}$$

Since $\sigma_a = +\infty$, we have $\frac{1}{\lambda_n} \ln \frac{1}{|a_n|} \to +\infty$, $n \to \infty$, and from (12) we obtain inequality (11) and

$$\overline{\lim_{n \to \infty}} \frac{\ln R_n(F, \sigma)}{\ln (1/|a_n|)} \ge \overline{\lim_{n \to \infty}} \frac{\ln \Delta k(\ln (1/|a_n|))}{\ln (1/|a_n|)} - 1$$
(13)

Since $R_n(F,\sigma) \to 0$, $n \to \infty$, from (13) we have

$$\overline{\lim_{n \to \infty}} \frac{\ln \Delta k(\ln (1/|a_n|))}{\ln (1/|a_n|)} = \beta \le 1.$$

We suppose that $\beta < 1, 0 < \varepsilon < 1 - \beta$ and choose a subsequence (A_{n_k}) of sequence (A_n) such that the intervals $[A_{n_k}, A_{n_k} + 1)$ are mutually disjoint and the set $\{A_n\}$ is contained in $\bigcup_k [A_{n_k}, A_{n_k} + 1)$. Let $n_0 = n_0(\varepsilon)$ be such that $|\lambda_n - \lambda_p| < \varepsilon$ provided $|A_n - A_p| < 1$ and $\ln \Delta k(A_n) \le (\beta + \varepsilon)A_n$ for $n \ge n_0$ and $p \ge n_0$. Then

$$\begin{split} R_{n_k}(F,\sigma) &= \sum_{j=k}^{\infty} \sum_{A_{n_j} \leq A_p < A_{n_j} + 1} |a_p| e^{\sigma \lambda_p} \leq \\ &\leq \sum_{j=k}^{\infty} e|a_{n_j}| e^{\sigma \lambda_{n_j} + \varepsilon|\sigma|} \Delta k(A_{n_j}) \leq e^{\varepsilon|\sigma|} \sum_{j=k}^{\infty} |a_{n_k}|^{1-\beta-\varepsilon} e^{\sigma \lambda_{n_k}}. \end{split}$$

Hence, as in the proof of Theorem 1, by Lemma 2 we obtain first

$$\overline{\lim_{k \to \infty}} \frac{\ln (R_{n_k}(F, \sigma) \exp\{-\sigma \lambda_{n_k}\})}{\ln (1/|a_{n_k}|)} \le \beta + \varepsilon - 1.$$

and again

$$\overline{\lim_{n \to \infty}} \frac{\ln (R_n(F, \sigma) \exp\{-\sigma \lambda_n\})}{\ln (1/|a_n|)} \le \beta - 1.$$
(14)

Since
$$\frac{1}{\lambda_n} \ln \frac{1}{|a_n|} \to +\infty$$
, $n \to \infty$, from (13) and (14) we obtain (10).

Corollary 3. Let $\sigma_a = +\infty$ and $\varkappa_n \to \infty$ as $n \to \infty$. In order that $\lim_{n \to \infty} \frac{\ln R_n(F, \sigma)}{\ln (1/|a_n|)} = 1$, it is necessary and sufficient that

$$\lim_{n \to \infty} \frac{\ln \Delta k(\ln (1/|a_n|))}{\ln (1/|a_n|)} = 0.$$

Let a_n^0 be the coefficients of Newton's majorant [2, p. 180–182] of an arbitrary entire Dirichlet series (1). As above, from Corollary 3 we obtain the following

Corollary 4. Let $\sigma_a = \infty$, $|\varkappa_n| \to \infty$ as $n \to \infty$. If $\ln \Delta k(\ln(1/|a_n^0|)) = o(\ln(1/|a_n^0|))$, $n \to \infty$, then

$$\underline{\lim_{n\to\infty}} \frac{\ln R_n(F,\sigma)}{\ln (1/|a_n|)} = 1.$$

REFERENCES

- 1. Гече Ф. И., Онипчук С. В. Об абсииссах сходимости ряда Дирихле и его мажоранте Ньютона // Укр. мат. ж. − 1974. − Т. 26, №2. − С.161–168.
- 2. Леонтьев Ф. Ф. Ряды экспонент. М.: Наука. 1976. 536 с.

Faculty of Mechanics and Mathematics, Lviv Ivan Franko National University

Received 1.07.2002