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We study spectral properties of the stiff problem for an elasticity system with the Dirichlet
boundary condition. The stiff part is located strictly inside the domain. The ratio of rigidities
of soft and stiff parts is associated with a small parameter. We construct and justify the
complete asymptotic expansions of prime eigenvalues and the corresponding eigenvectors with
a fixed number. These expansions describe low frequency eigenvibration of the system.

Ipa6uak I'. E. 2Kecmkas cnexmpaavnas 3adaua das cucmembl meopuu ynpyzocmu [/ Mare-
matmgai Ctyqii. — 2002. — T.18, Nel. — C.81-98.

B pa6oTe maydaroTcs creKTpadbHBIE CBONCTBA XKECTKOU 3aMadn JJsS CUCTEMBI YDaBHEHUI
TeOpUH YHPYTOCTH ¢ KpaeBbiMu ycaoBusimu [lupuxie, xorga ~xecTkas 00aacTh SABIAAETCS
BHYTpeHHEN monobaacThio cucTeMbl. OTHOIIIEHE JKeCTKOCTEN MeHee 1 Golee KECTKOU dacTen
CHUCTEMBI XapaKTepuayeT Madbiil mapaMeTp. [locTpoeHBl m 060CHOBAHBI MOJHBIE ACHMITTOTH-
qecKIe PA3TOKEHNA IO MaJOMYy TapaMeTpy MPOCTHIX COOCTBEHHBIX 3HAYEHUN W COOTBETCTBY-
oIMX cO6CTBEHHBIX BEKTOPOB 3a a4, ONNCHIBAIOIINE HI3KOIaCTOTHRIE (POPMBI COGCTBEHHBIX
KOJeGAHIIT CHCTEMEI.

The stiff problem is a boundary value problem whose differential operator has different
orders of the coefficients in different subdomains. In the elasticity theory such problems
model systems with perturbed stiffness of an elastic medium. The ratio of rigidities of less
stiff part of the system and of more one is associated with a small parameter. The study of
stiff problems was originated in [1]. J.- L. Lions, who introduced the term stiff problem, has
developed asymptotic techniques for investigation of such problems.

Since the 1980’s the theory of nonhomogeneous media attracts much attention of re-
searchers. The most popular topics are the averaging of differential operators, problems
with concentrated masses, stiff problems, problems with singular perturbed domains, combi-
nations of such problems, etc. The extensive yet not comprehensive bibliography of this area
is given in [1]-[6]. G. P. Panasenko [7, 8] has initiated studies of the spectral stiff problems.
Perturbation of coefficients which describe the stiffness and the density of systems occurs
also in spectral problems with singular perturbed domains (see [6] and the references there).
Various research methods of the spectral stiff problems have been developed [1, 5], [9]-][15].

It turns out that there are two kinds of the eigenvibrations of the systems with singular
perturbed stiffness. The low frequency vibrations correspond to eigenvalues with a fixed
number. Such eigenvalues are infinitesimal as the small parameter tends to zero. The
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energy of low frequency vibrations is located on a less stiff part of the system and they
vanish on a more one. Other kind is so-called high frequency vibrations. They are supported
by eigenfunctions corresponding to some sequences of eigenvalues, with different numbers,
converging to nonzero limits.

The phenomenon of high frequency vibrations in stiff problems was first mentioned in [5].
The asymptotic analysis of these vibrations is more complicated in comparison with the
low frequency case. The research on high frequency oscillations has been attempted, in
particular, in [13]. The complete asymptotic analysis, based on quasiclassical WKB-method,
was done in [14] for the one-dimensional case. In the multidimensional case this approach
faces with considerable difficulties. In any case, the asymptotic analysis should start with
investigation of low frequency eigenvibrations, and this is the subject of our paper.

We construct and justify the complete asymptotic expansions of prime eigenvalues and
the corresponding eigenvectors of a spectral stiff problem for an elasticity system with the
Dirichlet boundary condition. The stiffer region is located strictly inside the domain.

Spectral stiff problems with such allocation of the stiff region have been considered in [5],
[7]-[9], [15]. In [5] the complete asymptotic expansions of solutions of spectral problems for
the second-order elliptic equation in R® were constructed. In these problems together with
stiffness also the density was perturbed. As a result, the orders of the expansion coefficients
are balanced, and formation of problems for this coefficients is simpler in comparison to one
in the case of the stiffness perturbation only. Moreover, the eigenvalues are not infinitesimal
as small parameter tends to zero. In [7]-[9] the expansions of the eigenvalues of elliptic
equations in R (n > 1) were constructed. However the problems for principal terms ob-
tained in [7]-[9] are underspecified. This causes using auxiliary boundary value problems
and so-called quasicharacteristic equation. The latter is an equation for principal terms of
eigenvalues. It is rather intricate and can be effectively analyzed only in a few cases. In [15]
the complete asymptotic expansions of eigenvalues and eigenvectors for a one-dimensional
fourth-order operator were constructed and justified. A recurrent sequence of completely
specified problems for the expansion coefficients was obtained.

In this paper we apply the approach [15] for construction of formal asymptotics. To obtain
completely specified problems for coefficients of the asymptotics, in addition to relations for
this coefficients, we use the compatibility condition for problems for the next order terms in
the rigid part. In the soft part, the principal terms of eigenelements are solutions of some
spectral problem containing a spectral parameter both in the equation and the boundary
condition. In the stiff part, the principal terms of the eigenfunctions belong to the kernel of
the homogeneous Neumann problem These terms correspond to motions of the rigid inclusion
treated as a perfectly rigid body.

