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oQ
Hast paga Nupuxae 7 | a, exp{sA,} ¢ HeoTpULATEILHBIME NOKA3ATENAMI HCCIELOBAHO
oQ
ACHMITOTHYECKOE MOBECHHE TIPH 1 — 00 oCTaTKa » .~ |ag|exp{oA}.

1. Let (A,) be an increasing to +oo sequence of nonnegative numbers and a Dirichlet

series
o0

F(s) = Zan exp{sA,}, s =0+, (1)

n=1
has an abscissa of absolute convergence o, € (—o0, +o0].

In the note we investigate an asymptotic behaviour of the remainder

o0

R,(F,0):= Z lax| exp{oAr}

k=n

In |a,| —In |a,41]

)\n—l—l - )\n

for fixed 0 < 0, and as n — oo. We put », =
2. We begin from the case o, = 0 and prove the following

Lemma 1. Let 0, = 0, |a,| — oo (n — 00), 2, = 0(n — o0) and Apy1 — A, > 1 for all
n > ng. Then for every o < 0

R, (F, c)elo R (F a)elolr» 1
| < fi F0)e™ e BulE0)el

n—0o |an| n—00 |an| - el —1°
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Proof. Since R, (F,0) > |a,|e”*, we have left inequality (2). On the other hand,

R, (F,0) = |a,|e”™ (1 + Z exp{In |ax| — In |a,| + o(Ar — )\n)}> =

k=n+1

= e <1+ > exp{ s~ <1+1ril|ZT<|A_klilA|Z;|>}> )

k=n+1

= |an|ecr/\" (1 + Z exp {—|0‘|()\k — )\n) (1 + 0(1))}) <

k=n+1

< lanfer™ (1 £ 3 esp{-lolk—n)(1 +o<1>>}) -

k=n+1

1
oA
= la,|e”™ [ 1 : :
aale <+exp{<1+0<1>|a|}_1> "o

Hence right inequality (2) follows. O
Now, we put An(t):= >, 1fort>0.
t<An<tH1

Theorem 1. Let o, =0, |a,| = oo and s, — 0 as n — oo. Then for every fixed o <0

— In(R.(F,0)elrhn — In An(A,
fm B 0)e) ) g In And) (3)
n—00 In |a,| n—co  In |a,|
and o
In(R,(F,o0)el7"n . In An(),
lim n (£ (F,0)e ) > 14 lim w (4)
n—00 In |an| n—eo 1N |an|

Proof. Let ¢ > 0 be an arbitrary number and ng = ng(¢) be such that |a,| > e and
|In Jan| —In |ant1|| < e(Ang1 — An) for n > ng.

Then
|In |an| —1n |a,|| < e|An — Ap| for n > ng, p > no,

and if |\, — Ay| < 1 then

|an|1_E S |ap| S |an|1+67 n Z o, P Z no. (5)
Therefore,
R,(F,0)> Z |ap|e“1’ > |an|1_seU(A"+1)An(An), n > ng,
An<Ap<Antl
and
In (R, (F,a)el”) . In An(A,) g 7
In |a,| In |a,| In |a,|

whence in view of arbitrariness of £ we obtain (4) and

_ lo|An _
— In(R,(F,o)e ) > 14 Tm In An()\n)‘

n—$00 In |an| n—oco  In |an|
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Now, let
— In An(A,)
m —— = =7 < +o0.
n—oco  In |an|
We choose a subsequence (), ) of sequence (A,) such that the intervals [A,,, A,, + 1) are

mutually disjoint and the set {A,} is contained in [ J,[An,, An, +1). For e > 0 let ng = no(e)

In An(A,
be such that (5) holds provided |\, — A,| < 1 and %w <7+e¢. Then
n |a,
Rnk(Fa 0_) _ Z Z |ap|ecr/\p < Z |an] |1-I—6€cr/\nj An()\n]) < Z |an] |1+7’+26€0'Anj‘
j=k AnJSAp<AnJ‘|‘1 j=k i=k

In |a,, | —1In |a
Since | [ | — 0,k — oo, and A

Ngt1
)\nk+1 - )\nk

arbitrariness of € we have

— Ay, > 1, by Lemma 1 in view of

o 0 (B () explloAn, )

k—roo In |ay,|

<T+1. (7)
Let n € N be an arbitrary number and A,, < A, < X, + 1 for some k. Then

o0
Rn(F,U)eMA" < elolelalrng Z |aj|eg/\J — e'“'Rnk(F,a)ek"A"k

J=ng

and

In (Rn(Fo)expilofra}) o Jof o (R (F,0)exp{|o|ra}) In [an,]

In |a,| ~ In |a,]| In |ag,| In |a,| "

Hence in view of (5), (7) and arbitrariness of ¢ we obtain

e In (B, (F, o) exp{lo|An})

1 < L.
I == ®
For 7 = 400 inequality (8) is obvious. From (6) and (8) we have (3). O

Corollary 1. Let o, =0, |a,| = oo and 3, — 0 as n — oo. In order that

lo[An
I In (R, (F,o0)el7*)

n—$00 In |an|

=1

Y

In An(A,
it is necessary and sufficient that lim # =
n—co In |a,|

Let a® be coefficients of Newton’s majorant [1] of an arbitrary Dirichlet series (1) with
0, = 0 and |a,| = oo as n — co. Then @), = 400 (n — 0), |a,| < a) for all n, |a,,| = a)
for some increasing sequence (ny) and

_ In Jap] —In fay |

W(F) = I 0, n— oo.
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In An(A, . In An(),
We put R2(a) = > 12 a)exp{oAs}. If lim In An(A,) = 0, then lim In An(A,)

—oo In Ja,| n—eo In |a?|
by Corollary 1 R®(a)el”Pn = (1 4+ 0(1))a’,n — oo. Since R, (F,0) < R°(0) and |a,, | = a
we have R, (F,o)exp{|o|A,. } < (1 +o(1))|an,|, & — oo, that is

= 0, and

lo[An
lim In (R, (F,o)el*)

< 1.
oo In |a,|

Therefore, in view of (4) we obtain the following

Corollary 2. Let 0, =0, |a,| = 00 as n — oo. If In An(X,) = o(In |a,|), n — oo, then

7|27
i U 0)eP)

oo In |a,|

= 1.

