УДК 517.53

YU. S. TRUKHAN, M. M. SHEREMETA

ON I-INDEX BOUNDEDNESS OF THE BLASCHKE PRODUCT

Yu. S. Trukhan, M. M. Sheremeta. On l-index boundedness of the Blaschke product, Matematychni Studii, 19 (2003) 106–112.

Conditions on zeros under which the Blaschke product is an analytic function of bounded l-index in the unit disc are investigated.

Ю. С. Трухан, М. М. Шеремета. *К ограниченности l-индекса произведения Бляшке* // Математичні Студії. – 2003. – Т.19, №1. – С.106–112.

Исследованы условия на нули, при которых произведение Бляшке является аналитической в единичном круге функцией ограниченного l-индекса.

1. Introduction. Let (a_k) be a sequence of numbers from $\mathbb{D} = \{z : |z| < 1\}, |a_k| \le |a_{k+1}|$ for all $k \ge 1$, $\sum_{k=1}^{\infty} (1 - |a_k|) < +\infty$, and let

$$B(z) = \prod_{k=1}^{\infty} \frac{|a_k|}{a_k} \frac{a_k - z}{1 - \overline{a}_k z}$$

be the Blaschke product.

For a positive continuous function l on [0,1) such that $(1-r)l(r) > \beta > 1$ for all $r \in [0,1)$ function B by the definition [1, p. 71] is said to be of bounded l-index if there exists $N \in \mathbb{Z}_+$ such that

$$\frac{|B^{(n)}(z)|}{n!l^n(|z|)} \le \max\left\{\frac{|B^{(k)}(z)|}{k!l^k(|z|)}: \ 0 \le k \le N\right\}$$

for all $n \in \mathbb{Z}_+$ and $z \in \mathbb{D}$. As in [1, p. 71], for $q \in [0, \beta)$ we put

$$\lambda_1(q) = \inf \left\{ \frac{l(r)}{l(r_0)} : |r - r_0| \le \frac{q}{l(r_0)}, \ 0 \le r_0 < 1 \right\},$$

$$\lambda_2(q) = \sup \left\{ \frac{l(r)}{l(r_0)} : |r - r_0| \le \frac{q}{l(r_0)}, \ 0 \le r_0 < 1 \right\}$$

and say that $l \in Q_{\beta}(\mathbb{D})$ if $(1-r)l(r) > \beta > 1$ for all $r \in [0,1)$ and $0 < \lambda_1(q) \le 1 \le \lambda_2(q) < +\infty$ for every $q \in [0, \beta)$.

2000 Mathematics Subject Classification: 30D15.

In [2] it is proved that if $\lim_{n\to\infty}\frac{1-|a_n|}{1-|a_{n+1}|}>1$ then B is of bounded l-index with $l(r)=\frac{p}{1-r},\ p>1$, and if $k(1-|a_k|)\searrow 0\ (k\to\infty)$ then B is of bounded l-index with $l(r)=\frac{p}{(1-r)^2},\ p>1$. If the sequence $\left(\frac{1}{1-|a_n|}\right)$ is convex (hence it follows that $n(1-|a_n|)\searrow 0,\ n\to\infty$) then in [2] it is proved that B is of bounded l-index for an arbitrary nondecreasing function $l\in Q_\beta(\mathbb{D}),\ \beta>1$, provided the following conditions hold:

- a) $l(|a_{n+1}|) = O(l(|a_n|)), n \to \infty;$
- b) $k \ln k = O((1 |a_k|)l(|a_k|)), \quad k \to \infty;$

c)
$$\sum_{k=2n}^{\infty} (1 - |a_k|) = O((1 - |a_n|)^2 l(|a_n|)), \quad n \to \infty.$$

From the method applied here we see that condition a) in last statement is unnecessary. It is easy to see that condition b) holds if $l \in Q_{\beta}(\mathbb{D})$, $\beta > 1$, and $l(r) \approx \frac{n(r) \ln n(r)}{1-r}$ as $r \to 1$, where $n(r) = \sum_{|a_k| \le r} 1$ is the counting function of the sequence (a_k) . For such a function l the following theorem is true.

