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In this paper we briefly review some well-known results on geometric properties of finite
type invariants of knots and links in S® and announce several new results. We also formulate
several open problems on the topics discussed.

JI. TI. TlnaxTa. I'eomempuueckue acnexmol UHEAPUANNOE KOHEWHOZ0 MUNA Y3406 U 3aAYEne-
nuti 6 5% // Matematnani Crymii. — 2002. — T.18, Ne2. — C.213-222.

B nammon pabGoTe memaeTcss KpaTKul 0630D M3BECTHBIX PE3YABTATOB O T€OMETPHYECKUX
cBOICTBAX MHBAPHAHTOB KOHETHOT'O THUIA Y3I0B I 3alellleHnil B S°, a TakiKe aHOHCHPYIOTCA
HEKOTOPHBIE HOBBIE Pe3yabTaThl. CHOpMYyJnpOBaHO HECKOJBKO OTKPBITHIX MPOOJIeM OTHOCH-
TelbHO T'eOMETPUN NHBAPUAHTOB KOHEYHOI'O THUIIA.

1. n-equivalent knots and “geometric” n-trivial knots

Here we consider oriented knots in S, up to a certain equivalence relation defined by
ambient isotopy. Under a singular knot we shall mean an immersion of S* in R?® with only a
finite number of transverse self-intersections called the singularities of this knot. The singular
knots are considered up to the rigid vertex isotopy [4]. A Vassiliev invariant v of finite type
n is an isotopy knot invariant which takes values in an abelian group () and satisfies the two
axioms [1]:
Al. For any three (singular) knots K, K_ and Ky which differ only inside some disc, where

they look as in Fig. 1, there holds

o(Ky) — v(K_) = v(Ky);

A2. For any singular knot K with more than n singularities v(K') = 0.

The smallest number n for which v satisfies axiom A2 is called the order of v. The Vas-
siliev knot invariants are also called the invariants of finite type of knots. Two knots which
cannot be distinguished by Vassiliev invariants (additive Vassiliev invariants) of order < n,
the invariants taking values in any abelian group, are called V,-equivalent (n-equivalent,
respectively). It was an important and interesting problem in the knot theory to describe in
combinatorial, algebraic or geometric terms the relationship between any two V,-equivalent
(n-equivalent) knots. Gusarov [7] was the first who described in combinatorial terms the
notion of “n-equivalence” for knots. Moreover, Gusarov showed [7] that the classes of
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Later on, it turned ou
for the knots in S® [24]. Let us consider now another algebraic and combinatorial descriptions
of V,-equivalence for knots given by Stanford and Habiro.

Let By be the braid group on k strands and let P be its subgroup of pure braids. Denote
by b the closure of a braid b in a standard way, via the permutation (0,1,...,n —1). Let
LCS,(Py) be the n-th group of the lower central series of the group Py. The knots K7 and K,
are said to be LC S,-equivalent if there exists an integer k > 0 and the braids p € LCS,,(Px)
and b € By, such that K; = b and K, = };\b Stanford showed (Theorem 0.2 of [24]) that
any two knots are LS, 1-equivalent if and only if they are V,-equivalent. Habiro [8] has
described the V,,-equivalence in the terms of local moves on knots, called the C,-moves.
Two knots K and K’ are called C,-equivalent, where n > 1, if and only if one can pass
from one to another by a finite sequence of C),-moves and isotopies. Habiro showed that for
each integer n > 0 any two knots K and K’ in S? are Vj-equivalent if and only if they are
Cri1-equivalent. It follows (see Theorem 6.18 of [8]) that for each n > 1 the C,-equivalence
and LC'S,-equivalence relations coincide for knots in 5%, For 0 <i < j<k—1let p;; € P,
be the braid that links the ith and jth strands behind the others (see Fig. 2).
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In [22], it is shown that each K,n > 1, is
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equivalent to a replacement in a knot the trivial braid 1,,1; with the pure braid n-commutator
of the following particular form: p, = [pu—1n, [Pn-2-1,- -, [P12,P01] -] € Pay1.

It is still not clear what kind of geometric knot properties can be detected by the invariants
of finite type. In [9], Kalfagianni and Lin interpret these invariants as obstructions to a knot’s
bounding a regular Seifert surface whose complement looks, modulo the lower central series
of its fundamental group, like the complement of a null-isotopy. The purpose of the paper
[9] was to give a geometric description of n-trivial knots (i.e. knots which are V,-equivalent
to a trivial knot). For this, Kalfagianni and Lin have defined for each n € N several classes
of geometric knots. Let us recall the definitions of some of them.

