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By means of exponential type vectors a criterion for operator in a Banach space to generate
groups of isometries is established. It is also shown that exponential type vectors of operators
with separable spectrum can be completely described by spectral subspaces.
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B TEepMHIHaX BEKTOPOB SKCIIOHEHIINAJBbHOI'O THIIA YCTaHOBJACH KpI/ITCpI/If/i reHepanun rpyIin
I/I3OM€TpI/If/i olepaTopaMn B 6aHaxOBOM OpoCTpaHCTBE. HOKaBaHO, 9TO BEKTOPHBI SKCIIOHEH-
OUAJBbHOT'O THIIA OIIEPATOPOB C OTAECJCHHBIMU CIEKTpaMHW MOIL'YT OBITH TOJHOCTBHIO ONMHCAHBI
CIIEKTPAJBHBIMHA IO AIIPOCTPpaHCTBaMM.

Introduction. As is well known (see, for example, [13]), Nelson’s and Stone’s classical
theorems imply the next proposition: a closed operator 1A on a Hilbert space generates the
unitary group ¢4 if and only if the operator A is symmetric and its analytic vectors are
dense.

In the present article this proposition is extended to isometric groups on Banach spaces.
In this case the exponential type vectors fulfill the role of analytic vectors and conservativity
fulfills the role of symmetry.

In addition, it is established that exponential type vectors of isometric group generators
can be completely described by the spectral subspaces in the sense of J. Lubi¢ and V. Macajev
[10]. This fact is proved not only for generators of such groups, but for a more general class
of closed operators with spectrum on contours, whose resolvents satisfy Levinson’s condition
[6]. Such operators belong to the so-called class a operators with separable spectrum [10].
Let’s note, that for the operators with separable spectrum the fact of belonging of vectors
from spectral spaces to set it of all exponential type vectors was earlier established by V.
Gorbachuk and M. Gorbachuk [3].

For the class of operators with meromorphic resolvents the relation between root sub-
spaces and exponential type vectors was established by G. Radzievskii [11]. Independently
a similar result was established in the paper [8].

At last we shall note that normed subspaces of exponential type vectors of an unbounded
operator and the scale of such subspaces were introduced by Ja. Radyno [12]. He also
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proved density of exponential type vectors for generators of uniformly bounded and strongly
continuous one-parametric groups.

1. Vectors of exponential type. Let (B, | H) be a Banach space over the field
of complex numbers C and A: D(A) C B — B be a closed unbounded linear operator
with dense domain D(A). Next, {Ak k€ {2,3,...}} are powers of A with domains
D(AY) = {:1: € DAY : Ar € D(Ak—l)}, D(A®) = Mo, D(A") and A° = [ is the
identity operator on B. Algebra L(B) of bounded operators on space B is equipped with the
uniform operator topology. As usual, p(A) 3 A — (A — A)7% p(A) := {)\ eC: (A\—A)te
L(B)}, o(A) := C\ p(A) are the resolvent, resolvent set and the spectrum of the operator
A, respectively.

Definition 1. An element @ € D(A*) is called the vector of exponential type T of the

operator A if km HAkal/k = 7 < o0. The set of all vectors of exponential type 7 will
—+00

be denoted by E7(A). Next, E(A) := |J £7(A) denotes all exponential type vectors of the
>0
operator A.

Lemma 1. The following statements are equivalent :

(a) € E(A);

0 k
(b) the function G(\,x, A) = Z 47| M of complex variable A is entire and has expo-

k!
k=0
nential type 7, i.e., 7 = lim r~"In M(r), where M(r) = 1|(£1|ax |G(A, x, A);
r—r0o0 =r
(c) the radius of f th jes g(\,x, A) = A% I to th
c) the radius of convergence of the power series g(\, v, A) = i is equal to the
k=0

number 7.