We employ methods of theory of self-adjoint compact operators in Hilbert spaces. Justifi-
cation of asymptotic expansions is based on a lemma on almost proper elements of self-adjoint
operators in [16]. The results of this paper were announced in [17].

1. STATEMENT OF THE PROBLEM

Let Qg, © be bounded connected domains in R (n > 3) with smooth boundaries 9
and 09. Let Qp C Q. Set Q; = O \ﬁo. We consider the following spectral Dirichlet problem
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for the linear elasticity system:

L5(x, 0y )us(x) + Aep(@)ue(z) = 0, x € Qo Uy;
u.(x) =0, x € 00
[u-(2)]og, =0, [0%(2, Ox)u-(2)]ag, = 0.

Here L°(x,0,) = %(A”%x)%) is the elasticity operator, u. = (uj,...,u%) is the displace-
ment vector, o°(x, ;) = l/j(:zj)Asﬂ(x)a%l is the tension operator, v is the outward normal on
090, p > 0 is a smooth bounded function on £, A, is a spectral parameter. We will denote
by [flaq, the jump of f while crossing 9€. It is customary to assume that expressions
containing the same index twice should be summed over that index from 1 to n. By A/ we

denote n X n-matrices

Ay (z), x € Qy, led{l,....n,}

where € > 0 is a small real parameter. Elements amfli (i,k € {1,...,n}) of Al are smooth
bounded functions on £2,, such that the conditions
jl il _ Iy,

Uik = Qm ik = Qg s

i1
sy < a, (@) < seanijnig, s, =const >0, x€8Q,, me{0,1}

hold for an arbitrary real symmetric matrix {n;;}. It is easy to check that elements asfli

(i,k € {1,...,n}) of A%/ satisfy
esnminy < @l (@) < samgniy,  © € QUQ, e € (05 1), (1.4)

The left-hand side inequality is the condition of strong ellipticity for £°.

For column-vectors u = (uy,ug,... ,u,)", v = (vy,v9,...,0,)" and matrices A = {a;;},
B = {b;;} we introduce notation u-v = w;v;, |u| = (u-u)"?, (A, B) = a;; bi;, |A| = (A, A)Y/2.
Here " T7 denotes the transposition symbol. If vector components or matrix elements belong
to a Hilbert space §) with the scalar product (-,-)g, we denote

(u,0)g = (i, vi)g, lully = (u,u)g;
(A, B)y = (Aij, Bij)g, || Allg = (A, 4)%,

and write u, v € H or A, B € §) instead of u, v € H” or A, B € H™ . Later on we use the
term function instead of vector-function. For a function u, let Vu denote the matrix {g;"' }
J

Solutions of the problem (1.1)—(1.3) are understood in the sense of the corresponding
integral identity

/(QIEVUE,VU> de = X, /,ous ~vdx (1.5)
Q Q

in the Sobolev space H}({). Here we denote by 2 the linear transformation in the space
of n X n-matrices that for each € Qo U Q; takes a matrix £ = {;} to the matrix
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A€ = {asfi(:p)&]} The identity (1.5) can be derived from (1.1)-(1.3) by multiplying both
sides (1.1) by v € C§°(Q) and using the first Betti formula

/,Cu cvdr = /O'U cvdr — /(Qqu,Vv) dz, wu,v € C*Q), (1.6)

G oG G

where L is an elasticity operator, G C R" is a domain with piecewise smooth boundary 9G.
We here used the fact that C5°(€Q) is dense in Hg ().

Let a(u,v) and b(u,v) be bilinear forms in Hj(Q) and in the weighted Lebesgue space
La(p, Q) given by the integrals occurring in (1.5); then (1.5) takes the form

a®(ue,v) = Ab(u.,v), u.,v € Hy(Q). (1.7)

The next two lemata yield the information about spectral properties of the problem

(1.1)-(L.3).

Lemma 1.1. For any ¢ > 0 the spectrum of the problem (1.1)—(1.3) consists of a sequence
of eigenvalues

0<Xi<)\§<---<)\§<---—+>—l—oo,

S—+00

where multiplicity is taken into account in the indexing. The multiplicity of each X is finite,
and the corresponding eigenvectors {u®(x)}52, can be chosen as an orthonormal basis in

La(p, Q).

Proof. The proof is based on reduction of (1.1)-(1.3) to an operator equation. For this
purpose we introduce in H} () the equivalent scalar product (-, -). associated with a°, i.e.,

defined by the left-hand side of (1.5). In view of
Cre llulli ) < 0°(w,u) < Collullfygy.  u€ Ho(Q) (1.8)

and the symmetry of a® the equivalence holds. (1.8) follows from (1.4), boundedness of
2, the Korn inequality HVUHZ(Q) <C He(u)HZ(Q), u € Hy () [3, p.17], and the Friedrichs

inequality HuHLZ)(Q) <C HVUHL2(Q), u € Hy(Q)[3, p.10], where e(u) = {e;;} = {%(g—;j—l—%)}
is a deformation tensor. By |-||. denote the norm (the energetic norm) associated with (-, -)..
We use the same designation Hy () for the space with this norm.