Let K be an oriented knot in S®. A Seifert surface of K is an oriented, compact,
connected surface S, embedded in S® and such that 95 = K. A spine of S is a bouquet of
circles > C S, which is a deformation retract of 5. A Seifert surface S of a knot K is called
reqular if it has a spine ¥ whose embedding in S?, induced by the embedding S C 52, is
isotopic to the standard embedding of a bouquet of circles. Then ¥ will be called a regular
spine of S. We shall represent Seifert surfaces in the disc-band form, i.e. as a union of the
disc D?* and flat bands glued to D?, to which some full twists are added if necessary. Pick
a basepoint p € D? C S, and let X,,n = 2¢g, where g is the genus of S, be a regular spine
of S such that p is the point of X, where all circles in 3, meet. Denote by 1, 51,...,7,, By
the circles in ¥, (the cores of the bands), oriented so that they form a symplectic basis in
Hy(S). Let K be a knot in S® and let S be a Seifert surface of K of genus g. A collection
of g non-separating, disjoint, simple closed curves y17z,...,7, in .S is said to be a half basis
if S, cut along these curves, is a disc with 2g holes.

Definition 1.1. (Kalfagianni and Lin, [9]) A regular Seifert surface S is called n-hyperbolic,
if it has a half basis y17,...,7,, represented by circles in a regular spine X such that for
every i = 1,...,g, either [y}] or [v7] lies in 7("*?) where 7("*2) is the (n 4 2)-th term of
the lower central series of 7 = 71(5%\\5). The boundary of such a surface will be called an
n-hyperbolic knot.

Theorem. (Kalfagianni and Lin, [9]). If K is n-hyperbolic, for some n € N, then K is
n-trivial.

Kalfagianni and Lin also noticed [9] that 0-hyperbolic knots are 2-trivial, because they
have the trivial Alexander polynomial. They asked whether each n-hyperbolic knot is (n+42)-
trivial. This question has been negatively answered as follows.

Theorem. [23]. For each odd m > 1 there exists an m-hyperbolic knot which is not (m+2)-
trivial.

Kalfagianni and Lin have also introduced for each n € N another classes of “geomet-
ric” knots, called n-elliptic and n-parabolic knots, and proved that all such knots are n-
trivial (Theorem 5.4 of [9]). Moreover, Kalfagianni and Lin showed that all n-elliptic and
n-hyperbolic knots, n € N, have the trivial Alexander polynomial, while there is a 1-parabolic
knot which has a non-trivial Alexander polynomial. The classes of n-hyperbolic, n-parabolic
and n-elliptic knots however do not exhaust all n-trivial knots.

Problem 1. Are n-elliptic knots (n 4 2)- or (n + 1)-trivial for each n > 17

In [21], we consider Seifert surfaces for knots (not necessarily regular) in S® represented
in the disc-band form and some specific moves on them, the band-analogies of insertions
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in knots of pure braids commutators. Such moves on Seifert surfaces allow, by analogy
with LC'S,-equivalence, to introduce a new equivalence relation on knots, called LC'S,,-band
equivalence, where n > 2 (see [21]).

Proposition. (Corollary 3.1 of [21]). If a knot K is LCS,-band-equivalent to the trivial
one, where n > 2, then K is (n — 1)-trivial and has the trivial Alexander polynomial.

The latter proposition yields a class of “geometric” (n — 1)-trivial knots with the trivial
Alexander polynomial.

Question 1. How does the class of “geometric” n-trivial knots described by Corollary 3.1
of [21] relate to the classes of n-hyperbolic and n-elliptic knots?

Conant and Teichner have given in [6] a geometric interpretation of knot invariants of
finite type in terms of grope cobordism between two knots. The approach to the study of
geometric properties of finite type of knots by means of grope cobordism turns out to be
closely related to the Habiro theory of claspers in a 3-manifold. Moreover, the gropes in a
3-manifold, defined by Conant an Teichner, generalize in some sense the “cobordisms ” on
knots used by Kalfagianni and Lin in [9] for the description of the several classes of geometric
n-trivial knots.

Note also that, using Habiro’s theory of claspers, Murakami and Ohtsuki have given in
[18] the filtration of the vector space V of rational Vassiliev invariants via Seifert matrices
and described the rational Vassiliev knot invariants coming from the Alexander-Conway
polynomial.