Theorem 1. Let $n(1-|a_n|) \searrow 0$, $n \to \infty$. In order that the Blaschke product B is of bounded l-index with the function $l \in Q_{\beta}(\mathbb{D})$, $\beta > 1$, such that $l(r) \asymp \frac{n(r) \ln n(r)}{1-r}$ as $r \to 1$, it is sufficient and in the case when the zeros are positive it is necessary that

$$\sum_{k=2n(r)}^{\infty} (1 - |a_k|) = O((1 - r)n(r) \ln n(r)), \quad r \to 1.$$
 (1)

We remark that for the sequence $a_n = 1 - 1/n^2$ we have

$$\sum_{k=2n(r)}^{\infty} (1-|a_k|) \approx \frac{1}{n(r)}, \quad n(r) \approx \frac{1}{\sqrt{1-r}}$$

as $r \to 1$ and condition (1) holds. If $a_n = 1 - 1/(n \ln n \ln^2 \ln n)$ then

$$\sum_{k=2n(r)}^{\infty} (1 - |a_k|) \approx \frac{1}{\ln \ln n(r)}, \quad n(r) \approx \left\{ (1 - r) \ln \frac{1}{1 - r} \ln^2 \ln \frac{1}{1 - r} \right\}^{-1}$$

as $r \to 1$ and condition (1) does not hold.

2. Auxiliary Lemmas. For $l \in Q_{\beta}(\mathbb{D})$ and $q \in (0, \beta)$ we put

$$G_q(B) = \bigcup_k \left\{ z : |z - a_k| \le \frac{q}{l(|a_k|)} \right\}$$

and

$$n(r, z_0, 1/B) = \sum_{|a_k - z_0| \le r} 1.$$

The following lemma is an immediate corollary of Theorem 2.1 from [1, p. 27].

Lemma 1. For $l \in Q_{\beta}(\mathbb{D})$, $\beta > 1$, the Blaschke product B is of bounded l-index if and only if

- 1) for every $q \in (0, \beta)$ there exists P(q) > 0 such that $|B'(z)/B(z)| \leq P(q)l(|z|)$ for all $z \in \mathbb{D} \setminus G_q(B)$,
- 2) for every $q \in (0,\beta)$ there exists $n^*(q) \in \mathbb{N}$ such that $n(q/l(|z_0|), z_0, 1/B) \leq n^*(q)$ for each $z_0 \in \mathbb{D}$.

From Remark 1 in [2] we see that the following lemma is true.

Lemma 2. Condition 2) of Lemma 1 holds provided $l \in Q_{\beta}(\mathbb{D})$, $\beta > 1$, and $|a_{k+1}| - |a_k| > 2q_0/l(|a_k|)$ for some $q_0 \in (0,\beta)$ and all $k \geq k_0$.

Lemma 3. If $n(1-|a_n|) \searrow 0$, $n \to \infty$, there exists a function $l \in Q_{\beta}(\mathbb{D})$, $\beta > 1$, such that $l(r) \asymp \frac{n(r) \ln n(r)}{1-r}$ as $r \to 1$ and condition 2) of Lemma 1 holds.

Proof. We put $n_1(r) = 1 + r/|a_1|$ for $0 \le r \le |a_1|$ and $n_1(r) = n + 1 + (r - |a_n|)/(|a_{n+1}| - |a_n|)$ for $|a_n| \le r \le |a_{n+1}|$. Then the function $n_1(r)$ is continuous, $n(r) + 1 \le n_1(r) \le n(r) + 2$ and $n_1(r)(1-r) \searrow 0$ as $r \to 1$, because for $|a_n| < r < |a_{n+1}|$

$$(n_1(r)(1-r))' = \frac{1-2r+|a_n|-(n+1)(|a_{n+1}|-|a_n|)}{|a_{n+1}|-|a_n|} \le \frac{(n+1)(1-|a_{n+1}|)-n(1-|a_n|)}{|a_{n+1}|-|a_n|} \le 0$$

Therefore, if we put $l(r) = \frac{n_1(r) \ln n_1(r)}{1-r}$ $(r_0 \le r < 1)$ then firstly $l(r) \nearrow +\infty$, $r \to 1$, and $l(r-q/l(r)) \le l(r) \le l(r+q/l(r))$ for q > 0 and secondly, since

$$n_1(r+q/l(r)) \le n_1(r)(1-r)/(1-r-q/l(r)) = (1+o(1))n_1(r), r \to 1,$$

we have $l(r+q/l(r)) \le (1+o(1))l(r), r \to 1$. By analogy,

$$n_1(r-q/l(r)) \geq n_1(r)(1-r)/(1-r+q/l(r)) = (1+o(1))n_1(r), \, r \to 1,$$

and $l(r-q/l(r)) \ge (1+o(1))l(r)$, $r \to 1$. Hence it follows that $l \in Q_{\beta}(\mathbb{D})$. Now,

$$|a_{n+1}| - |a_n| = \frac{n(1 - |a_n|)}{n} - \frac{(n+1)(1 - |a_{n+1}|)}{n+1} \ge \frac{1 - |a_n|}{n \ln n} \frac{n \ln n}{n+1} \ge \frac{q}{l(|a_n|)}$$

for each q > 0 and all $n \ge n_0(q)$. Therefore, by Lemma 2, condition 2) of Lemma 1 holds. \square

