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For an entire Dirichlet series F'(s) = 14+ a, exp{sA,}, s = o + i, with the maximal
term p(o, ') and the central index v(eo, F') we investigate behaviour of F(vy(7))/u(y(r)) as
T — oo, where u(s) = p(o, F')exp{itA, (o} and y(7) is a continuous curve such that
Rey(r) = 400 as 7 = +o0.

C. U. Peapinax, M. H. lllepemera. Acumnmomuueckue snauenua yeaozo pada Aupurae omuo-
cumeavno €20 makcumaabnozo uaena [/ Maremaruyani Cryaii. — 2003. — T.19, Nel. — C.31-36.

Nas wenoro paga dupmxae F(s) = 1+ 5 a,exp{sA,}, s = ¢ + it, ¢ MakcHMaIbHBIM
wieroM p(o, F') n neHTpadbHEIM nHeKcoM v(o, I') msygaetcs nosenenne F(vy(7))/pu(y(7)) npn
T = 400, rae pu(s) = p(o, F)exp{itA,(o,py} W ¥(T) — HempepLiBHAaA KpHWBad Takas, ITO
Re~y(r) = 400 mpu 7 — +0.

1°. Introduction. For an entire function f(z) = 1+ Y77, a,2", = = re'’, with the
maximal term ps(r) and the central index v¢(r) A. Gray and S. M. Shah [1] introduced
1(z) = pp(r)exp{ifvs(r)} and m(z) = pp(r)exp{ifvs(r) + 1arga,, )} and investigated
behaviour of f(~(¢))/u(y(t)) and f(v(t))/m(v(t)) as t — +oo, where y(¢) is a continuous
curve such that |y(t)| = 400 as t — +oo.

Here we obtain an analogue of Gray-Shah’s theorem for entire (absolutely convergent
in C) Dirichlet series

+oo
F(s)=1+ Zan exp{sA,}, s=o+1l, (1)
n=1

where 0 < A, T 400 (n — 4o0). We put M(o, F) = max{|F(o + )| : t € R} and
let p(o, F') = max{|a,|exp{cA,} : n > 0} be the maximal term and v(o, F') = max{n :

1Qn

exp{oA,} = u(o, F')} be the central index of series (1). We assume that a, = |a,|e"",
0 <o, < 2w, and put

M(S) = M(Sv F) = M(U + i, F) = M(Uv F) eXp{it)‘V(U,F)}

and

m(s) = m(s, ') = m(o +it,I') = p(o, F) exp{itA,(o.r) + 10u0,r) }-
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We remark that the functions p(s) and m(s) are continuous in each vertical strip in which
the function v(Res, F') is continuous.
Let v(7), 7 > 79, be a continuous curve such that Rey(7) — +00 as 7 — +o0.

If
i 0D, (g FOOD_ )
oo 1u(7(7)) oo m(7(7))
where 0 < |w| < +o00, then we say that w is a g-asymptotic (m-asymptotic) value of F', and
the curve v(7) is a p-asymptotic (m-asymptotic) path.
For all [ € (0,400)let Ry = {7 : Re~v(t) < Rey(r) < Rev(?)+{}. An asymptotic (u- or
m-) path is said to be uniformly oscillating if mtax{irel%iﬂ Im~(r)=Im~(t)]}} < Q) < +oo.

The corresponding asymptotic (u- or m-) value is said to be uniformly oscillating.

Let (0,,) be the sequence of jump points of v(o, F'), counting multiplicity, and let (ny) be
the range of v(o, I), that is (o, F') = ny for 0, <0 < 0, and 041 = Opyyr = -+ =
Opyy, - Clearly, we assume that ng = 0 and —oco = 0o < 7y, .

2°. Auxiliary lemmas. We need two lemmas.

Lemma 1. For all x € [0, 0,,,,, — 0y, ] we have
M{on, + 2, F) 2 Zp(on, + 2. F)(1+exp{=(h, = Ay )2} (2)

Proof. Using the equality [2, p. 124] we have

T
' ]
a7tV = fim T / F(o+it)exp{i(y —t) . }dt, {o,y} € R.