By definition, the Gusarov groups G, are quotients of the semigroup of knots, so it
is natural to ask what relationship these might have to the knot cobordism group C, the
other known quotient of the knot semigroup. It is known that the Arf invariant, which is
a knot cobordism invariant, is the coefficient ay of the Conway polynomial modulo 2 (so
it is the Zg-valued Vassiliev invariant of order 2) whereas the signature of a knot is not a
Vassiliev invariant of any order (Dean and Trapp). Denote by W, the torsion-free part of
Gn, 1.e. the group of equivalence classes of knots which cannot be distinguished by rational
Vassiliev invariants of order < n. Ng also showed [19] that any element of the group W,,
whose Arf invariant is zero, can be represented by a slice knot. It follows that any finite
number of rational Vassiliev invariants cannot distinguish between slice knots and non-slice
knots having Arf invariant zero. Therefore, in fact, rational Vassiliev invariants and knot
cobordism are not related to each other [20].

2. Geometric n-equivalence of links
There are several natural equivalence relations for oriented links in S® which are indicated
below.

1) Links are considered in S® up to ambient (PL) isotopy of S?;

2) Links are considered up to (PL)homotopy (in the sense of Milnor). In other words,
two links are homotopic if one can be transformed into the other through a sequence of
ambient isotopies of S® and crossing changes of component with itself (but not crossing
changes of different components);

3) (non-locally flat) PL isotopy, i.e. ambient isotopy plus birth and death of local knots;

Notice also that there are at least two different concepts in defining the finite type invariants
of links in S following from the distinct notions of n-singular links;
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a) in the first (usual) case, in addition to the self-intersections in each component, the
intersections (singular points) between different components are allowed;

b) in the second case each component of a link may have self-intersections, but the different
components do not intersect.

The finite type link invariants are defined in a similar way as for knots, via the correspond-
ing Gusarov-Stanford decreasing filtrations of the abelian groups, freely generated by the
equivalence classes of links, with the appropriate choice of an equivalence relation on links
in S2. As a result, we obtain at least six different definitions of link invariants of finite type
combining items 1)-3) with the items describing the type singularities in a) or b), which
are allowed in singular links. Notice that, in opposite to the situation with knots, neither
combinatorial nor algebraic description of n-equivalence for links in S® is known in any of
encountered cases, like the Habiro—Gusarov or Stanford characterizations of n-equivalent
knots.

The link invariants of finite type in case la) have been studied by many authors. Among
the other we would like to mention the paper [11]. The link invariants of finite type in
case 2a), called also link homotopy invariants, have been studied by Lin [13], Mellor [14],
Bar-Natan [2] and other authors. Denote by V; (V') the vector space of Q-valued finite type
isotopy invariants (homotopy invariants, respectively) of type d. The main problem was
to give a description of the quotients Vy/Vip (VJ'/V], respectively) or, more generally,
to describe the graded vector space associated with the filtered vector space V' of rational
finite type invariants of links, in both the cases. This has been done successfully in terms of
uni-trivalent diagrams via the corresponding construction of the Kontsevich integral, like in
the case of knots (see [11], in case la), and [3], in case of 2a)).

In particular, Mellor and Thurston [15] showed that for links with at most 5 components
the only finite type homotopy invariants (i.e. link invariants of finite type defined by 1b))
are products of the linking numbers, whereas for links with at most 9 components there exist
finite type invariants which are not products of the linking numbers (see also [13]). It follows
that there exist finite type link concordance invariants other than the linking numbers.

The link invariants of finite type in case 1b) have been studied by Kirk and Livingston [10].
Kirk and Livingston used the Casson-Walker invariant of 3-manifolds to define a Vassiliev
invariant A of two-component links. More precisely, A turns out to be a type 1 invariant
of singular links on the space L£,, of singular links of two disjoint components with linking
number n. Moreover, A is an isotopy link invariant of order 3 in the usual sense, i.e. in the
case la) [10].

Recently S. Melikhov and D. Repovs [16, 17] have defined for each integer & > 0 an

equivalence relation, called k-quasi-isotopy, on the set of oriented links in R?, as follows:

Definition 2.1. (Melikhov and Repovs, [17]). Let k be any nonnegative integer. A PL-map
f:SiuU---uSl — R? with precisely one double point f(p) = f(q),p,q € S} is called a
strong k-quasi-embedding, if in addition to the singleton By = {f(p)} there is a sequence of
closed PL 3-balls By C --- C By in the complement C to all other components S},j * 1,
such that each By, where 0 < n < k, contains the f-image of an arc J, C S} such that
J. D f7YB,). Also, all PL embeddings f: S{ U---US.L — R? are to be thought of as
contained in the class of strong k-quasi-embeddings.

