Maremaruani Crymii. T.18, Nel Matematychni Studii. V.18, No.1

YIK 519.512

K. D. ProTASOVA

KALEIDOSCOPIC GRAPHS

K. D. Protasova. Kaleidoscopic graphs, Matematychni Studii, 18 (2002) 3-9.

Let Gr = (V,E) be a connected graph with a set of vertices V and a set of edges FE,
Bz, )={y eV :(x,y) € EYU{x},z € V. A graph Gr = (V, E) is called kaleidoscopic if there
exist a natural number s > 1 and a (s+ 1)-coloring of V such that |B(x, 1)| = s+ 1 and B(z,1)
contains the vertices of all colors for every & € V. We present two methods for construction of
kaleidoscopic graphs based on the Cayley graphs of the groups.

K. [I. TiporacoBa. Kaaetidockouueckue epagv // Maremaruuni Cry aii. — 2002. — T.18, Nel. —
C.3-9.

Mycts Gr = (V,E) — cBasHbIl Tpad ¢ MHOKECTBOM BepIIMH V N MHOXKECTBOM pebep F,
Bz, 1) ={y €V :(z,y) € E}U{z}, x € V. Tpap Gr = (V,E) nazpBaeTcad KaaelJO0CKOTN-
YeCKHUM, eC/H CYIIECTBYeT HaTypadbHOe 9ncio s > 1 u (s + 1)-packpalmBanie MHOXeCTBa V,
TaKwe, ITO /A KaKIOW BEPIIMHBI & MHOKecTBO B(z, 1) mMeeT mMomHocTh 5 + 1 U cogepxuT
BEPIINHLI BCeX IBETOB packpacku rpada G, [Ipemmoxensl 1Ba METONa TIOCTPOEHUA KaJlemn [0~
CKOIIYeCcKUX rpadoB, 0OCHOBaHHBIE Ha Tpadax Kaiu rpymm.

A problem under consideration arises from the following combinatorial concept of resolva-
bility. Let X be a set and let F be a family of subsets of X. A subset A of X is called
F-denseif ANF # @ for every F' € F. Given a cardinal «, we say that X is a-resolvable with
respect to F if X can be partitioned into a F-dense subsets. Put A(F) = min{|F|: F € F}
and say that X is maximally resolvable with respect to F if X is A(F)-resolvable with
respect to F. For resolvability of topological spaces and groups see the surveys [1,2,3]. Let
Gr = (V,E) be a connected graph with the set of vertices V and the set of edges E. We
suppose that Gr has no loops and multiple edges. Given any x,y € V, denote by d(x,y)
the length of the shortest path between = and y. For x € V and nonnegative integer m,
put B(z,m) = {y € V : d(z,y) < m}. For a natural number s > 2, a connected graph
Gr = (V,E) is called homogeneous of degree s if |B(x,1)] = s+ 1 for each € V. By [4,
Theorems 1,6], for every connected graph Gr = (V, E) and every natural number r, |V| > r,
the set V is r-resolvable with respect to the family {B(z,r — 1) : @ € V}. In particular,
if V| > 2, then V is 2-resolvable with respect to the family {B(z,1) : @ € V}. On the
other hand [4, Example 2], for every natural number m, there exists a finite connected graph
Gr = (V,E) such that |B(xz,1)] > m for every & € V, but V is not 3-resolvable with respect
to the family {B(x, 1) : @ € V}. In this paper we introduce and investigate a special class of
graphs Gr = (V, E) such that the set V is maximally resolvable with respect to the family
of unit balls.

2000 Mathematics Subject Classification: 05C15.

© K. D. Protasova, 2002



4 K. D. PROTASOVA

Definition 1. A homogeneous graph Gr = (V, E) of degree s is called kaleidoscopic if there
exists a (s + 1)-coloring y of V such that |y(B(x,1))| = s+ 1 for every @ € V. In this case
X is called a kaleidoscopic coloring. Equivalently, a (s + 1)-coloring y of V is kaleidoscopic if
there are no distinct monochrome vertices in each unit ball of the graph.