Lemma 4. If $l \in Q_{\beta}(\mathbb{D})$ $(\beta > 1)$, $|a_n| \le |z| \le |a_{n+1}|$, $|z - a_n| \ge q/l(|a_n|)$ and $|z - a_{n+1}| \ge q/l(|a_{n+1}|)$, $0 < q < \beta$, then

$$S_2(z) := \frac{1}{|z - a_n|} + \frac{1}{|z - a_{n+1}|} \le P_1(q)l(|z|), \quad P_1(q) \equiv const > 0.$$
 (2)

Proof. If $|z-a_n| \ge q/l(|z|)$ and $|z-a_{n+1}| \ge q/l(|z|)$ then (6) holds with $P_1(q) = 2/q$. Suppose that $|z-a_n| < q/l(|z|)$ and $|z-a_n| \ge q/l(|a_n|)$. Then $|z|-q/l(|z|) \le |a_n| \le |z|+q/l(|z|)$ and, since $l \in Q_\beta(\mathbb{D})$, we have $l(|a_n|) \le \lambda_2(q)l(|z|)$ and, therefore, $|z-a_n| \ge q/(\lambda_2(q)l(|z|))$. By analogy, if $|z-a_{n+1}| < q/l(|z|)$ and $|z-a_{n+1}| \ge q/l(|a_{n+1}|)$, then $|z-a_{n+1}| \ge q/(\lambda_2(q)l(|z|))$. Hence inequality (6) with $P_1(q) = 2\lambda_2(q)/q$ follows.

Lemma 5. If $n(1-|a_n|) \searrow 0$, $n \to \infty$, and $|a_n| \le |z| \le |a_{n+1}|$ then

$$S_1(z) := \sum_{k=1}^{n-1} \frac{1 - |a_k|}{(|z| - |a_k|)(1 - |a_k||z|)} \le \frac{n(r) \ln n(r)}{1 - r} \quad (r = |z|).$$

Proof. First we remark that from the condition $n(1-|a_n|) \searrow 0, n \to \infty$, we have for n > k

$$\frac{1-|a_n|}{(1-|a_k|)-(1-|a_n|)} = \frac{n(1-|a_n|)}{k(1-|a_k|)(n/k)-n(1-|a_n|)} \le \frac{k}{n-k}.$$

Therefore,

$$S_1(z) \le \sum_{k=1}^{n-1} \frac{1}{r - |a_k|} = \frac{1}{1 - r} \sum_{k=1}^{n-1} \frac{1}{(1 - |a_k|)/(1 - r) - 1} \le \frac{1}{1 - r} \sum_{k=1}^{n-1} \frac{1}{(1 - |a_k|)/(1 - |a_n|) - 1} \le \frac{1}{1 - r} \sum_{k=1}^{n-1} \frac{k}{n - k} \le \frac{n \ln n}{1 - r} = \frac{n(r) \ln n(r)}{1 - r}.$$

Lemma 6. If $n(1-|a_n|) \searrow 0$, $n \to \infty$, and $|a_n| \le |z| \le |a_{n+1}|$ then

$$S_3(z) := \sum_{k=n+2}^{2n+1} \frac{1 - |a_k|}{(|a_k| - |z|)(1 - |a_k||z|)} \le \frac{3n(r) \ln n(r)}{1 - r} \quad (r = |z|).$$

Proof. As above, we have

$$S_3(z) \le \sum_{k=n+2}^{2n+1} \frac{1}{|a_k| - r} = \frac{1}{1 - r} \sum_{k=n+2}^{2n+1} \frac{1}{1 - (1 - |a_k|)/(1 - r))} \le$$

$$\le \frac{1}{1 - r} \sum_{k=n+2}^{2n+1} \frac{1}{1 - (1 - |a_k|)/(1 - |a_{n+1}|)} \le \frac{1}{1 - r} \sum_{k=n+2}^{2n+1} \frac{k}{k - (n+1)} \le \frac{3n \ln n}{1 - r} =$$

$$= \frac{3n(r) \ln n(r)}{1 - r}.$$

Lemma 7. If $n(1-|a_n|) \searrow 0$, $n \to \infty$, and $|a_n| \le |z| \le |a_{n+1}|$ then

$$S_4(z) := \sum_{k=2(n+1)}^{\infty} \frac{1 - |a_k|}{(|a_k| - |z|)(1 - |a_k||z|)} \times \frac{1}{(1-r)^2} \sum_{k=2(n+1)}^{\infty} (1 - |a_k|) \quad (r = |z| \to 1).$$