Fix u € Hj(£); then the map v — b(u, v) is a linear bounded functional in Hj (). By the

Riesz representation theorem, there exists a unique w € Hy(Q) such that b(u,v) = a(w,v).

By that the operator u A% w s defined in Hi (). The identity (1.7) and the relation
b(ue,v) = a®(A%u.,v) lead to the spectral problem

Au, = Mg, u. € Hy(Q) (1.9)

which is equivalent to (1.1)—(1.3). From boundedness, symmetry and positiveness of a°
it follows that A® is bounded, self-adjoint and positive. In addition, since the embedding
H3(Q) C La(p, Q) is compact, it follows that A is also a compact operator. Then the
assertion of the lemma is the immediate consequence of the theory of compact operators. [
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Below we use notation

o , 0 : 0
— | aAdl - — . Jt —

Lo(es0e) = 5 (Ah)g0)s onled0) = vl () 5

an(u,v) = /(leVu,Vv> dzx, b (u,v) = /pu ~vde, u,v € Hy ()
Qm Qm

for m = 0,1. Here 2, is the linear transformation taking for each » € ,, n X n-matrix
¢ = {&;} to the matrix A,,§ = {a ]l(:zj)fij}. Note that a® = ay + ea;. By v, denote the

mk

trace operator on a hypersurface ¥ C R”. We shall often write f|y instead of v f.

Lemma 1.2. The eigenvalues of the problem (1.1)—(1.3) are continuous functions of . For
each eigenvalue X; the estimates

Cie <X < Cy(s)e, se{l,2,...}, e€(0;1), (1.10)
are valid. Here Cy, Cy do not depend on ¢, and C; does not depend yet on s.

Proof. The assertions of the lemma can be obtained from the minimax property

AS = sup inf se{l,2,...} (1.11)

S b
PCL2(p,R2) u€H}(Q) b(uv u)
dim P=s—1  u€P+, u#0

of the eigenvalues A% of the problem (1.1)-(1.3). Here P+ is the orthogonal complement of
a linear (s — 1)-dimensional subspace P in Ly(p, ). Note that the supremum is attained at
the linear span of eigenvectors corresponding to the eigenvalues A7, ..., A5_;. From (1.11) it
follows immediately that all eigenvalues are continuously depending on «.

For Aj, starting from (1.11), we have

ao(u, u) + eag(u, u) ao(u, u) + ar(u, u)

Ay = inf >e inf = 2!
LT e b(u, u) © Leli(@) b(u, u) =
u#0 u#0

where A} is A] at ¢ = 1. Hence A{ > Aj¢, and since A is the smallest eigenvalue of (1.1)-
(1.3), then A2 > Afe for all s € {1,2,...}. The left-hand side of (1.10), with C; = A}, is
proved.

Let us prove the right-hand side of (1.10). For this purpose let us compare each XS with
the corresponding eigenvalue v, of the problem

Li(x, 0 )u(x) +vp(x)u(x) =0, =€ Qy;
u(z) =0, x€dQ. (1.12)

By ]S](IJ(Q) denote the space of extensions of all u € Hg(£;) to the entire domain Q by zero on
the set Q \ €. It is obvious that ]f]é(ﬂ) C H}(Q). Let Q be the linear span of eigenvectors
corresponding to Aj, ..., AS_;. Evidently, Q@ C La(p,), dim@Q) = s — 1. The restrictions of
all u € @ to ©y form the subspace @) C La(p, 1) of dimension dim@) = m < s — 1. Then,
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taking into account that the supremum occurring in (1.11) is attained at @), we have

A o B L R il
uEH&(Q) b(u, u) uelgll(Q) bl(u, u) uEH&(Ql) bl(u7 u)
weQL, ut0 ueQJ_O w0 uE@L,u¢O
’ (1.13)
< sup inf M

= V41 K EV.
PCLa(p,8201) uw€H) (1) bl(u7 u)
dim P=dim Q=mgs—1 “EP*, u#0

Here the first inequality is obtained by changing from Hj () to Hé(ﬂ) C H3(8); therefore
the infimum may be increase only; we use also the fact that a® = ca;, b = b; on Hé(ﬂ)

The second equality holds because the restrictions of all u € ]f]é(ﬂ) NQ*L to Q) form exactly
the set Hy(Q4) N QVL while the functional a;/b; depends only on values of u at points of £2;.
The second inequality of the chain (1.13) is the result of the passage from the fixed subspace
@ C La(p, Q) of dimension m to taking of the supremum over all subspaces P C La(p, )
of the same dimension. In view of the minimax property this supremum is equal to the
eigenvalue 1,41 of (1.12). Obviously v,41 < v because m + 1 < s while all eigenvalues

increase in ascending order of their indices.
Thus from (1.13) we see that A% < v,¢ what is the right-hand side of (1.10) with C'(s) = v.
The lemma is proved. O

It is our purpose to construct and justify the complete asymptotic expansions in the
parameter ¢ of eigenvalues . and the corresponding eigenvectors u. of (1.1)—(1.3). By
Lemma 1.2, all eigenvalues are infinitesimal as ¢ — 0, i.e., the asymptotic expansions,
constructed below, describe the low frequency eigenvibrations.