We begin with elementary properties and examples of kaleidoscopic graphs.
Lemma 1. Let Gr = (V,E) be a finite kaleidoscopic graph, |v| = n, of degree s and let
x:V—A{0,1,...,s}

be a kaleidoscopic coloring. Then the following statements holds
(i) (s + Dln;
(i) MO =TT == ()L

Proof. 1fi € {0,1,... ,s}, then {B(x,1): 2 € x7'(¢)} is a partition of V. Since
|B(z, )N x7'(4)] =1,
(s + D@ = VI O

Fxample 1. Let Gry, = (Va, E,) be a cyclicgraph with n > 2 vertices. Suppose that Gry, is
kaleidoscopic. Since Gr, is a homogeneous graph of degree 2, we have 3|n by Lemma 1(i).
On the other hand, if 3|n, then any periodical 3-coloring of V is kaleidoscopic.
Fxample 2. Among five Plato polyhedran (considered as graphs) the only kaleidoscopic
graphs are simplex, cube and icosahedron. Every 4-coloring of the simplex is kaleidoscopic.
Fix any vertex x of cube and any 4-coloring of B(x,1). Then, for every y € B(z,1), color
the symmetric to y (with respect to the center of cube) point ¢’ in the color of vertex y. The
same coloring is kaleidoscopic also for the icosahedron. Since the octahedron has 6 vertices
and degree s = 4, it is not kaleidoscopic by Lemma 1(i). At last, take a pentagon which
is a facet of dodecahedron. Note that dodecahedron is a homogeneous graph of degree 3.
Under every 4-coloring of the set of vertices of dodecahedron there exist two monochrome
vertices on the facet. Hence, some unit ball with the centre in the vertex of this facet has
two distinct monochrome points.

The following two lemmas will help us to analyze the structure of some kaleidoscopic
graphs.

Lemma 2. Let Gr = (V,E) be a finite homogeneous graph of degree s, |V| = 2m and let
X C V. Suppose that there exist a partition ¥V = V(0) U V(1), V(0)] = [V(1)| = m and

natural numbers p, q such that the following conditions hold:
(i)  {B(z,1):2 € X} =V,
(i) (s + 1)IX] = 2m;
(i) s+ 1=p+q p>q
(iv) it € V(i), 1€{0,1} then |B(z,1)NV()|=p, |Blz,1)NnV\V(I))| =q.
Then |[X NYV(0)] = |X NnY(1)].
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Proof. Put ko = | X NV(0)], ks = | X NV(1)]. By (i) and (iv), the following inequalities hold
pko + gk = m, qko + pky > m.
Adding these inequalities, we get p|X| + ¢|X| > 2m. By (ii) and (iii), (p + q)|X| = 2m.
Hence, ko, ky satisfy the following system of linear equations
pxo + qri = M, qTo + pri = m.
Since p > ¢, this system has only one solution. On the other hand, the system has an evident

solution g = 1 = 2. O
0 1 p+q

Lemma 3. Let Gr = (V,E) be a finite homogeneous graph of degree s, |V| = nm, n, m are
natural numbers > 2 and let X C V. Suppose that there exist a partition

V=YO)uVYU...u¥Vmn-1), YO)|=P1)|=...=YVn-1)=m

and natural numbers p, q such that the following conditions are satisfied:

(i) W{B(x,1):2 € X} =V;

(i) (s + IX] =
(iii) s+1=p+2q, p>2¢
(iv) itx € V(i), 1 € {0,1,... ,n — 1} then

B(z,1) CV((: — 1) mod n) UV(i mod n) UV((: + 1) mod n),
|B(x, )NV (i mod n)| = p, |B(x, )NV ((i—1) mod n| = |B(x, )NV ((¢+1) mod n)| = g.

Then [ X NYV(0)|=|XNV()|=...=|XNV(n-1).

Proof. Put k; = | X NV(I)|, i € {0,1,... ,n—1}. By (i) and (iv), the following inequalities
hold
pko + qkn—1 + gk > m,

pk1 + qko + qky > m.
phn_g + qkn_3 + qkp,_1 > m,
pkn—l + qkn—Q + ko Z m.
Adding all these inequalities, we get p| X |+ 2¢|X| > nm. By (ii) and (iii), (p+29)| X| = nm.

It follows that the numbers kg, k1, ... , k,_1 satisfy the following system of linear equations
p g 0 0 0 0 ¢ 2 m
g p q O 0 0 0 1 m
0 g p ¢ 0 0 0 Zo ol m
0000 .. .4qgpgqg Tp_o m
g 000 .. .04q0p Tpo1 m

Denote by A the determinant of the matrix of this system and put f(z) = p+qx +qz" ' Tt
is a standard fact that A = f(eg) f(e1) - f(en-1), where €g,£1,... ,6,-1 are complex roots
of the equation z" = 1. Since p > 2¢ then f(e;) # 0 for each ¢ € {0,1,... ,n—1}. Hence, this
system has only a unique solution. On the other hand, this system has the evident solution