Proof. Since $(|a_k| - r)(1 - |a_k|r) \le (1 - r)^2$, we have

$$S_4(z) \ge \frac{1}{(1-r)^2} \sum_{k=2(n+1)}^{\infty} (1-|a_k|).$$

On the other hand, for $k \geq 2(n+1)$ we have $1-|a_k|r \geq |a_k|(1-r) \geq |a_{2n+2}|(1-r)$ and

$$|a_k| - r \ge (1 - r) \left(1 - \frac{1 - |a_k|}{1 - |a_{n+1}|} \right) \ge (1 - r) \left(1 - \frac{n+1}{k} \right) \ge \frac{1 - r}{2}.$$

Therefore.

$$S_4(z) \le \frac{2}{|a_{2n+2}|(1-r)^2} \sum_{k=2(n+1)}^{\infty} (1-|a_k|).$$

Lemma 7 is proved.

3. Proof of Theorem. Suppose that condition (1) holds. In view of Lemma 3 we only need to prove that condition 1) of Lemma 1 holds. Since

$$\frac{B'(z)}{B(z)} = \sum_{k=1}^{\infty} \frac{1 - |a_k|^2}{(z - a_k)(1 - a_k z)},$$

if $|a_n| \leq |z| \leq |a_{n+1}|$ and $z \notin G_q(B)$ by Lemmas 4 – 7 in view of (1) we have

$$\frac{|B'(z)|}{|B(z)|} \le 2\sum_{j=1}^{4} S_j(z) \le 2(3+P_1(q))\frac{3n(r)\ln n(r)}{1-r} + \frac{2}{|a_{n+2}|(1-r)^2} \sum_{k=2(n+1)}^{\infty} (1-|a_k|) \le 2(3+P_1(q))\frac{3n(r)\ln n(r)}{1-r} \le P(q)l(|z|).$$

Thus, for all $|z| \ge |a_1|$ and $z \notin G_q(B)$ we obtain $|B'(z)/B(z)| \le P(q)l(|z|)$. For $|z| \le |a_1|$ and $z \notin G_q(B)$ we prove the estimate $|B'(z)/B(z)| \le P(q)l(|z|)$ (perhaps, with another constant P(q)) using the maximum modulus principle and positivity of l. The sufficiency of (1) is proved.

In order to prove necessity of (1) we write for z = r > 0

$$\frac{|B'(r)|}{|B(r)|} = \left| \sum_{k=1}^{2n+1} \frac{1 - a_k^2}{(r - a_k)(1 - a_k r)} + \sum_{k=2(n+1)}^{\infty} \frac{1 - a_k^2}{(r - a_k)(1 - a_k r)} \right| \ge
\ge \sum_{k=2(n+1)}^{\infty} \frac{1 - a_k}{(r - a_k)(1 - a_k r)} - \left| \sum_{k=1}^{2n+1} \frac{1 - a_k^2}{(r - a_k)(1 - a_k r)} \right|.$$

Using Lemmas 4-7, we therefore obtain

$$\frac{|B'(r)|}{|B(r)|} \ge \frac{1}{(1-r)^2} \sum_{k=2(n+1)}^{\infty} (1-a_k) + O\left(\frac{n(r)\ln n(r)}{1-r}\right), \quad r \to 1.$$

Thus, if condition (1) does not hold then condition 1) of Lemma 1 for positive z does not hold. By Lemma 1, B is of unbounded l-index. The proof of Theorem is complete.

4. Remarks.

Since
$$\sum_{k=n(r)}^{2n(r)+1} (1-|a_k|) \le (1-r)(n(r)+1)$$
 and $\sum_{k=n(r)}^{\infty} (1-|a_k|) \times \int_{r}^{1} n(t)dt$, $r \to 1$, it is

natural to consider the function $l(r) = (1-r)^{-2} \int_{-\infty}^{1} n(t)dt$.

It is easy to show that the function $l \in Q_{\beta}(\mathbb{D})$ $(\beta > 1)$ and, using auxiliary lemmas to prove the following

Proposition 1. Let $n(1 - |a_n|) \searrow 0$, $n \to \infty$. If $(1 - r)n(r) \ln n(r) = O\left(\int_r^1 n(t)dt\right)$ as $r \to 1$ then the Blaschke product B is of bounded l-index with $l(r) = (1 - r)^{-2} \int_r^1 n(t)dt$.