2. FORMAL ASYMPTOTICS

2.1. Principal terms. Taking into account the structure of the coefficients of £° and

notation u5|QO =v., u5|Ql =w,, we rewrite (1.1)=(1.3) in the form
Lo(x,0p)ve(x) + Aep(a)vo(a) = 0, x € Qg (2.1)
el (x,0;)w:(x) + Aep(x)w(x) =0, x € Qy; (2.2)
we(z) =0, x0 € 9Q; (2.3)
ve(x) = we(x), x € 00; (2.4)
oo, 0:)v.(x) = oy (x, Oy )w. (), x € 00. (2.5)
We seek formal asymptotic expansions of eigenelements of the form
)\5 N€()\0—|—€)\1 —|—€2)\2—|—), (26)
ve(2) ~ vo(a) + evi(a) + 2va(a) + -+, € Qo;
w.(x) ~ wo(x) + cwi(z) + *wyx) + -+ .2 € Q. (2.8)

Substituting (2.6)—(2.8) into (2.1)—(2.5) and arranging the coefficients by the same powers
of e, we obtain the recurrence relations

Ly(x,0;)ve(x) =0, r € Qo; (2.9)
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k
Lo(w, Ox)vpsn () + p() > Nivkei(w) =0, € Q; (2.10)
=0
k
Ly(x, 0)wi(x) + p(a) Y Niwg—i(x) =0, x € Oy (2.11)
=0
wi(x) =0, x € 08 (2.12)
vp(2) = wi(a), x € 00; (2.13)
oo, 0 )ve(x) =0, x € 0; (2.14)
oo, 0p)vp1(x) = oy (x, Oy )wi(x), x € 09, (2.15)
where k € {0, 1, 2,...}.
Collecting (2.9) and (2.14), we have the problem
Ly(x, 0, )vo(x) =0, r € Qo; (2.16)
oo, 0 )vg(x) =0, x € 00 (2.17)

for determination of vy. It is the Neumann problem for the linear homogeneous elasticity
system. Its kernel is nontrivial and consists of functions a + Ax, where a € R", A is a skew-
symmetric (n x n)-matrix with constant real elements. In the elasticity theory, such functions
are called rigid displacements. Following [3], we denote the set of ones by R. Evidently, R is
a linear space of dimension r = %n(n + 1). In terms of bilinear forms it, what has been said
above, means that ag(u,v) = 0 Yo € H'(Qp) iff u € R. It will cause no confusion if we use
the same letter R to designate the space of restrictions of rigid displacements to a domain
or to a hypersurface in R".

Let us give an other description of the rigid displacements. Let W be an n X r-matrix
whose columns are basis elements of J; then R = {Va | o € R"}. Specifically, we can take
U= (FEU,¥,,...,V,_1), where F is the identity matrix of order n; ¥, (p=1,2,...,n—1)
is an n x (n — p)-matrix of the form

0 0 0
00
0 - 0
0 0 —Z,

Thus all solutions of (2.16)—(2.17) are of the form Vo, oo € R". Let us remark that they
are C'*-functions. However the relation vy = wy on 9 (see (2.13) for k = 0) means that
vg 1s not an arbitrary rigid displacement. Therefore we can write

Vg = \I}Oéo, (218)

where the components of ag € R” subject to the further determination.
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Taking £ =0 in (2.11)—(2.13), we obtain the relations

Ly (x, ) o(z) + dop(z)wo(z) =0, @€ (2.19)
wo(z) = x € 0Q; (2.20)
wo(x) = vo( ) x € 08, (2.21)
for wp. (2.18) shows that (2.21) can be written as

wo = V(x)ag, x € 0. (2.22)

Now, collecting (2.10) and (2.15) in the case k = 0, we derive the equalities
Lo(x,0z)v1(x) + Aop(x)ve = 0, x € Qg (2.23)
oolx, 0 )v1(2) = oy(x, 0 )wo(x), x € 08 (2.24)

for determination of v;. The kernel of the corresponding to (2.23)—(2.24) homogeneous
problem (2.16)—(2.17) is nontrivial and coincides with 8. By the third Fredholm theorem
(see [18, Th.3, P.98]) the solution of (2.23)—(2.24) exists under the compatibility condition;
it is defined uniquely up to an additive kernel term, i.e. up to a rigid displacement.

To obtain the above-mentioned condition we apply the Betti formula (1.6) to (2.23) for
each v = Wey, (K € {1,...r}), where {Ue,}_, is the basis of 2R; {e};_, is the canonical
basis of R". Taking into account too (2.18) and (2.24), it is not hard to compute that

/,Covl-\llekd:z:—l—)\o/pvo-lllekdx =

QO Q0
= / ogvy - Vep do — /(QlOVvl, V\I/ek> dz + Ao / pvo - Vepdr =
80 Qo Qo
= </ U (o,wo) de, ek> + )\0</,0\I/T\Iloz0 dzx, ek> =0, ked{l,....r}
RT Rr
890 Q0
whence 1t follows that
XoJag = — / \I/T(Ulwo) dz, (2.25)
80

where J = fQo pU T dzr is the symmetric positive-definite r x r-matrix (the Gramian ma-
trix of the functions {Wer}i_,), (-, -)rr denotes the Euclidean scalar product in R”. The
compatibility condition (2.25) assures the solvability of (2.23)—(2.24).

Henceforth we shall not special stipulate the mention of the Fredholm theorems under
consideration of problems with nontrivial kernels. We shall put down compatibility condi-
tions of such problems at once. This conditions can be obtained following to the just now
considered scheme.