Proof. Equivalence of conditions (a), (b), (¢) follows from the well-known relations for entire
functions of exponential type [2, Theorem 1.1.1]. O

Making use of Lemma 1, the space £(A) can be characterized as the set of vectors « € B
for which the series g(v, x, A) is convergent for same number v > 0. In other words,

gy =), aa) = {:1; € D(A®) : g(v,z, A) < oo}

v>0

where for each number v > 0 the linear subspace ({(A) is equipped to the norm ||z||, =
vg(v,x, A). Later we shall need certain simple properties of the spaces ;(A). In a somewhat
different form they were derived in [7].
Lemma 2. The following propositions are valid:
(a) 0{(A) is a Banach space;
(b) the inclusion ({(A) C B is continuous and ||z|| < |||, for all x € ({(A);
(c) the inclusion (¥ (A) C l{(A) is continuous and ||z, < ||z||, for allz € ({(A),0 < v < y;
(d) the space ({(A) is A-invariant and the operator norm of the restriction A, := A (A
satisfies the inequality ||A,||, < v, where |A,||, := sup N WA 2| /1]

0Fxely
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(e) for each A € p(A) the inequality ||(A — A,) 7], < ||(A— A)7*!|| holds and the spectra of
the operator A and of its restriction A, satisfy the inclusion o(A,) C o(A).

Proof. (a) The obvious inequality
A5 < HMall, Ve f(A), kef012,. ) (1)

is valid. Thus, if {l’n} is a Cauchy sequence in £4(A), then {Akxn} is a Cauchy sequence in
B for each fixed £ > 0. From closedness of the operator A and completeness of the space B
applying the induction over all k& we obtain that there exists a vector « € B such that

lim || A%z, — A*z|| = 0, ke{0,1,2,....} (2)

n—0oo

By the assumption for any ¢ > 0 there exists a number n(e) such that ||z, — 2., < ¢ for
all n,m > n(e), whence

(92 () [alls < leniol + lon = ngaly < agolh +2: 3
Using (3) and (2) for each N € {0,1,2,...} we have
N N
[A* | [A 2|
= dm Y T <l
k=0 k=0
and v v
[A (en — )| _ [A* (@ — @)
= <

Hence x € (Y(A) and ||z — x|, < e for any n > n(e). The completeness of £;(A) is proved.

(b) follows immediately from inequality (1) at k& = 0.

(¢) In fact, for each & € (Y(A) and v < p the inequality ||z|, = pg(p,z, A) <
vg(v,x, A) = ||z||, is valid.

(d) In fact, we have the inequality || Az||, = v > i, || A¥Fa||/v*1 < v||z||, for each
v>0and x € l{(A).

(¢) In fact, we have [I( = A)ell, = S35 00— AV A¥el i < (A — 4)"] o],
for each A € p(A) and = € ¢{(A). Taking into account invariance of the spaces ¢}(A) with
respect to the operator A, we obtain the relation (A — A)~* 17(A) = (A—A,)~*. This means

that the restriction of the resolvent of A to {(A) is the resolvent for the restriction A, of
the operator A. Therefore A € p(A,). O

2. Operators with separable spectrum on contours. It is assumed that the spec-
trum o(A) of the operator A is nonempty and lies on the simple open smooth contour I' of
the complex plane C. In particular, contour I' can be the real axis R.

Let us now consider an arbitrary closed sector A on contour I' and denote by B a closed
subspace in B with the next properties:

(I) the operator A is everywhere defined and bounded on Ba;

(IT) the subspace Ba is A-invariant;

(I11) the spectrum o(Aa) of the restriction Ax of the operator A onto Ba satisfies the
relation o(Aa) C A and o(Aa) Nint A = 0(A) Nint A, where int denote the interior of a
set;
(IV) if the operator A is everywhere defined and bounded on some closed invariant
subspace M C B and for its restriction Ay onto M the inclusion o(Axr) C A holds, then

M C Ba.
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Definition 2. [10] A subspace Ba satisfying conditions (I)~(IV) is called the spectral sub-
space of the operator A.

Lemma 3. For each closed sector A C T' such that A C {A € C: |\ < v} the inclusion
Ba C l¥(A) is valid.