T—4co
to

Then for 0 =0, + 2

|@ns exp{(0n, + &+ iy)An, } + iy, Xp{(0n, + 2+ iy)An,J] <
T

— 1 : .
< M(ay, +x,F)Tgffmf/Iexp{@(y—t)%k}) +explily —1)An,_ H)dt =

to

T
— 1 .
= Moy, 0 F) T [ explitt = )0, = ) i (3)

to

It is not difficult to verify, that for all y € R and p > 0

T
1 4
lim T/ |1 4+ exp{i(t — y)p}|dt = — (4)
to

We choose y = —(a,, — vy, )/ (A, — Ay, ). Then

|any exp{(on, + @+ 1) A} + an,_, exp{(on, + @+ iy)As,_ }H =
= |a71k | exp{(ank + x))\nk} + |ank—1 | eXp{(O'nk + x)\nk—l}'
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From (3) and (4) it follows that

. , 4
[, xp{(0n, + T + 1) Ay} + iy exPU0n, + @+ iy)An, H < —M(ow, + 2, F). (5)

Since 0, < oy, + 2 < 0y, , We have |a,, |exp{(o,, + 7))\, } = p(on, + ). On the
other hand, |a,,_ |exp{on, An,_,} = |an, | exp{on, An, }. Therefore, from (5) we obtain (2).
Lemma 1 is proved. O

Lemma 2. Foralln >1

la,| < exp {— or( Ak — )\k—l)} ) (6)

k=1
The proof is elementary.

3°. Main result. Now, we prove the following result.

Theorem. If lim (A,41 — A,) >0, km (Cnppr — Ony) = L >0 and
n—00 -0

E(Ank“ — A, ) =85 < 400,
k—oc0

then F' has no uniformly oscillating p-asymptotic and m-asymptotic values.

Proof. From the condition m(dnkH — 0,,) = L > 0 it follows that for each Ly € (0, L)

k—oo
there exists a sequence (o, ) such that oy, , — oy, > L.

Suppose that F' has a uniformly oscillating p-asymptotic value w. Then there exists a
continuous curve ¥(7), 7 > 7, such that Rey(7) — 400 as 7 — +o0,

—Im oo and lim Fi)) =
maxe{ mox {|1m3(r) —Imy(B)}} < Q < +ooand lim ~ET

There exists an unbounded set [ with the following property: for each 7 € I there exists
a unique integer p and such that Ony, < Revy(7) < Onpytl = Ong gy For each Ony, let
T, =max{7T € [: Rey(r) =0y, }

For w e @y ={w: 0 < Rew < L} we define
F(O‘nkp + ¢ Im~y(7,) + w)
(o, +ilmy(7,) +w)’
From the condition lim (A,41 — An) > 0 it follows that A1y — Ay, > h >0, i.e. |)‘nkp —

n——+oo

®,(w) =

An| > h|nkp —nl.
Then by Lemma 2 for n < ny,, 2 = Ty, + i Imy(7,) + w

Z/\n| Z/\n|

la,e

()]~ ul(ow, +Rew, F)

la,e

nkp
= exp { Z O-k()\k — )\k—l) + (Unkp + Rew)()\n - )‘nkp)} S

k=n+1

nkp
§(3q>{ 2{: Un%(kk——kk_1)4—(anh)+—Reu0(An—-Amw)} <

k=n+1

< exp {_()‘nkp — An)Re w} < exp {—h(nkp —n)Re w} )
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Similarly for n > ng,

|ane™ | S
e k_ZH k(M = Aet) + (o, + Rew)(Au = Any ) ¢ <
_nkp

< exp {—()\n — )\nkp)(anka — Oy, — Re w)} < exp {—h(n — ng, ) (L1 — Re w)} )

and
1 o

= exp k(A — Ak—1) — (O'nkp + Re w))\nkp <

Bl
< exp {_)‘nkp Re w)} < exp {—hnkp Re w)} )

Therefore,
nkp—l %)
|®,(w)] <1+ Z exp{—h(ng, —n)Rew)} + Z exp{—h(L; — Rew)(n —ny,)} <
n=0 n:nkp—l—l
<1+ Zexp{—hn Rew)} + Zexp{—hn(Ll — Rew)}. (7)

n=1 n=1

From (7) it follows that the family {®,(w)} is uniformly bounded in each close strip
N ={w: a < Rew < B} C Q4 and, thus, is a compact and normal family. All functions
¢, (w) are analytic in Qy. Therefore, there exists a subsequence of {®,(w)} (we denote it
again by {®,(w)}) convergent in 3 to an analytic function ®(w).

We shall prove that ®(w) is not constant. Indeed, we assume on the contrary that
®(w) = C. From the proof of (7) we see that all ®,(w) have the form 1+, by, exp{Ajw},
where [A;] > h > 0, and ), |bp,|exp{Ao} < K(0), 0 < 0 = Rew < Ly, for all p.
Therefore,

T T
1 . *o 1 A
5T / O, (04 it)dt — 1| = zk:b;w,e% 5T / etNedt| =
7 _r
bep rpsin TAY K(o)
= —= k7 < 0, T
d )\Z € T T — U, — +00,
and, thus,
T T
) 1 . ) ) 1 .
C = TETOO 5T / ¢, (Rew + it)dt = pli}rgo Tgr_{loo 5T / ¢, (Rew + it)dt = 1.

