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For entire functions represented by canonical products with zeros on a finite system of
curves of regular rotation conditions on shifts of zeros preserving boundedness of I-index are
found.

M. T. Bopayask, U. . Yuxukos, M. H. lllepemera. Cozpanenue oepanuuennocmu l-undexca
npu cuewjenuar nyaet [/ Maremaruyani Cryaii. — 2003. — T.19, Nel. — C.21-30.

Jlast meabix (pyHKIWH, 338 TaHHBIX KAHOHHYECKUMHI TPOM3BENEHUAME C HYJIAMH HA KOHEYTHON
CHCTeMe KPUBBIX MPaBIIBLHOT O BPAIIIEHS, HA IEHBI YCJIOBUSA HA CMEIIeHIs HYJIel, TP KOTOPHIX
COXpaHAeTCS OrPAHUYIEHHOCTD (-WHIeKca STHX (PYyHKIIH.

1. Introduction. Let A be the class of positive continuous functions [ on [0, +o0) and

@ be the class of functions [ € A such that I(r + O(1/I(r))) = O(l(r)) (r — 4o0).
For [ € A an entire function f is said to be of bounded [l-index [1] if there exists N € Z

F(z FR (2
suchthatﬁgmax W 0<k<N;foralln € Z; and z € C. For [(x) = 1
we obtain the definition of an entire function of bounded index (see [2]).
If ap € C are zeros of an entire function f, we put n(r,zo,1/f) = >, 1, and G, (f) =

lag—z0|<r

U{Z: |z —ax| < m} forl € A, g € (0,400).
%
G. Frike [3], [1, p.128] has proved that an entire function f of exponential type is a

function of bounded index if and only if | f'(2)/f(2)] < M(p) < +oc for arbitrary p > 0 and
all z € C\ G,(f) with {(z) = 1.
In the general case we have the following criterion ([4], [1, p.27]).

Lemma 1. If] € ) then an entire function f is of bounded l-index if and only if

1) for every q > 0 there exists P(q) > 0 such that |f'(z)/f(2)] < P(q)l(|z]) for all z €
C\ G,(f) and

2) for every q > 0 there exists n*(q) € N such that n(q/l(|z0]), 20,1/ f) < n*(q) for each
20 - C
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Suppose that f is of bounded index. Then ([5], [1, p. 69]) In Ms(r) = O(r), r — +o0,
My(r) = max{|f(z)| : |z] = r}. Therefore, by the Hadamard representation theorem either

>~ < In M
(1 - i) . i / nif(r)dr < +oo, (2)
k=1 1

[(z) = A="w(z), w(2)

7

or

7

- z “In r
flz) = Az"evn(2), wm(z)= (1 — —) elanif / Lzf()alr = +o0, (3)
k=1 1

where A€ C,m € Zy, a € C, a € C\ {0} and |ax| / +00 k — +o0.
For a sequence ¢ = (), k > 0, we define

= A(z — ez T Z—OO - - 1 WMT o0
R O | (e L B

and

fd}(z) _ A(Z . ¢O)meazﬁ¢(2)7 7%(2) _ H (1 _ Z ) ez/(ak+'¢/k)7

if /100 Mdr = +o0. (5)

r2

In [6] M. M. Sheremeta has proved that if zeros (aj) of the entire function f, which is
necessary of the exponential type, lay on a finite number of rays gone from the origin, and
Y, = O(1), then the entire function fy is also of bounded index. On the other hand, for
every positive continuous nondecreasing to 400 function & on [0, +00) there exist an entire
function f of bounded index and a sequence i such that || < E(k) and fy is of unbounded
index. 1t was conjectured [7] that it should be true without any restriction on zeros.

We are going to generalize the mentioned result of Sheremeta on boundedness of index
for the functions fy in two directions. First, we consider functions f with zeros on a finite
number of so called curves of regular rotation introduced and investigated by Balashov
(see for example [8]). Second, we provide unimprovable sufficient conditions for /-index
boundedness of the functions f.

2. Functions with zeros on curves of regular rotation.
Recall the notion of the regular rolling curve ([8]). Let

L”z(z:re”(r):()grogr<oo),

where 1o € R, v: [rg,00) — R. The curve L7 is called a curve of regular rotation if v €
C1ro,o0), and there exists

li "(r) = 0 .