From the proof of Theorem we also see that the following proposition is true.

Proposition 2. Let $n(1-|a_n|) \searrow 0$, $n \to \infty$, and $l \in Q_{\beta}(\mathbb{D})$ $(\beta > 1)$ be a function such that $n(r) \ln n(r) = O((1-r)l(r))$ and $\int_{r}^{1} n(t)dt = O((1-r)^2l(r))$ as $r \to 1$. Then the Blaschke product B is of bounded l-index.

From $\sum_{k=1}^{\infty} (1-|a_k|) < +\infty$ and $n(1-|a_n|) \searrow 0$, $n \to \infty$, we have for every $\epsilon > 0$ and all $n \ge n_0(\epsilon)$

$$\epsilon \ge \sum_{\sqrt{n} \le k \le n} (1 - |a_k|) = \sum_{\sqrt{n} \le k \le n} \frac{k(1 - |a_k|)}{k} \ge \frac{n(1 - |a_n|) \ln n}{2}$$

and, thus, $\frac{n(r)\ln n(r)}{1-r} = o(\frac{1}{(1-r)^2}), r \to 1$. Therefore, since $\int_r^1 n(t)dt = o(1), r \to 1$, from Proposition 2 we obtain the following refinement of Theorem 2 from [2].

Proposition 3. If $n(1-|a_n|) \searrow 0$, $n \to \infty$, then there exists a function $l \in Q_{\beta}(\mathbb{D})$ $(\beta > 1)$ such that $l(r) = o((1-r)^{-2})$ as $r \to 1$ and the Blaschke product B is of bounded l-index.

On the other hand, the following proposition is true.

Proposition 4. For any function $l \in Q_{\beta}(\mathbb{D})$ $(\beta > 1)$ such that $l(r) = o((1 - r)^{-2})$ as $r \to 1$ there exists a Blaschke product B of unbounded l-index with zeroes a_n such that $n(1 - |a_n|) \searrow 0$, $n \to \infty$.

Indeed, there exists a function $\omega(x) \uparrow +\infty$, $x \to \infty$, such that

$$l(r) = \frac{1}{(1-r)^2 \omega(1/(1-r))}.$$

We may assume that ω is a slowly increasing function such that $\frac{x\omega'(x)}{\omega(x)} \ln x \to 0$, $x \to \infty$, because if $l_1(r) \leq l_2(r)$ and B of unbounded l_2 -index then [1, p. 23] B of unbounded l_1 -index.

Since $\frac{x}{\omega(x) \ln x} \uparrow +\infty$, $x_0 \le x \to \infty$, we can choose a positive sequence (a_n) such that $n = \frac{1}{(1 - a_n)\omega(1/(1 - a_n))\ln(1/(1 - a_n))}. \text{ Then } n(1 - |a_n|) \searrow 0, n \to \infty,$

$$n(r) \approx \frac{1}{(1-r)\omega(1/(1-r))\ln(1/(1-r))}$$

$$\begin{array}{l} \text{and} \ \frac{n(r) \ln \, n(r)}{1-r} \asymp \frac{1}{(1-r)^2 \omega(1/(1-r))} = l(r) \text{ as } r \to 1. \\ \text{On the other hand, for some } q > 0 \text{ by l'Hospital rule we have} \end{array}$$

$$\frac{\lim_{r \to 1} \frac{\int_r^1 n(t)dt}{(1-r)n(r)\ln n(r)} \le q \lim_{r \to 1} \omega \left(\frac{1}{1-r}\right) \int_r^1 \frac{dt}{(1-t)\omega(1/(1-t))\ln (1/(1-t))} =$$

$$= q \lim_{x \to +\infty} \omega(x) \int_x^\infty \frac{dt}{t\omega(t)\ln t} \ge q \lim_{x \to +\infty} \frac{\omega(x)^2}{x\omega(x)\ln x \omega'(x)} = +\infty,$$

i.e. B is of unbounded l-index.

REFERENCES

- 1. Sheremeta M. M. Analytic functions of bounded index. Lviv: VNTL Publishers. 1999. 141 pp.
- 2. Трухан Ю. С., Шеремета М. М. Обмеженість l-індексу добутку Бляшкех product, Математичні Студії. – 2002. – V.17, №. 2. – Р. 127–137.

Faculty of Mechanics and Mathematics, Lviv Ivan Franko National University

Received 10.10.2002