If the above balls B, are replaced by arbitrary compact polyhedra P, C R?, where
Po = {f(p)}, such that each inclusion P,Uf(.J,) C P,+1 induces the trivial homomorphism of
fundamental groups, then f is called a k-quasi-embedding. The notions of k-quasi-embedding
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and strong k-quasi embedding can be thought of as arising from Penrose-Whitehead-Zeeman
trick and the engulfing procedure connected with it. Replacing in the definition of k-quasi-
embedding the induced homomorphism of fundamental groups by the induced homomor-
phism of the first homology groups, one obtains the definition of a weak k-quasi-embedding.
Notice that the homomorphism of fundamental groups induced by the inclusion P,UJ; C P,
sends the group m(P; U J;) into LCS,,_;m(F,).

Definition 2.2. (Melikhov and Repovs, [17]). Let fo, fi: Sf U --- U S — R?® be the two
links. We say that they are (weakly, strongly) k-quasi-isotopic, if they are PL-homotopic
through maps f; with at most single transversal self-intersections of the components, all of
which are (weak, strong) k-quasi-embeddings.

Note that the PL-homotopy in Definition 2.2 can be assumed to be locally flat since the
self-intersections appeared when introducing a local knot can be performed by a PL-isotopy
[17].

In this setting, 0-quasi-isotopy coincides with certain link homotopy, whereas 1-quasi-
isotopy does not follow from the link concordance. Therefore, k-quasi-isotopy is not com-
pletely described by the lower central series quotients of the fundamental group [17].

The following assertion clarifies relationship between the notions of k-quasi-isotopy and
topological isotopy of links:

Corollary 2.1. (Melikhov and Repovs, [16])

(a) All sufficiently close approximations of any topological link are strongly k-quasi-isotopic
for each k > 1;

(b) Topologically isotopic PL links (i.e. in the sense of Milnor) are strongly k-quasi-isotopic
for all finite k.

Consider the setting of finite type invariants introduced as in [10] (case 1b)). Let LM
(respectively, LM™) denote the subspace of the space of all link maps f: S{U---US! — R?
where m is arbitrary (respectively, all link maps f: ST U--- U SL — R® with m fixed),
with only singularities being transversal double points. Note that the only singularities of
the same component are allowed here. Let LM (respectively, LMT, ) denote its subspace
consisting of link maps with precisely (respectively, at least) n singularities.

Given an invariant v: LMJ — G on embedding links, taking values in an abelian
group G, it can be extended to LM™ inductively by the formula

o(Le) = v(Ls) = v(L_)

where Ly, L_ € LM differ by a single crossing change, and L, € LM , is the intermediate
link map with one more singular point, defined as in the case of knots (see Fig.1). If v vanishes
on LM, for some k, then v is called of finite type k invariant in LM (i.e. in the sense of
Kirk and Livingston).

For m = 1 these coincide with the knot invariant of finite type in the usual sense (Vassiliev
invariants), while for m > 1 any type k invariant in the usual sense (i.e. in the space £ of
all singular links, case la)) is a type k invariant in LM but not vice versa. For example, the
linking number lk and the generalized Sato-Levine invariant {3 are invariants of types 0 and 1
in LM but of types 1 and 3, respectively, in £ [10]. Moreover all higher Milnor p-invariants

(except for 1k) are not of finite type in £, because they are even not well-defined on all links.
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Note that the type k invariants v: LMy — G taking values in an abelian group G form
an abelian group, denoted by G7*. It is known [10] that G? ~ Z and conjectured that G?
is not finitely generated for r > 1, in contrast to the situation in the case of usual Vassiliev
link invariants i.e. in case la). Denote by CN?ZL the subgroup of G} consisting of invariants
which remain unchanged under tying local knots, i.e. descent to PL-isotopy invariants. In
particular, QZL denotes the subspace of the vector space Q)" of rational Vassiliev invariants
which descent to PL-isotopy invariants.

Problem 2. Describe the quotient vector spaces QZL/QZL_I_I in combinatorial terms, like the
finite type invariants in cases la)-2a)

For each n > 0, let LM’ denote the subspace of LM]" consisting of the link maps [ such
that all singularities of [ are contained in a ball B such that {7!(B) is an arc. The link
maps [,I' € LM are called geometrically k-equivalent ([17]) if they are homotopic in the
space LM® U LM, ., where LMY for k > 0,4 > 0, is the space of all links maps with i
singularities which are geometrically (k — 1)-equivalent to a link map in LM,

Theorem 2.1. (Melikhov and Repovs, [17]) If two links L and L' are k-quasi-isotopic then
any Vassiliev invariant of type < k with respect to the space of link maps, which is well
defined up to PL-isotopy, has the same values on L and L’.