Jim ry(r) = ¢ € [0, +00)
Theorem 1. Let f be a function of bounded index, and all its zeros, except, possibly, a
finite number, lie on a finite number of curves of regular rotation. If sup, |¢| < 400, then
the function fy is also of bounded index.
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Remark 1. Let p be an entire function, ¢ be a function of bounded index and f(z) = p(2)q(2).
By the multiplication theorem [3], [1, p.34] f is of bounded index if and only if p is of bounded
index. Since ¢(z) = P(z)e"”, where a € C, P(z) is a polynomial, is a function of bounded
index, in order to prove Theorem 1 it is sufficient to consider canonical products (2) and (3).

Remark 2. The condition supy, [¢x] < 400 cannot be improved.

Corollary 1. Let f satisfy the conditions of Theorem 1, p), € [—m,T), ¥, = are’?* — ay.
Then f, with zeros b, = ac*?* is of bounded index provided that sup,, |appr| < +o0.

In particular, if we rotate an infinite number of zeros of a function f, which is of bounded
index, on a fixed angle, then f, can be of unbounded index.
Example 1. Consider the function

7(z) = Sinzm _ lj (1 _ %) e/n (1 + 2) e~ = ﬁ (1 . ;—Z> . (6)

n=1

Let ¢ = (¢n) be a sequence of positive numbers. Rotate every negative zero —n on the
angle ¢,. We obtain the canonical product

=M= ()= () o

n=

For this product we define as in [9, p. 42] the value

T N (R R
2. (5— n>‘ =2

n<r n<r

o(r) =

If ¢, = ¢ > 0, then 6(r) = 400, and by the Lindel6f theorem [9, p.42] 7, has order 1 and
maximal type, thus cannot be of bounded index. If ¢, — 0 (n — +00), then §(r) = +00 as
far as > ¢, /n diverges. And again 7, is of unbounded index.

To prove Theorem 1 we need the following lemma.

Lemma 2. Let (a;) be a sequence of complex numbers lying on a curve of regular rotation
Ll ordered by increasing moduli, and satisfying the condition |agy1 — ax| > h >0 (k > 1).
Then for arbitrary a € (0,1)

laks1| — |ax| > k — 400,

VIt et

where ¢ = ¢(7) is a constant from the definition of L7.

Proof. Consider L. Since aj, = |ag|e?%D and r~'(r) — ¢ (r — +00), for sufficiently large
k we have

lagt1l kil gy
ars1]) —y(lar|) = "Odt =(c+o —.
stlassal) =2t = [~ 0= e ot

lagl akl t

Suppose that |agr1]| — |ak| < ah/v 1+ ¢ for some o € (0,1) and a sequence of values k
tending to +oo. Then |ay| ~ |axs1| and

Yllara]) = y(laxl) = e+ o(D)|(Jarsa| — lax])/|ax] = 0



24 M. T. BORDULYAK, I. E. CHYZHYKOV, M. M. SHEREMETA

on this sequence of k£ 1 +oo. Hence,

vy |ak+1 iy |ak+1 iy |ak+1 iy |ak|)

apr1 — ap = |ags1le — |agle + |axle — |agle

(|Gk+1| o |Clk|) y(lags1]) + |a |€w Iakl)( i(v(lags1)—v(laxl)) _ 1) —
(|ak+1| N |ak|) iy |ak|) i(y(largr)=v(akl)) T |ak|€ﬂ |ak|)(l(7(|ak+1|) _ ’Y(|ak|))(1 + 0(1)) —
= D (Jappy| — |ax])(1 +ic+ o(1)).

Consequently,
h < Hlaggr — ax| < (L +o(1)V1 4 (arga| = |ar]) < (1 4 o(1))ah,
which is impossible, because o < 1. This contradiction proves the lemma. O

Proof of Theorem 1. Let m(z) be a canonical product of form (2) or (3) of bounded index
with zeros lying on a finite number of curves of regular rotation L; = L%, 5 € {1,...,m},
¢ = max; ¢j, and sup,s, [¢x| = H < +oo. Set h = 3H. Then, h/2 — |¢px| > H/2 > 0,
k > 1. On the other hand, by Lemma 1 for any s > 0 there exists n*(s) € N such that for
all zg € C we have n(s, zg, 1/m) < n*(s). Put s = 3HV1 + ¢2, thus, n(3H\/1—|——cz, z0, 1/m) <
n*(3H\/1—|——cz), z9 € C, i.e. for any zero ay there are at most n*(i’)H\/l—l——c?) — 1 zeros a;
with

la; —ap| <3HV1I+ 2, [ #E. (8)
Obviously, every sequence (a}j)) of those zeros (a;) which lie in L% still satisfies (8) (and
every a, belongs only to one sequence (a?j)), J € {l,...,m}). Therefore, every (a}j)) can
be represented as a union of at most n*(3H+/1 + ¢2) sequences (a?j’k)) ordered by increasing
moduli and satisfying |a§if) — a?j’k)| > 3HV1+ 2,1 > 1,57 € {1,...,m}. By Lemma 2
|alj’k | |alj’k | > 3H = h. By Theorem 3 from [6] the canonical product Wik(z) with zeros