Eliminating ag from (2.22) and (2.25), and combining the resulting relation with (2.19)
and (2.20), we obtain the spectral problem

L (x,0:)wo(x) + Aop(a)wo(x) =0, x € Qy; (2.26)
wo(x) =0, x € 08 (2.27)
W(z)J ! / \I/T(Ulwo) dx + Aowg(x) =0, x € 0 (2.28)

92



A SPECTRAL STIFF PROBLEM FOR AN ELASTICITY SYSTEM 89

containing a spectral parameter Ao both in the equation (2.26) and the boundary condi-
tion (2.28). We now concentrate on this problem, deferring construction of the asymptotics
for a while.

We shall establish spectral properties of (2.26)—(2.28) by reduction of one to an equivalent
operator equation in appropriate Hilbert space. For this purpose let us consider the subspace

H:{UEHI(Q1)|VaQu:07 VaQOUE%}

of H'(Qy). For any u € H it is obviously that v = Wa on dQy, @ € R". The continuity
of trace operators in H'(€) and finite dimensionality of 2R imply closureness of H. Let
7: H — R” be the map u +> a. Its kernel is HI(p). Since the codimension of one is finite,
equals to r = %n(n + 1), it is follows that 7 is continuous in H, i.e.,

() < Cllully, e, (2.29)

where ' does not depend on wu.

Let us introduce in ‘H the scalar product associated with a;. It is equivalent to the
standard scalar product (-,-)g1(q,). Reason similar to that in the proof of Lemma 1.1 shows
that this equivalence is a consequence of strong ellipticity of £, the Korn and Friedrichs
inequalities (they are valid for u € H too). The corresponding norm (the energetic norm)
a}/z(- ,-) we denote by ||-]|,.

In the variational formulation of (2.26)—(2.28) we deal with the integral identity

/(Qtho,Vv) doe = ) </ pwo - v dr + <Jr(w0), T(U)>RT>, we, v € H. (2.30)
Q Q

It can be obtained by applying of the Betti formula to (2.26)—(2.28). We use also that
u = Wr(u) on 9 for all u € H.

Lemma 2.1. The spectrum of the problem (2.26)—(2.28) consists of a sequence of eigenval-
ues

0< A <A< <A< —— oo,

s——+oo

where multiplicity is taken into account in indexing. The multiplicity of each A} is finite
while the corresponding eigenvectors {w§(x)}52, can be chosen as an orthonormal basis in

L2(107Q1)‘

Proof. Let b, be the bilinear form

b, (w,v) :/Q pw - vdr + <JT(U)),T(U)>RT

in H. Then (2.30) takes the form
(wo, v)u = Aobr(wo,v), wo,v € H. (2.31)

Since b, is positive, symmetric and bounded in H (see (2.29)), then by the Riesz represen-
tation theorem there exists a unique f € H such that b, (w,v) = (f,v)y. Denote by B the
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map that takes w to f. Then (2.31) takes the form (wg,v)y = Ao(Bwg,v)y, whence we
obtain the operator equation

Bwy = A wo, wy € H. (2.32)

It is readily seen that B is defined in H by b, (w,v) = (Bw,v)y. Since, as stated above, b is
positive, symmetric, bounded in H, and the embedding H C Lz(p, 1) is compact, it follows
that B is also a positive, self-adjoint and compact operator in H. Therefore the assertion of
the lemma follows from properties of compact operators. O

Let us return to construction of the expansions (2.6)—(2.8). Suppose further that Ag is
a prime eigenvalue of (2.26)—(2.28), and wy is the corresponding eigenvector normalized in

La(p, Q). By results [19, Part 1, Sec.6] for strongly elliptic systems, wg € C*°(€);). Now,
solving (2.25), we obtain

ap = -\ J7! / \I/T(Ulwo) dz.

92

Consequently (see (2.18)),

v = Wag = -\ WJ™! / \I/T(Ulwo) dz.

92

Thus the principal terms Ag, wy, vg of the expansions (2.6)—(2.8) are completely determined.

2.2. Next terms of asymptotics Let us seek the next terms of (2.6)—(2.8). With this
objection in mind, we return to the problem (2.23)—(2.24) with already determined C'*°-data
and ensured compatibility condition (2.25). Its solution, as stated above, is defined up to a
rigid displacement

v = 131 + \I}Oél, (233)

where 0y is a fixed solution of (2.23)—(2.24), and oy € R” is an unknown for now vector. Fix
U1 by orthogonality condition fQo pU o, de = 0. By [19, Part 1, Sec.12], &; € C°(£y).
Setting k = 1 in (2.11)—(2.13), we derive the relations

L4, )n(e) + dop(e)wn(e) = —hip(e)uofe), @ € 9 (234)
wy(x) =0, x € JQ; (2.35)
wi(x) = vy(a), x € 08 (2.36)
for wy. According to (2.33) the last equality can be written as
wi(x) = 01(x) + ¥(a)ay, = € . (2.37)

Just as by seeking of principal terms, we write out a problem for the next term of asymptotics
in o, in the present case for vy. One is (2.10),(2.15) for k =1

Lo(x,0z)v2(x) + Aop(x)vr + Arp(a)ve = 0, x € Qo; (2.38)
oolx, 0 )va(x) = oy (x, 0y )wy (), x € 0. (2.39
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[ts compatibility condition, on account of (2.18), (2.33) and fQo pU o dr =0, is