The latter theorem shows that any two geometrically k-equivalent links are k-equivalent
with respect to the Vasiliev invariants in the sense of Kirk and Livingston, well defined up
to PL-isotopy.

Problem 3 (Melikhov and Repovs, [17]). Is the converse to the above theorem true?
Now we concentrate on the relationship between k-quasi-isotopy and some classical geometric
invariants of links in S®. First, recall that Cochran’s invariants [5, 17] are defined inductively
in the following way. Let L = K, U K_ be a two-component link with 1k(L) = 0 and let K,
where * stands for either ‘+” or ‘=7, be a fixed component, which is called active and the
other one is called passive. Let D.(L) be the *-derivative of L defined by substituting K.
with the transversal intersection of oriented Seifert surfaces of the components in the link
exterior, provided that it is a connected curve (the latter can be always achieved). Then
BL(L) = B(L), the Sato-Levin invariant, and 3:*1(L) is defined to be B:(D.(L)), i € N.
Therefore, the two invariants, ﬁfl_ and (', are defined for each i.

Now let us mention the definition of higher p-invariants, introduced by J.Milnor. Given
a link L, its link group 7(5% — L) has a Wirtinger presentation, generated by the arcs of
the link diagram. We also have a presentation of the link group modulo gth subgroup of its
lower central series:

m(S® — L)/ LCS,m(S® — L) = (my|milem[ 7T =1, A,)

where the generators are the meridians m; of the components of the link, /; denote the
longitudes of the components of the link, and A, denotes the ¢th subgroup in the lower
central series of the free group on {m;}. Fach generator of the Wirtinger presentation (hence
each longitude) can be written in m(5® — L)/LCS,m (5% — L) as a word in the m,’s. Next,
we look at the Magnus expansion of the longitudes, which means replacing m; with 1 4+ K
and m; ! with 1 — K; + K? —.... We define pu(iy,...,4,,7) to be the coefficient of K, ... K;,
in the Magnus expansion of the word for jth longitude in m(S® — L)/LCS,m(S® — L),
q > n. Now we define fiiy,...,i,,7) to be p(iy,..., 10,,7), considered modulo A, which
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is the greatest common divisor of all p-invariants whose indices are a cyclic permutation
of a proper subsequence of (iy...4,,j). This is now a well-defined invariant of links up to
concordance, as long as ¢ > n. If the indices iy,...,1,,7 are all distinct, this is a well-defined
link-homotopy invariant.

Corollary 2.2. (Melikhov and Repovs, [17]) p-invariants of length < 2k + 3 are invariant
under k-quasi-isotopy.

It follows that, in the terminology of [12], geometrically k-equivalent links are (k + 1)-
cobordant.

Corollary 2.3. (Melikhov and Repovs, [17]) Cochran’s invariants 31,1 < k, of each two-
component sublink with vanishing linking number are invariant under k-quasi isotopy.

It turns out that Problem 3 has the negative solution. To show this let us consider the two
2-components links L; and L, indicated in Fig. 3, with the components denoted by 1 and 2.
One can easily verify that Ly and Ly are 1-equivalent in the sense of Kirk and Livingston, well
defined up to PL isotopy, because component 1 of the link L, is obtained from component
1 of Ly, by applying to it in S® \ {2} a simple Cy-move [22]. On the other hand, the
direct computation shows that L; and Ly have the different Milnor p-invariants of length 5.
More precisely, we have u(1,1,1,2,2)(Le) = =2, 0(1,1,2,1,2)(Ly) = 6,0(1,2,1,1,2)(Ly) =
—6,0(2,1,1,1,2)(Ly) = 2, while all Milnor g-invariants of length 5 of the link Ly and all
Milnor pg-invariants of length < 4 of the link L, vanish. Therefore, by Corollary 2.2, L and
Ly are not geometrically equivalent in the sense of Melikhov and Repovs. Note that L and
Ly are homotopy equivalent, so they have the same Milnor p-invariants of any length with
distinct indices. The details of the proof and some generalization of the above example will
be treated in a forthcoming paper.

Finally we formulate an open problem concerning the relationship between n-equivalence
and geometrical n-equivalence (n-quasi-isotopy) of links.

Problem 4. Find conditions on links under which two n-equivalent in the sense of Kirk
and Livingston links L; and Ls, well defined up to PL-isotopy, are geometrically n-equivalent
in the sense of Melikhov and Repovs.
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