{a } is of bounded index. Now, by the multiplication theorem m,(2) = [, Wik is also of
bounded index. O

3. [-index boundedness of .
We shall consider cases (2) and (3) separately. First, let f(z) be of form (2). It is natural
to consider [-index boundedness of f with I(r) = o(1) (r — +o00), [ € Q (see, for example

[10).

Theorem 2. Let [(r) be a nonincreasing function on [0,+00) such that ri(r) / +oo as
r — 4oo, and f(2) of form (2) be of bounded l-index with positive zeros. If |t < 22

l{ag)
(k > 1) where K is a constant, then m,(z) of form (4) is of bounded [-index.

Proof of Theorem 2. Remark that our assumptions on [(r) imply ([10]) that [ € . More-
over, it is easy to see that 2{(2r) > [(r) > [(2r), r > 0.
By Lemma 1 we have

(Vz0 € C) = n(q/l(]20]), 20, 1/f) < n*(q)- (9)

Define the sequence R,,, n € Z,, by the equalities Ry = 0, R, = R,—1 + 6K /l(R,—1),
n € N. Since [(r) nonincreasing, R, T 400 (n T +o0). By (9) a number of zeros a, on
[R3(n—1), f12,] does not exceed n(6K/l(Ryn—1), Ran—1,1/f) <n*(6Ky). Set I, = (R, Roy1).
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From each interval Iy, we choose one from zeros (if there exists) of 7 and construct a
canonical product 77 by such zeros, then we choose another second zero (if there exists) of
7 and construct a canonical product 75 by such zeros etc. So we construct the n; < n*

(4)

canonical products 77 with zeros a;’ satisfying the condition

@ L0 s 614 L 3

T (al), —2/1al))) T Ual))

Choosing by analogy zeros of m from each interval Iy, 11, we construct ny < n* canonical

9 Z kO'

products 77" with zeros satisfying the same condition.
Hence, 7(z) = H?S_m m;, where 7; are canonical products with zeros ag) satisfying the
() () 3K
b Ay = l(aC)l )
k41

by = ay + . Then, we have (5 € {1,...,ny + na})

condition a Let (bg)) be the corresponding sequence constructed by (b),

j j j Ky () Ky K Ky
B = b > al), - — g Lo 2L s 2L s (10)
l(ai)y) Hal) ~ Ua)y) ~ 2(b,)
Clearly,
(%) B m'(2) - nifz) T (%) o z) 1)
mp(z)  m(2) | T Tiwp(z)  mi(2)

7=1
Let ¢ € (0,3K:1/2), p € (0,0), where 0 < 0 < K1/2, z € C\ (G,(7) U G,y(my).) We need

two lemmas.

Lemma 3. Let [(r) be positive and either l(r) is nonincreasing and rl(r) / +oo, or l(r)
is nondecreasing and [(r)r=" N\, 0 as r — 400, for some £ > 1, (d}) a sequence of positive
numbers such that dyiy — dy > h/l(dks1) (k> 1), and s > 0. Then for every r > 0

a)

3 I 1
d>r dzl(dk) - O<rs—1>v s> 1;
b)

d
Z =0, s>0.
dp<r l(dk)

Remark 3. Under the assumptions of Lemma 3 [ € @ (cf. [10, p.124]) and %J(T) <I(2r) <

Cil(r), r > 0 where (1 is a positive constant.

Lemma 4. Let [(r) satisfy the conditions of Theorem 2, |cp1|—|ck| > 3K1/l(|cks1]), [0r] <
Ki/l(Jex|) (k > 1). Then for every p € (0,3K1/2), ¢ € (0,0), where 0 < K1/2, there exists
P = P(p,q) > 0 such that

R 1
(=€ V(G UG [ (= — =g =) < P oteD,
where
= VAR A p = Z . |\Z2— Cr. — # .
”‘U{ | ’“'Smcm}’ G U{ 2= e ‘”’“'Smckwm}

k k
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Proof of Lemma 3. Define inductively r,41 = r, + 1/l(r,,), n € N, where r1 € (0,d,).