_ _ _ _ _m
l’o—l’l—...—l'n_l—m. O
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In order to apply Lemmas 2, 3 we remind definition of the Cayley graph of a group. Given
any subset A of a group (7, denote by (A) the smallest subgroup of GG containing A. Let ¢
be a group with the identity e, S C G, e € S, S = S™! and G = (S). The Cayley graph of
a group (& determined by the system of generators S is a graph Cay(G,S) = (G, E), where
v,y € F if and only if z # y and 7'y € S. If S is finite and |S| — 1 = s, s > 2, then
Cay(G,S) is a homogeneous graph of degree s.
Example 3. Let G = (a) x (b), (a) = Za, (b) 2 Zp, m > 2, S ={a,b, b7, e}. Geometrically,
the graph Cay(G, S) is a prism with 2m vertices. Suppose that Cay(G, S) is kaleidoscopic and
show that 4|/m. In what follows (Example 6) we shall prove that Cay(G,S) is kaleidoscopic
provided that 4|m. To apply Lemma 2, put s =3, p =3, ¢ =1,V =G, (a) = {0,1},
V() ={(0,2): € (b)}, V(1) ={(1,2): x € (b)}. Fix a kaleidoscopic coloring y: V —
{0,1,2,3} and put X; = x7'(¢), 7 € {0,1,2,3}. By Lemma 2, |X; N V(0)| = |X; N V(1)] for
every ¢ € {0,1,2,3}. By Lemma 1(ii), | X;| = m/2. Since V(0) = (XoNV(0))U(X;NV(0))U
(XoNV(0)) U (X3NV(0)), we have 4|m.
Example 4. Let G = {(a) x (b), {(a) © Zy, (b) 2 Z, nym > 2, S = {a,a™',b,b7" e}. Suppose
that Cay(G,S) is kaleidoscopic and show that 5|m, 5|n. To apply Lemma 3, put s = 4,
p=3¢=1,V=0G (a)=10,1,... ,.n—1} V() ={(s,2): 2 € (b)},1 € {0,1,... ,n—1}.
Fix a kaleidoscopic coloring y : V — {0,1,2,3,4} and put X; = x7(4), j € {0,1,2,3,4}.
By Lemma 3,

IX;nVO0)=|1X;n V)| =...=|X;nV(n—-1)

for every 7 € {0,1,2,3,4}. By Lemma 1(ii), |X;| = nm/5, 7 € {0,1,2,3,4}. Since V(0) =
Ui_o(X; N V(0)), we have 5|m. Replacing n and m, we obtain 5|n.
Our first method of construction of kaleidoscopic graphs is based on the next definition.

Definition 2. Let G be a group with the identity e and let X,Y C . We say that (X,Y)
is a kaleidoscopic pair of G provided that X is finite and the following conditions hold

(i) ee X, X = X! and G = (X);
(ii) e € Y and G = XY
(iii) 2 ' XXz NYY~! = {e} for every x € X.

By (i) and (iii), XX NYY ™! = {e}. In view of (ii) this observation implies that, for every
element g € (G, there exist + € X, y € Y such that ¢ = zy and this representation is unique.
For every kaleidoscopic pair (X, Y) of a group G define the standard coloring y: G — X by
the following rule. For every x € X, put y(z) = x. Take any element g € G and pick x € X,
y € Y with ¢ = zy. Put x(g) = «. Show that a standard coloring is kaleidoscopic. Assume
that g1, 92,9 € G, 1,92 € B(g,1) and x(g1) = x(g2). Choose 1,25 € X and y1,y2 € Y such
that g1 = x1y1, g2 = 7292. Since x(g1) = 71, X(g2) = 72 and x(g1) = x(g2), we have x; = 2.
Since g1, g2 € B(g, 1), there exist z1, 29 € X such that ¢1 = 219, g2 = z29. Thus, x1y1 = 219,
1Yz = 299 and Zflxlyl = Zz_lxlyz. It follows that :1;1_12221_1:1;1 = yzyfl. By Definition 2(iii),
:1;1_12221_1:1;1 =€, 80 z1 = z3 and ¢; = go. Thus, we have proved the following statement.

Theorem 1. If(X,Y") is a kaleidoscopic pair of a group (&, then Cay(G, X) is a kaleidoscopic
graph.

Definition 3. A kaleidoscopic pair (X,Y') of a group G is called a Hamming pair provided
that Y is a subgroup of ¢. In this case a kaleidoscopic graph Cay(G, X) is called a Hamming
graph.
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A motivation of this definition is given in Example 5.