Proof. Consider the restriction Aa of the operator A onto the subspace Ba. From Defini-
tion 2 and the assumptions of the lemma the inclusion o(Aa) C {A € C: |A] < v} follows.
Therefore, the spectral radius ra := EHOOHAZHU’“ of Ax satisfies the inequality ra < v.
This means that for each @ € By the series >, ||A%z||/v* = S02, ||A% || /vF is conver-
gent. Since the expression on the left side above is the norm of the space ({(A), we have

x € V(A). O
Theorem 1. Let for each point ¢ € I' the following conditions be valid:

(i) there exists a nondecreasing function M¢(d) satisfying for sufficiently small ¢ > 0 the
Levinson’s condition .
/ Inln M¢(9) dd < oo;
0
(ii) there exists a neighborhood O(§) such that for each A € O(&)\ ' the resolvent of the
operator A satisfies the inequality

1A = A)7H < Me[a(A. )]

where §(\, I') is the distance from the point A to I
Then for each closed sector A C ' there is the spectral subspace Ba and the equality

£(A)= | Ba

ACT
is realized.

Proof. From Lemma 3 it directly follows the inclusion [ J, - Ba C E(A). We shall proof the
inverse inclusion. By Lemma 2(e) for each v > 0 the set o(A,) is bounded and belong to
contour I'. Therefore there exists a sector A such that the inclusions o(A,) C int A is valid.
Later we shall use the reasoning and notations from the proof of Lubich-Matsaev’s theorem
([10], Theorem 5). The contour C'y is formed by conjugating without self-intersection of two
smooth tangent contours, which start from different endpoints of the sector A. We assume
that the contour C'y belongs to the intersection of the circle {A € C: |A] < v} with the
resolvent set p(A,) and is oriented outside. At the endpoints of the sector A the contour
(' has the spinode inside. Elsewhere the contour €'y is smooth.

From Levinson’s condition [6] it follows that there exists a function ®3(A) with the
properties: @73 () is analytic and bounded outside the contour C'y; @5 () # 0 for all finite
A outside the countour Cy; ®,(o0) = 0; for each endpoint ¢ of the sector A, &5 (A) has

asymptotics of the form O< > as A — ¢ along A. Then ([10], Theorem 5), the

Me[6(A, )] )
equality By = Ker ®;(A), where @ (A) := %f PL(N(A — A)7hd), is valid. As it is
Ca

easily seen from the estimate of the resolvent, the integral ® (A) exists in the operator norm
of the space B.
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Since p(A) C p(A,), the restriction of the resolvent (A— A, )~! onto the invariant subspace
(7(A) is a continuous function on the contour Cy in the operator norm on the space £4(A).
From the Condltlon (ii) the inequality |[(A —A,)7| < M [5()\, F)] follows. Thus the integral

N = — % J(A— A,) 7" d) exists in the operator norm of the space /4(A). The

spectrum U(A C mtA is contained inside the contour C, so the resolvent (A — A,)™! is
bounded and analytic in the operator norm of the space ¢{(A) outside C5. The integrand
is bounded analytic function outside €'y and vanishes at infinity. By Cauchy’s theorem,
®L(A,)) =0. Thus, & (A)x = ¢ (A))xr =0 for all z € £](A), that is £{(A) C Ker @ (A) =
Ba. Bearing in mind that number v is unrestricted we have £(A) C UACF Ba O

Let us now consider in the Banach algebra L(B) the one-parametric strongly continuous
group R 3 t — €' € L(B) with generator T = 7 A. Following [10], we shall call the generator

. o "y < nfle™|
A nonquasianalytic if it satisfies the condition T

a nonquasianalytic operator lies on the real axis. Moreover, for a nonquasianalytic operator
A the function M(8) = sup|gy, y»s [[(A — A)7| is proved ([10], Theorem 3) to satisfy the
conditions of Theorem 1 for each points on the real axis.

dt < oo. The spectrum of

As usual, a one-parametric group R 3> ¢ — ¢4 € L(B) is called the isometric group if
ez|| = ||z|| for all € B and ¢ € R. It is obvious that every isometric group is generate

A for all Band t € R. It is ob that v tric group is g ted
by a operator 1A, where A is nonquasianalytic. Thus, from Theorem 1 and [10] it follows

Remark 1. If an operator A satisfies one of the following conditions:
(i) A is nonquasianalytic;
(ii) T'= 1A is a generator of an isometric group,
then equality of Theorem 1 is valid.