/ \I}T(Ulwl) dzx + )\0JO[1 + )\1JO[0 =0. (240)
92

Eliminating «; from (2.40) and (2.37), and combining the resulting relation with (2.34) and
(2.35), we obtain the problem

L(x,0:)wi(x) + Aop(x)wi(x) = = p(a)wo(x), x € Qy; (2.41)
wy(x) =0, x € 08 (2.42)
W(z)J ! / \I/T(Ulwl) da 4+ Awq () = Xo1(x) — MV (2)ao, x € 08 (2.43)

for determination of A; and w;. Since the corresponding homogeneous problem is the con-
sidered above spectral problem (2.26)—(2.28), the solution of (2.41)—(2.43) exists under the
compatibility condition

-1
)\1 = — <1 + <JO[07 Oé0>RT> / 1?1 * 01 Wo dx. (244)

92

Note that <Ja0, oz0>Rr > 0 because the matrix J is positive defined.
Thus A; is determined by (2.44); next from (2.41)-(2.43) we determine w; up to an
additive term C_wo. Since 0§y and the right-hand sides in (2.41)—(2.43) are of class C'*°, we

have wy € C*(€)y) [19, Part 1, Sec.12]. Fix wy by (wy, wo)r,(p,0,) = 0. Then we determine
ay € R” from (2.40):

ay =X\t J7! / \I/T(Ulwl)dx — A5 A ao.
80

Consequently v; = 0; + Way, and vy is already completely determined. Next, from (2.38)-
(2.39), vy is determined up to a rigid displacement. Namely vy = 03 + Way, where 0y €
C*°(Qp) is the solution of (2.38)(2.39) fixed by fQo pU o dr = 0, and ay € R” is a vector
with undefined for now components.

Continuing in the same manner, we see that all terms of (2.6)—(2.8) up to an arbitrary
order can be determined. Indeed, let us assume, by induction, that the coefficients A;, w;, v;
of (2.6)(2.8) are determined for 7 € {0,1,...,k — 1}, and w; € (), v; € C°(Qy); each
of w; satisfies (w;, wo)r,(p.0,) = dio (dio is the Kronecker symbol); vy is found up to a rigid
displacement

vp = U + Yay, where / pU Ty dr =0, or € C™(). (2.45)
Qo
Let us show that then Az, w, and ap can be determined, whence the same is true for vg;

wy, € C(), v, € C=(D); vey1 can be found up to a rigid displacement; vy € C°(Qp).
Combining (2.10) and (2.15), we have the relations

Lo(w,0p)vega(x) = —p() Y Nivkei, @ € Qo (2.46)

oo, 0p)vp1(x) = oy(, 0y )wi(x), x € 0 (2.47)
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with smooth right-hand members. The compatibility condition for (2.46)—(2.47) is

k
/ \I/T(O'lwk) dzx + Z )\Z'JOék_Z' =0 (248)
9% =0

(compare (2.40)). In view of (2.45) the boundary condition (2.13) (wy = vi on 99p) takes
the form

wk(l') = ﬁk(l') + \I}(J?)Oék, T € 890

Let us eliminate oy, from here and (2.48); combination of the resulting relation, (2.11) and
(2.12) leads to the problem

L, (x, 0 wr(x) + dop(a)w, Z Aiwg—; = 0, x € Oy; (2.49)

wi(x) =0, x € JQ; (2.50)

\Il(:zj)J_l/ \I/T(Ulwk) dx 4+ Aowg(x) = AUk(x Z AVay_,, x € 0 (2.51)
%

for determination of A, and wy. Its compatibility condition is

k—1

= (1 o) ([ o orode + T ool )
=1

92

It gives A; while wy, is determined up to a term Cwy. Fix wy, by (wy, wo)L2(p7gl) = 0. From
(2.48)

k
ap = —)\61 <J_1 / \I/T(O'lwk)dl' + Z)\Zozk_2>

5% =1

From (2.46)—(2.47), we can determine vy in the form vgi1 = Opq1 + Pogr, where Opyq is
the solution of (2.46)—(2.47) fixed by

/ pU T dppyde =0;  Dpgq € C(Qo);
Qo

components of ajyq € R” subject to the further determination. Smoothness of the found
coefficients follows [19, Part 1, Sec.12].

The induction step in construction of the expansions (2.6)—(2.7) of prime eigenvalues of
(1.1)—(1.3) and the corresponding eigenvectors is performed. The procedure of determination
of the coefficients of asymptotics is completely described.

2.3. Estimates of remainder terms. Let us see the Nth partial sums

N
N S vp(z)ek, € Qo

=Y Mgt Urla) =R (2.52)
= Soowg(x)ek, e

k=0
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of the series (2.6)—(2.8). Substituting their into (1.1)—(1.3), we obtain

Lz, 0,)Ux() + pla)AZUN(2) = Fy(x), x € Qo U Qy; (2.53)
Uy(x) =0, x € 08 (2.54)
[Ux(2)]ag, = 0, [0°(x, 0:)Ux()]a0, = Gy(x). (2.55)

From (2.12) and (2.13), it is follows that (2.54) and the first condition (2.55) are valid.