Theorem 2. Let (X,Y) be a kaleidoscopic pair of a group GG and let x be the standard
coloring of GG. Then the following statements are equivalent:

(i) (X,Y) is a Hamming pair;
(i) if g1,92 € G, x € X and x(g1) = x(g2), then x(zg1) = x(zg2).

Proof. (1) = (i1). Choose y1,y2 € Y and a € X such that g; = ayy, g2 = ayy. Pickz, 20 € Y
and by,by € X such that xg; = byz1, g2 = byzg. Then z; = bl_lxayl, Z9 = b;lxayg. Since
Y is a subgroup of G, by'za € Y, by'za € Y, so b7'by € Y. By Definition 2(iii) by = bs.
Hence, x(zg1) = x(xg2).

(11) = (7). Let yi,y2 € Y2 Then x(y1) = x(y2) = x(e) = e. By (ii), x(y192) = x(y1¢) = ¢,
X(yrtyn) = x(e) = x(yi'e) = x(yi'). Hence, yry; € Y, yi ' €Y. O

Fxample 5. Let G = (a1)x(az)X. .. x{(a,), (a;) ~ Zo, 0 € {1,2,... ,n}, S ={e,ar,az,... ,a,}.
Suppose that a cube Cay(G,S) is a kaleidoscopic graph. By Lemma 1(i), n 4+ 1|2". On the
other hand, if n + 1|2", then there exists a subgroup H of G such that {Sh : h € H} is a
partition of GG [5, Section 87]. The subgroup H is called a Hamming code. Clearly, (5, H) is
a Hamming pair, so Cay(G,S) is a Hamming graph.

Fxample 6. Let G = (a) x (b), (a) =~ Zy, (b) ~ Z,,, m > 2. Suppose that 4|m and
show that Cay(G,S) is a Hamming graph, where S = {e,a,b,b7'}. Put H = (ab*). Then
H =" U{a*b* ke {1,3,... ;m—1}}. Hence, the pair (S, H) satisfies Definition 3 with
X=S5Y=H.

Example 7. Let G = (a)x(b), {a) =~ Zs, (b) = Zs5, S = {e,a,a',b,b7"}. Show that Cay(G, S)
is a Hamming graph. Put H = (a®b). Then H = {a®b, ab®,a** a*b*} and S™1S N H = {e},
SH =G.

Example 8. Let G = (a) x (b), (a) 2 Z,(b) = Z, S = {e,a,a™*,b,b7'}. Show that Cay(G, S)
is a Hamming graph. Note that

SS ={e,a,a bbb a* b* 0%, b7 ab,a” b7 a7 b, ab™ )

and put H = (a?b* a=2b*). A routine verification shows that SH = G and SS N H = {e}.
Note that this graph can be interpreted as a square mosaic on the plane. It is easy to find
kaleidoscopic colorings for triangle and hexagonal mosaics on the plane. Now we describe
another way of construction of kaleidoscopic graphs from the Cayley graphs Cay(G,S) of
groups under some restrains on S.

Step 1. Let GG be a group with the identity e and let S be a finite subset of G such
that e ¢ S, S = S7! and G = (5). Suppose that |S| = r(r — 1) for some natural number
r > 1 and S has no elements of order 2. Write S = 53 US; U---U S, so that |S;] =r — 1,
i€ {1,2,...,r}and |S7' N S;| =1 for all distinct indexes 7,7 € {1,2,...,r}.

Step 2. We may suppose that (G is linearly ordered, so every edge of Cay(G,S) is a pair
(x,y), * < y. Let N be a cardinality of the set of edges of Cay(G,S). Take a set W of
cardinality 2N, W N (¢ = @ and construct an auxiliary graph Gr = (G U W, E). For every
edge (x,y) of Cay(G,S), take distinct elements z,¢ € W and replace the edge (x,y) by the
path @, z,t,y. List the edges (z,2), (z,t), (t,y) to E. We suppose that if (z,y) and (2,)
are distinct edges of Cay(G,S) and (x,y) (2',y’) are replaced by x,z,t,y and a', 2", ¢, y/,
respectively, then {z,t} N {z/,t'} = @.



8 K. D. PROTASOVA

Step 3. Define a coloring y: WU G — {0,1,2,... ,r} by the following rule. Put
X(y) = 0 for every g € GG. Let ,y € G and (z,y) is be edge of Cay(G,S), so 27 'y = s,
s € S. Suppose that (x,y) is replaced by the path x,z,¢,y. Choose ¢,j € {1,2,... ,r} such
that s € S;, s™' € 5;. Put x(z) =1, x(¢) = J.