3. Conservative operators. We denote by B’ the dual space of linear continuous
functionals on B. In accordance with Hahn-Banach’s theorem for an arbitrary vector x € B

there exists a functional e, € B’ such that ||z|| = (z, e,) and |le;|| = 1. For this reason the
functional of ¢, = ||x|| e, satisfies the condition
(2, o) = [l2]* = lleal*. (4)

We denote the set of functionals ¢, € B’ which satisfy relation (4) by B..

Definition 3. A linear operator T: D(T) — B with dense domain D(T) C B is called
conservative if for each # € D(T) there exists a functional ¢, € B! which satisfies the
relation

Re(Tx, ¢,) = 0. (5)

It is not difficult to verify that conservativity of T' is equivalent to the inequality
|Re Al [|z]] < |[(A=T)z|| for all # € D(T') and all A € C satisfying Re A # 0.

Theorem 2. A closed operator T' = 1 A generates an isometric group on space B if and only
if it satisfies the next conditions:

(i) E(A) = B (closure by the norm of B);

(ii) the operator T on B is conservative.
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Proof. Sufficiency. Let A C {)\ eC: |N < 1/} N T for some v > 0. We consider the
restriction (A — Aa) of the operator (A — A) to the Ba. From Lemma 3 it follows that on
the Banach space Ba the bounded inverse operator (A — Ax)™! exists for each A such that
|A| > v. Therefore Bao = (A — A,)(Ba) for all [A| > v.

Let B be the annihilator of the subspace B in the dual space B’. We shall show the
conservativity of the operator Tha = 14AAx on Ba. Let @ € Ba. From the conservativity
of T it follows that there exists a functional ¢, € B! satisfying conditions (4) and (5).

Putting e, = ¢./||x||, we have ||e;|| = 1. Therefore, the relation (x, €,) = ||z|| for the coset
€, € B’/ Bx of functional e, holds. Hence ||€,|| = 1 in the relative norm of a factor-space

B’/ Bx. Therefore, the functional @, = ||z|| €, satisfies conditions (4) and (5) relative the
duality <B, 5B’/ Bi>. Namely

(2, 8o} = (2, &) 2l = l=|I* = 12 ]*,  Re(Taw, &) = Re(Tx, ¢5) = 0.
This establishes the conservativity of the operator T on the space Bo. Now, it follows that
vlel* = vie, @u) £ Re(Taw, G) = Re((v £ Ta)z, &o) < |(v £ Ta)| [|Z:]l-

Therefore, ||(v £ Ta)™ || < v~ ' Let Rep = pand |v—p| < v. Then g > 0 and ||(v — p)(v £
Ta)™'| < 1, so that (£ Ta)(Ba) = [I — (v — p)(v £ Ta)™ (v £ Ta)(Ba) = Ba. Applying

the previous argument, we get
I £ Ta)™ ) < (6)

Repeating this process shows that inequality (6) is fulfilled for all 4 > 0. From Hille-Yosida’s
theorem ([4]) we get that the operators &7 on Ba generate the semigroups 0 < ¢ — eit4a
such that [[e*4a]] < 1. Thus, the group R 3 ¢ — €44 generated by the bounded operator
TA is isometric on Ba. Therefore the collection of the groups {e”AA} acr defines the unique
isometric group U(?) on the union (J,- Ba. That is, we have ||U(t)z|| = ||z|| for each

z € |J Ba. In accordance with Theorem 1 we obtain UACF Ba = B. This implies the

ACD
equality [|U(t)x| = ||z]|| for each x € B.
We have &ir%t_l[U(t)x — ] = Ta for each € £(A). From uniqueness of the generator
—

of a strongly continuous group it follows that T is a generator of U(¢) on B, i.e., U(t) = 4.