Let us estimate the remainder terms F5,, G%. To compute F'5 we use the evident equality

N N N ok N N-k

Z%Zbk Zzabkz+zzak+szz

k=0 k=0 k=0 =0 k=1 =0

Thus for £ on Q4 we have
N N
Z/Jvke ‘|‘,05Z)\k Z :Z/Jvke +P€ZZ)‘Uk25‘|’
N N-k - N - E—1 e
+pe Z )\k+ZUN_25k+N = Lyvo + Z(L’ v + IOZ AjUp_1_ Z)sk +
N e N N-k = N = N N-k
—|—€N+1,0<Z )\ZUN—Z + Z )\]H_ZUN_ZaSk) = €N+1IO<Z )\ZUN—Z + Z Z )\k+zUN—25 >

=0 k=1 =0 =0 k=1 =0

The last equality being a consequence of (2.9)—(2.10). It is easy to check that similar com-
putation of F§ on €y, with using (2.11), leads to

N N—k
6 N-I—l <Z )\k—l—sz € >
k=1 =0
Thus we see at once that
IE5 0y < C(N)NH (2.56)
For G5 on 09 we have
N
v = [0°Ux]oa, = ogvo + Z(O'ka — Ulwk_1>5k + (Ule)€N+1 = (Ule)€N+1,
k=1

where (2.14) and (2.15) were taken into account. Hence
HGith(aQO) < C(N)eH, (2.57)

2.4. Justification of formal asymptotics Justification of asymptotic expansions will
be divided into 2 steps. We first shall ascertain that a passage to the limit as ¢ — 0 in
(1.1)—(1.3) leads to the problems (2.16)—(2.17) and (2.26)—(2.28) for determination of the
principal terms of the asymptotics. Thereupon we shall show that the partial sums (2.52)
approximate vrai eigenelements, and this proximity will be estimated.

So let us first prove the lemma on passage to the limit.
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Lemma 2.2. Let A. be an eigenvalue of the problem (1.1)—~(1.3), and u. the corresponding
eigenvector normalized in H} (). Suppose e™'A\. — A, # 0 as ¢ — 0, and u. — u. weakly
in Hy(Q) as ¢’ — 0, where ¢’ is a subsequence of ¢; then the restriction Uy, belongs to R
while A, and the restriction u.|, are the eigenvalue and the corresponding eigenvector of

the problem (2.26)—(2.28).

o,

Proof. For convenience we shall not write the stroke by ¢. Under the assumption of the
lemma, the pair (A, u.) satisfies the integral identity (1.5) corresponding to (1.1)—(1.3). In
terms of previously introduced bilinear forms a,,, b, (m € {0,1}), it means that

ao(Ue, @) + cag(ue, ) = Ab(ue, @) for all € Hy(Q) (2.58)

Since A. ~ e, as £ — 0, (2.58) shows that

|ao(us, p)| < Ce H‘PHH&(Q) ’ |ar (v, 0)| < C H‘PHH&(Q) ’ (2.59)

where constants C' do not depend on e. In particular, ag(ue,u.) < Ce (recall that wu. is
normalized in Hj(£)).

Let us denote w.|, o, = W« The sequence {u.} is weakly convergent in H'(€),
which gives ag(ue, @) = ag(ve, @), and ay(ue, ) = ai(w., @) as ¢ = 0. Taking into account
this, we conclude from the first inequality (2.59) that ag(u., @) — ag(v., ¢) = 0 as ¢ — 0 for
an arbitrary ¢ € H'(), hence that v, € R, i.e., v. = Wa,, a. € R"; then w, € H, and
T(w.) = on.

Let ¢ be a function in H}() such that Ulg, = Yo € M. Note that ag(uc, o) = 0;
U)o, =1 € H; o = WUr(¢1) on Q. Evidently, for such functions, (2.58) takes the form

= Vs, Ux

mue ) = < Ab(unb), v e HYQ), W, €M (2.60)

Since HUEHH(}(Q) = 1, it follows that {u.} is strongly convergent in L2(p, ), which implies
lim b(u., ) = by(ws, 1) + bo(vs, o) = by(ws, 1) + [10(\11@*, \I’T(@/’ID =

h = [owevido s { [ o0 r () da, (), =

Q Qo
= /,ow* -y dx + <JT(UJ*), T(¢1)>Rr-
Q

According to what has been said, and recalling that e™!'A. — A., we see that the passage to
the limit as ¢ — 0 in (2.60) gives

/(Qth*,V;/)l) dx = X, </ pwy - Py da + <JT(U)*), T(¢1)>RT>, Wy, 1 € H.

Ql Q1

It is even the integral identity (2.30) corresponding to (2.26)—(2.28). Let us remark that w, #
0. Indeed, taking ¢ = wu. in (2.58), using the left-hand side of (1.8) and the normalization
of u., we have

1= HuEHiIé(Q) < Oelas(uzyus) = Ce™'Nb(uz, us).
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Letting ¢ — 0 yields
1 < OCAb(uw, uy) = C)\*<bl(w*,w*) + <JT(U)*), T(w*)>RT>.

Hence if it were true that w, = 0, there would be 1 < 0, a contradiction. From this we
conclude, that the pair (A, w.) consists of the eigenvalue and the corresponding eigenvector

of (2.26)—(2.28). The lemma is proved. O

For any N € N denote by ﬁfv the partial sum U§ (see (2.52)) normalized in Hj (). To
prove the next theorem, we need the lemma

Lemma 2.3. [16] Let A: $ — $ be a self-adjoint positive compact operator in a Hilbert
space §). Let (u,v) € R x § be a vector such that ||Av — /,wHﬁé(S I Hf) =1, § =const >0.
Then for any d > 0 there exists a pair (A, u) € R x 9, where X is an e1genva]ue of A and

|ullg =1, such that

A—pl <5 Ju—olly <2471
here u is a linear combination of eigenvectors of A corresponding to eigenvalues in the interval
[ —d, p+d].