Step 4. For every @ € (G and every @ € {1,2,...,r} there are exactly r — 1 vertices
ooy 2rm1 € Wowith (2,21),...,(2,2.—1) € E and x(z1) = ... = x(z-1) = 1. Stick
together these vertices and identify the edges (x,z1),...,(x,2.—1). After this factorization
we obtain kaleidoscopic graphs.

We finish this paper with constructions of free kaleidoscopic graphs, semigroups and
groups.

Definition 4. Let Gry = (Vy, Eq1), Gry = (V2, E3) be kaleidoscopic graphs of degree s > 1
and let x1: Vi — {0,1,...,8}, xa: Vo —> {0, 1,..., s} be kaleidoscopic colorings. A map-
ping f from V; onto Vs, is called a kaleidoscopic homomorphism if the following conditions

hold
(i) x1(x) = x2(f(x)) for every a € Vy;
(ii) if (z,y) € Ey, then (f(2), f(y)) € Es.

Definition 5. A tree Tr = (V, E) of degree s > 1 with a fixed kaleidoscopic coloring
x:V —{0,1,... s} is called a free kaleidoscopic tree of degree s.

Theorem 3. Let Tr = (V, F) be a free kaleidoscopic tree of degree s with a kaleidoscopic
coloring x: V — {0,1,...,s}. Let Gry = (V1,E1) be any kaleidoscopic graph of degree
s with a kaleidoscopic coloring x1: Vi — {0,1,... ,s}. Then there exists a kaleidoscopic
homomorphism f:V — V.

Proof. Take any vertices v € V, y € Vy with y(z) = x1(y) and put f(x) = y. For every
nonnegative integer m, denote S,,(z) = {z € V : d(x,z) = m}. Suppose that we have
extended f onto Sp(x) U...U S, (x). Take any vertex z € S,,11(x) and choose 2z’ € S,,(x)
such that d(z,z") = 1. Pickt € B(f(z'),1) such that x(z') = x1(¢) and put f(z) = ¢. By the

construction, f is a kaleidoscopic homomorphism. O

Definition 6. Let s > 1 be a natural number and let X = {0,1,... ,s}. A free kaleidoscopic
semigroup K S(X) is a semigroup in the alphabet X determined by the relations of the form
zr = x, xyxr = x for all x,y € X. We identify KS(X) with the set of all nonempty words in
the alphabet X without factors xx, xyx, x,y € X.

Show that K S(X) acts transitively on the set of vertices of every kaleidoscopic graph
Gr = (V,E) of degree s with kaleidoscopic coloring x: V — {0,1,... ,s}. Take any € X
and v € V. Choose u € B(v,1) such that y(u) = « and put «(v) = u. Then extend this
action inductively from the set of letters X onto K'.S(X) by the following rule. If w € K.S(X),
w = zwy, wy € KS(X) and v € V, put w(v) = x(wy(v)). Note that the colors of the vertices
of the shortest path between any two vertices vy,vy € V determine the word w € KS(X)
such that w(vy) = vy, so this action is transitive.

Definition 7. For every # € X, the subset KG(X,z) of all words from KS(X) with the
first letter @ and the last letter « is a subgroup of K'.S(X) with the identity x. To obtain
the inverse element to the word W € KG(X,x) write the letter of W in the inverse order.
Let us call KG(X,x) a kaleidoscopic group.
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The following statements obtained by routine words arguments explain the algebraic
structures of free kaleidoscopic groups and semigroups.

. KG(X,x) is a free group with the set of free generators {zyzx : y,z € X,y < z,
y# v,z # k.

2. The only idempotents of semigroup KG(X) are the words x, zy,x,y € X.

3. Put L(z) ={yx:y € X}, RIX) ={zy:y € X}. Then KS(X) is isomorphic to the
sandwich product L(z) x KG(X,x) x R(X) with the multiplication

(llvglv rl)(l27927 TQ) = (llvgl)‘(rlv l2)927 Tz),

where A(rq,(2) = rils.

The final remark concerns homogeneous graphs Gr = (V, E) of infinite degree A\. By standard
diagonal process it is easy to find a coloring y: V — X of v such that each ball of radius 1
has the vertices of all colours. Hence, Gr is kaleidoscopic. This is why we consider only
kaleidoscopic graphs of finite degree.
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