3. Now we consider entire Dirichlet series (i.e. 0, = 4+00). In this case the following
lemma is true.

1

Lemma 2. Let 0, = 400, 7, - +o0(n — o) and In | |—ln i > 1 for all n > nyg.
Apyq Gy
Then R R
R, (F,c)e " R, (F o)e 7"
1<l Bl Ballo)en T (9)
n—00 |an| n—00 |an| e—1

Proof. We need to prove right inequality (9). As above we have

o 1 1 Ae — An)
R,(F,o = la,le” [ 1 + ex {—(ln——ln—) (1—|—0‘ )} <
(F0) = Jan ( 2 exp ar] O Jan] In Jag] — In |a,]

k=n+1

< an e (1 + Z exp{—(Ae — X)) (1 + o(l))}) =

k=n+1

=l (14 o =)

as n — 0o, whence right inequality (9) follows. O
1
For ¢t > 0 now we put Ak(¢):= > 1, where Ay =In — — +o0, k — oo.
<Ay <t+1 |Clk|

Theorem 2. Let 0, = 400 and », — +o0 as n — oo. Then for every fixed o0 € R

— In R,(F.o) — In Ak(In (1/]an]))
Jim, In (1/]a.]) = In (1/]ay|) : .

and

- In R,(F,0) > lim In Ak(In (1/]ax]))

oo In(1/lan]) ~ 5o In(1/]an])

Proof. We note that In(1/|a,|) T +o0, n — o0, because o, = +o00 and s, — +oo as
n — 00. Since A1 — Ay < e(Apy1 — Ay) for every ¢ > 0 and all n > ng = no(e), we

~ 1. (11)
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have [A\x — A, | < e|Ax — A,| for all n > ng and & > ng. Therefore, if |[A;y — A,| < 1 then

|an

< Jag] < lanle,

oAp | | cr/\n elo|
Ry(F.o)= Y agle’™ > , Ak(A,)
An<Ap<Anti
nd In Ru(F,0) _ In Ak(A A
n R,( ,U)Z n Ak( n)—l- oA, glo|+1 Y (12)
In(1/lan]) = In(1/lan]) =~ In(1/lan])  In(1/]an|)
1 1
Since g, = 400, we have )\—ln ] — +00, n — o0, and from (12) we obtain inequality
Gy
(11) and
— 1 F — In Ak(In(1/]a,
lim 71&3( 7U)> Tm — (In(1/]a |))—1 (13)

B T le) s T (1/]an])
Since R,(F,0) — 0, n — oo, from (13) we have

— In Ak(In (1/]a,]))
T 00 1H(1/|an|)

=p <L

We suppose that § < 1,0 < ¢ < 1 — 3 and choose a subsequence (A, ) of sequence (A,)
such that the intervals [A,,, A,, + 1) are mutually disjoint and the set {A,} is contained in
U[An,, An, +1). Let ng = ng(e) be such that |\, — A,| < ¢ provided |A, — A,| < 1 and

k
In Ak(A,) < (B4 ¢)A, for n > ng and p > ng. Then

DD DR

=k A, <Ap<An +1
oo
§ |an |€cr/\n +6|0’|Ak < €6|0'| § |Cl |1 B—¢ cr/\nk
1=k

Hence, as in the proof of Theorem 1, by Lemma 2 we obtain first

— In(R,, (F,o)exp{—0cA,,})

1 < — 1.
2 I (1/]an, |) =hte
and again
— In(R,(F, —a A,
T ()
1
Since )\—ln i — +00, n — o0, from (13) and (14) we obtain (10). O
Gy
In R, (F,o0) _ 1

Corollary 3. Let 0, = 400 and », — co as n — oo. In order that lim ——————= ,
n=ee In (1/]an])

it is necessary and sufficient that

m In Ak(In (1/]ax]))

ST el
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Let a® be the coefficients of Newton’s majorant [2, p. 180-182] of an arbitrary entire
Dirichlet series (1). As above, from Corollary 3 we obtain the following

Corollary 4. Let 0, = o0, |s,] — 00 as n — oco. If In Ak(In(1/]a%|)) = o(ln (1/]a2])),
n — oo, then

I In R,(F,0)

=1.
s T (1]a,)

REFERENCES

1. Teue &. U., Ouunuyx C. B. 06 abeyuccar crodumocmu pada Jupuzae u ezo madxcopawme Heromona [/

Yxp. mat. k. — 1974. — T. 26, Ne2. — C.161-168.
2. JleonTbe P. P. Paawr sxcnonenT. — M.: Hayka. — 1976. — 536 c.

Faculty of Mechanics and Mathematics,
Lviv Ivan Franko National University

Recetved 1.07.2002