Theorem 2.4. Let Ay be a prime eigenvalue of the problem (2.26)—(2.28). Then there exist
an eigenvalue A\, of the problem (1.1)—(1.3) and the corresponding eigenvector u., normalized
in Hy(Q), such that the estimates

A= AR GV e = iy < Cal M) (2.61)
are valid; here Cy, Cy do not depend on €.

Proof. The problem (1.1)-(1.3) is equivalent to the operator equation (1.9) in H}(Q) with
scalar product (-, -).. Let us take A5 and Uy as an almost proper value and vector of A.,
in the sense of Lemma 2.3. Note that Uz = (Co + O(¢))Ug,, where Cy does not depend on

e. Recall that (A.u, ¢): = (v, ¢)1,(5.0), and (u, ¢). = a-(u, ¢); then on account of just now
said and the inequality (-, -)g1(q) < Cie™(+, -). (see (1.8)), we have

[(ARATR = TR @)y | < Coe ™ [(AVALUR = Uk, )| =
= 025_1‘/\?\7(146(]]6\77 @)5 - <U]6\77 @)5‘ = 035_1‘/\?\7((]]6\77 SO)LQ(/),Q) - a6<U]6\77 @)‘ (262)

for any ¢ € H}(Q). Applying the Betti formula (1.6), with v = ¢, to (2.53), and using
(2.54),(2.55), we obtain that

AU )1y~ 0 Ui 9) = [ Fivpda— [ Gy,
Q 80,

According to (2.56),(2.57) and continuity of a trace operator, we conclude that the right-
hand side of the last equality is estimated by Cs(N)e¥+? Hc,oHHé(Q); therefore (2.62) now
becomes

‘(AiVAEUJEV — Uy, 99)}[&(9)‘ < 04(N)5N H‘PHH&(Q) Ve € HS(Q)
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Hence, taking into account A% = Age + O(e?), we have
1AUR = (AY) T UR e < Cs(N)eNt,

By Lemma 2.3, there exists an eigenvalue A, of (1.1)—(1.3) such that

AT = (AT < Co(N)eNT
Since A., A% are of order ¢, we have

< C7(N)€N+1 .

A — A

Applying the last estimate to A%, we obtain

A — A%

)\6 - A§V+1 + 5N+2)\N—|—1‘ <

Ae — Aypa| + VT Ania| < Cs(N)eNH

Hence the first estimation (2.61) is established.

Suppose . is an eigenvalue of (1.1)-(1.3) such that e™'A\. — XAy as ¢ — 0. By U,,(¢)
denote a linear span of the eigenvectors corresponding to the all such eigenvalues. Let us
take d > 0 such that the interval [\;* — d; A;' + d] contains no points of the spectrum of
operator B (see (2.32)) distinct from A;'. Hence, by sufficiently small values of ¢, the interval
[(AY) ™ — 6_162; (A?VN)_l + €_ICZ] contains only those eigenvalues A, such that e71A, — \g as

g — 0. Set d = ¢7'd, where d is the number from Lemma 2.3. By this lemma there exists
a vector u. € Uy, (¢), HUEHH(}(Q) =1, such that

e — T gy < Co(N)e.
Using of the last estimate for ﬁfv_l_l, we have

« = Unllmp) < llue = Uil a0 v~ Unllige <
e = Ol < e = Do gy + 175 = 5oy <
< C1O(N)5N+1 + HUJE\T-H - UJEVHH(}(Q)'

N+ where Oy

Easy computation shows that the last summand can be estimated by (e
does not depend on &; hence the second estimate (2.61) is valid.

It remains to proof that dim U,,(¢) = 1. For this purpose we show that there exists a unit
eigenvalue A, of (1.1)—(1.3) satisfying the first estimate (2.61), and such that e™*A. — A¢ as

¢ — 0, We assume the contrary, and let the same is true for two different eigenvalues A!, A\Z.

Let ugl), u? be the corresponding normalized in H} () eigenvectors. They are orthogonal

in Ly(p,Q), ie.,

= 1.

<

<u£1)7 = 07 ‘ ugl) u£2)

£2)>L2(p79) ‘Hé(Q) = ‘ ‘H&(Q)

ul = 1 than there exists a subsequence ¢’ — 0 of ¢ such that ug) — u)

(2)
¢’ such that ug,) — u? weakly in H}(Q). Hence uiﬁ) — ul® strongly in La(p, Q) as &” — 0
(k €{1,2}), and

Since ‘ ‘Hé(ﬂ)

weakly in H}(£2). The same is true for u_,’. Namely, there exists a subsequence ¢’ — 0 of

0= (ulV,u

U ) o) (u™, u®) = 0. (2.63)

e"—0
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By Lemma 2.2 the restrictions u(1)|Ql = w, u(2)|Ql = w® belong to H, and they are
eigenvectors of (2.26)-(2.28) corresponding to the eigenvalue A\g. Moreover, w(!) # w(?),
otherwise, since

(u, “(2)>L2(p,m = (v, w(2)>L2(p,Ql) + (), (),
the right-hand equality in (2.63) would not be valid. On the other hand, the fact that
wM # w® contradicts the primality of Ag. The theorem is proved. O
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