From the condition dy11 — dp > h/l(dks1) (K > 1) it follows that ng(r,41 — rn) < n*(h),
where ng(r) = >, .. 1 is the counting function of the sequence (dy). If [ is nonincreasing,
we have r,, > ri+(n—1)/l(r1) — 400 (n — 400). Otherwise [ is nondecreasing, and in this
case if (r,,) is bounded above, say by r. € (0,+00), then I(r,) < I(r*), n € N. Therefore,
Pt > 11+ n/l(r*), n € N, that contradicts the assumption on boundedness of (r,). Hence,
r, T 400 (n — +00) in any case.

Further arguments concern the case when [(r) is nonincreasing and rl(r) /* 4+oo. In the
other case arguments are similar. Differences can be overcome using Remark 3.

Let r > ry, then r € [r,, 7n41) for some m € N. Using the definition of (ry), and [ € @
we obtain

1 1
S SR PR
dkl( k=m rp<d; <rg41 d]l(d])

+ oo + oo

d(Tht1) — nd(rk) . Fht2 — Tkl
Z Sy T

l Tk_|_1

k=m

ool o) o

Assertion a) is proved. Let us prove b). Similarly,

d
l S 7 <
dp<r k=1 rp<d;<rpyi1 J
Z Tk-l—lrk:l;ld(rk) S n*(h) Z TZ(rk-I—Z . rk-l—l) _
k= k=1
_ o(i " t“"dt) - 0(/%2 t“"dt) - o<r;++12> = 0(r*Y), s too.
k=1 Y Tk+1 r2

Proof of Lemma 4. Let z € C\ (G,(m) U Gy(my)) and |e,| < |z2] < |eng1]. We have

— [
‘Z<Z—Ck_2—ck—¢k>‘ Z|Z—Ck||2jck—¢k|+

|, [y %]
+ + -~ + Z

[z —enllz —en =l |z = capallz —nga = <, 12— anllz — e — |

Using conditions of the lemma we obtain for |cx| > |z|/2

n—1 -
K,

min{|z = ex], |2 = e = Yul} = Jeal = lex] =[xl = Y (lemar| = lenl) = 5

m=Fk

. K _ hin—k-1
Z T W) 1el2)

|Cm+1|
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Therefore,

|| Ky /l(|ex])
> | < 2 W —F—1/3)7 =

z—cpllz — e — x| T

ci|>|z|/2 ci|>|z|/2
gl G T Rel2)
_ Kah 1 32[&1
—=22 ) 12
k<n-—1 3

Applying Lemma 3 b) with s = 0, we obtain

> ) -y r%%75<f7<hd00 (13)
z Ck

2 — CrL|lz —cp — -
e |<]21/2 #ll b=l e |<]21/2

Next, for k > n + 2 we have

Ky h(k —n - 3)

3

min{|ex — 2], lex — tr — 2]} = [ex] = [¥n| = |ena| 2 Z l|c 5
e

>
m=n+2 |Ck|) l(|Cn+2|)

Hence, using Lemma 3 a), we get

| ey (eatal)) 8[|
Z | : = Z 122(2_71_4)2 T Z |k2 <

womra 17 ellz = ok = Wil fe|<21e D i o
8[&1 K, 8[&1 A4
| elzals DT
Finally, since z € (G, U G,y), we have
[¢n] N [$n1] < K1< L 1 >
|z —cullz —cn = ¥n| |2 = comllz — copr — Yu] |z — ¢ —Pul |2 — Copr — Yt

Whence it is easy to conclude (see [10, (8), p.127]) that

|10 [y
T < K(p. )l(]2]). 15
|Z_cn||2_cn_77bn| |Z—Cn+1||Z—Cn+1 ¢n+1| ( ) (| |) ( )
The assertion of the lemma follows from (12)—(15). 0

Proceed the proof of Theorem 2. Fix any 7 € {1,n; 4+ ny} and consider

PP
()

S (z—a)z -]

We can apply Lemma 4 to (ag)) with A = K7/2. It implies that

7T;7w(2) B W;(Z)

miw(z)  mi(2)

< Pi(p, q)l([z]), 2z € C\(G,(m;) U Gy(min)).