Necessity. Let T' = iA be a generator of the isometric group R 3 ¢ — €4, Then
the domain D(A) is dense in B. The operators +7T generate the isometric semigroups
0 <t— e on B. The functions 0 < ¢ — (e*'™ 2, ,) are differentiable for each x € D(A)

and ¢, € B.. Moreover,

d
7 Re(e*™ g, 9%>|t:0 =+ Re(Tx, ¢,). (7)

Since ‘<ei”A:1;, c,ox>‘ < |leF 2| [le]l = =] ll¢=]l = (=, v.), then for each t > 0 we have
t' Re(eT™z — 2, ¢,) < 0 and £Re(Tz, ¢,) < 0 by virtue of equality (7). Consequently,
Re(Tx, ¢,) = 0 for each x € D(A) and ¢, € B.. Hence the operator T' is conservative on B
and condition (ii) is established.

To the isometric group ¢4 Radyno’s theorem [12] on density of exponential type vectors
of bounded strongly continuous groups generators can be applied, whence the condition

(i) follows. Correctness of condition (i) also follows from Theorem 1 and Lubi¢-Macajev’s
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theorem [10] on density of the spectral subspaces of nonquasianalytic group generators. But
the following argument is more elementary.

Let a function f(¢) € L1(R) be the restriction onto the real axis of an entire function

of exponential type 7 > 0 such that / f(t)ydt = 1 and put P, = a/ flat)e™dt for

all @ > 0. There exists a constant ¢ > 0 independent of k& such that Bernstein’s inequal-

ity / (1) dt < er® for all k € {0,1,...} holds [1]. From the known ([5]) relation

lim |f®)(¢)| = 0 through integration by parts, we receive

[t|—=co
(1A Ppx = a/ flat)(iA)Y e dt = ozk/ f(k)(t) et/ Ay dt, x e B. (8)

Using (8) and Bernstein’s inequality, we obtain |A*Pz|| < ¢||z||(Ta)* for all x € B. Hence,
HAkPal'Hl/k < (CHJ}H)I/kTa and limkﬁooHAkPaxHUk < rta. Consequently, for an arbitrary
x € B we have P,z € l{(A) if v > T and the inclusion

U{Pax: :L'EB}CE(A) (9)

holds. It is ease to see that for each ¢ € B’ and = € B the integral

(P, o) = [ lanete, o) a
exists and the relation

lim [P 2] =0 (10)

is satisfied. In fact, the identity (P, —x, ¢) = a/ flat)(e™z —x, @) dt is obvious. Since

the function R > ¢ — (ez — z, ) is continuous at ¢ = 0, for all € > 0 there exists § > 0

such that max ‘<6”A:1; —

nax x, <p>‘ < e. Therefore, we obtain
1<

(P —a ol <clell [ laslat+ [ fastanietta o, o) a

[t] <8 [t]>6

<cliel [ irwiae+2helliol [ 1slar

[t|<bar [t]>6c
Thus, it follows that

1Bz = all < £SOl + 2lell [ 170Nt
[t|>6c
Passing to the limit in the last inequality, we obtain lim ||P,z — z|| < e || f(¥)||1,®). Since
a—00

¢ is arbitrary, (10) follows. It follows from (10) that the set | J ., {Pal' tx € B} is dense in
B. By virtue of (9) the set £(A) is dense in B too. O
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Remark 2. Using reasonings from work [9, Lemma 5.1] it is possible to show the following
isometric isomorphism B ~ /4 (B[_nm]; B), where

n=1 n=1

o0

is the space with the norm ||z|[; = inf Z |2l (inf is taken over all representations of x in

n=1
the form o = Z $n> Using this isometric isomorphism the group U(t) can be submitted
through groups e™-771 as follows U(t)z = Z ¢ Al=nnl g
n=1
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