=T =T

So, ®(w) = 1. From boundedness of all ®, on {w : Rew = o} boundedness of M(o, ®)
follows. It is easy to show that M (o, ®,) — M(o,®) as p — oo. Therefore, by Lemma 1 for
a <o < 3 we have

1= M(o,®) = lim M(c,®,) >

pP—ro0

(L+ exp{=(Any, = Aoy, )0 }) 2 T(L+ exp{=5a})

IS
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. 1 T
and if a < gln T
not constant.

We denote v,(7) = y(7) — o, — i Im (7). Then 0 < Rev,(7) < L +0(1) and —Q <
Im~,(7) < @, so 7,(7) is bounded.

We now consider the set T' of limit points of ~,(¢) as ¢ — 400, ¢ € I, which lie in
Qs ={w: a<Rew <, —Q <Imw < Q} C Qy, and prove that they are an uncountable
set on which ®(w) is constant.

In fact, let X be the intersection of {23 with the real axis, and define : ¥ — Q3 as follows.
For each x € ¥ there exists ¢, € [ such that Rey(t,) = 0,,, +2. Then Re~,(7) = 2. Choose
a limit point v of v,(7,) and define ¢(x) = v. Then ¢ is one-to-one, because Rep(x) = .
Thus, T is uncountable, since so is Y. Furthermore, ®(w) is constant on T, because if
Yp(tg) — b € T for a sequence (t;) with ¢, € [ then in virtue of uniform convergence
O, (v,(tr)) — ®(b). But we are assuming that w is a uniformly oscillating p-asymptotic
value and so ®(b) = w. Hence ® is constant on T'. This is a contradiction. Therefore, ® has

then M (o, ®) > 1, which is impossible. Thus, the function ®(w) is

no uniformly oscillating p-asymptotic values.
For uniformly oscillating m-asymptotic values we define

F(O‘nkp + ¢ Im~y(7,) + w)
m(ankp + i Im~y(7,) + w)

Uy(w) =

and still have (7) holding with ®, replaced by W,. Thus, {¥,(w)} is a normal family and
the rest of the proof goes through in exactly the same manner as for uniformly oscillating
p-asymptotic values. 0

4°. Remarks. Directly from Theorem, for example, the corollary follows.

Corollary 1. Suppose that in (1) all a, > 0 and », = % S too(n — o0). If

0 <h <Ay — A < H < +oo and Tim (3,41 — 5,) = L > 0 then u(o, F)/F(o) has no
n—00

limit as ¢ — 400.

One cannot remove the condition lim (%941 — #,) = L > 0 in general. Indeed, for the
n—00

entire Dirichlet series

F(s)=exp{e’} =1+ Zexp{sn}/n!

we have \py1 — A, =1, 50, = In(n+ 1), 50,41 — 2, = 0(n — o0) and [6] u(o, F)/F(o) —
0(c — +00).

In general, one cannot remove also the condition A,1; — A, > h > 0. Indeed, let

F(s) = 1—|—Zexp{—n—|—sln n}. (8)

n=2

It is easy to show that A, y1—X, — 0, 5,11—31, = 140(1) (n = o), 7, = 1/(In (n+1)—In n),
and

o, F) <exp{max{—x+olna: a>1}}=(o/e).
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On the other hand, for Dirichlet series (10) we have

o0 o0

F(o)= /e_t"'gln ‘dt + O(p(o, F)) = /exp{—et + (o 4+ Dt}dt 4+ O((c/e)”), o — +o.

1 0

Using the Laplace method [4, p. 20-22] we can show that

(o) = /exp{—et + (o + 1)t}dt = (1 +o(1))exp {(0‘ +1)In U :_ 1} 02—:1, o — +oo,
and, since <%>U /(o) = 1%\/0?01) (0 = +00), we have y(o, F')/F(o) = 0, (0 — +00).

Therefore, for the constructed function F' +oo is a p- (and m-) uniformly oscillating
asymptotic value.

The condition A1 — A, < H < 400 arose in virtue of the applied method. It seems that
it is unnecessary, because, for example, if m < 400 then [5] F(o) ~ m(o, F) as
o — 400 outside a set of finite measure and at the same time lim u(o, F)/F (o) < 2/m,

T—+400

when a, >0 (n > 1).

Finally, the question arises whether it is possible to replace in Theorem the uniformly
oscillating p-asymptotic (m-asymptotic) value by the py-asymptotic (m-asymptotic) value.
The following assertion seems to be true.

Conjecture. There exists an entire Dirichlet series (1) such that the conditions of Theorem
hold, but F' has no p-asymptotic (m-asymptotic) value.
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