28 M. T. BORDULYAK, I. E. CHYZHYKOV, M. M. SHEREMETA

Then

ni+mn2

< Y Pilp.l(|z]) = Plp,g)l(]2]) < +o0,

i=1

for such z. Since 7(z) is a function of bounded [-index, by Lemma 1 we have |7’(z)/7(2)| <

Pi(p)l(|z]), = € G,(m). Hence, -

=1
e\
N
IS
S’

< (Pup) + P(p.))l(I2]), = eC\ [ J(CLucy), (16)

k>1

5
<
N
IS
S’

where C] = {z : |z —ar — ¢¥| < q/l(larl}, CF = {2z : |z — ax] < p/l(lak])}, Now, let
q € (0,3K,/2) and p = ¢/3.

If 7 C Jysq Cf then we can omit C7 in the exceptional set of estimate (16). If 7 N
(Uk>1 C,g) — & then (16) holds on 9CY¥, and by the maximum modulus principle it holds
on C7. Finally, if C7 N (Uk21 C,g) # @ and Int C7 N 8<Uk21 C,g) # @ then C7'N Cy = 2,
Cr={z: |z —ar— | < q/(3l(Jax])}. Hence, (16) holds on C¥ with Py(q/3)+ P(q/3,q/3).
Hence, we have (16) for all z € C\ (Uk>1 C,g), i.e. for all z € C\ Gy(m). By Lemma 1, 7y is
of bounded index. Theorem 2 is proved. O

Theorem 3. Let [(r) be a nondecreasing function on [0,4+00) such that [(r)/r \, 0 as
r — 4oo, and f(2) of form (3) be of bounded l-index with positive zeros. If |1y < 2L

l(al)
(k > 1), then my(2) of form (5) is of bounded [-index. '

Proof. Let m, my be the canonical products from (3) and from (5), respectively. Then

7 o0
mu(z)  w(z — by ap z—0by z—ay
— ¢l - Uk
< + .
,; || |bk] ,; (2 — ak)(z — b)
||

So we deal with an extra summand ) - and another conditions on an index [(r). In
k=1

view of Remark 3 we can apply the ar_guments similar to that in the proof of Theorem 2 to

prove
i o < Plp,@ll[=]), 2 & Go(m) U Gy(my).
— (z —ar)(z — by)
Further,
- |@/’k| = 2K,
< +00
; |ak][bx] ; |ar|*l(]ax])
Standard arguments finish the proof of Theorem 3. O

Corollary 2. Let f andl satisfy the conditions of Theorem 3, ¢}, € [—7,7), ¥y = are'¥*—ay.
Then fy with zeros b, = ac'?* is of bounded index provided that sup,, |axpr|l(|ax]) < +oo.
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Remark 4. In general, we cannot change the condition |¢x| = O(1/I(]a|)) in Theorems 2
and 3 by the condition |¢x| = O(~x/{(]ak|)), where (y%) is unbounded.

Example 2. Indeed, consider the function

o =110~ )

It has order p, and is of genus 1 or 2 when p € (0,2), with zeros a, = n'/?, n € Z\ {0}. It is
easy to check (cf. [4]) that ¢ is of bounded l-index with {(r) = r*~!. Hence, {(|a,|) = ns .
Suppose that v, /' +oo (n — +o0). Without loss of generality we may assume that
Yo = 0(n) (n — o0). Let ngpy > 2ny (K > 1). Since

L i 47nk+[’7n ]
Uty ) = (6 + [ ])P Snf + ——— < an, + ——— =,
k[, ] k k o k pl(ank+[’7nk])

we can put b, = a,, for m € {ny+1,... 05+ [v,,.]}- Then

(= bp| < < 1
Um — Op| > Gy —lny > Vm7 7 -
E+m] k Y l(|am|)
But a,, is a zero of gy of the multiplicity [y,,] — +o0 (kK — +o0). By Lemma 1 1) this
contradicts to l-index boundedness of g,.

4. Further results.

1) Evidently, the assumption that zeros of f are positive in Theorems 2 and 3 is not
necessary. Of course, it is sufficient to require that zeros lay on a finite number of rays
gone from the origin as well as on a finite number of curves of regular rotation, because one
can prove an analogue of Lemma 2 with h/l(|ax|) instead of h. This is possible, because
r+1/l(r) ~r (r — +o0) under our restrictions on {(r).

2) One can extend the assertion of Theorem 3 on canonical products of an arbitrary
genus p € N with the aid of Lemma 3. The condition {(r)/r N\, 0 does not hold for arbitrary
p, in general. But we can replace it by [(r)r=" N\, 0 (r — 400) for some x > p.
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