УДК 517.548

A. L. Golberg

ON GEOMETRIC AND ANALYTIC DEFINITIONS OF QUASICONFORMALITY

A. L. Golberg. On geometric and analytic definitions of quasiconformality, Matematychni Studii, **18** (2002) 29–34.

The relations between two definitions of quasiconformality of homeomorphisms are considered. A new geometric condition ensuring a boundedness of distortions and therefore quasiconformality is established.

А. Л. Гольберг. О геометрическом и аналитическом определениях квазиконформности // Математичні Студії. — 2002. — Т.18, №1. — С.29—34.

Рассмотрены соотношения между двумя определениями квазикоформности гомеоморфизмов. Установлено новое геометрическое условие гарантирующее ограниченность искажения, а значит квазиконформность.

There are various (in general, not equivalent) definitions of quasiconformality, which involve different features of mappings. The mostly accepted are the definitions suggested by Reshetnyak [2] and Väisälä [3]. In the present paper, we investigate the relations between these definitions and obtain a new geometric criterion for quasiconformality of homeomorphisms.

Let G and G^* be bounded domains in \mathbb{R}^n , $n \geq 2$, and let a mapping $f: G \to G^*$ be differentiable at a point $x \in G$. This means that there exists a linear mapping $f'(x): \mathbb{R}^n \to \mathbb{R}^n$, called the (strong) derivative of the mapping f at x, such that

$$f(x+h) = f(x) + f'(x)h + \omega(x,h)|h|, \quad \omega(x,h) \to 0 \text{ as } h \to 0.$$

Denote

$$J(x,f) = \det f'(x), \quad l(x,f) = \min_{|h|=1} |f'(x)h|, \quad L(x,f) = \max_{|h|=1} |f'(x)h|.$$

The quantities

$$H_I(x,f) = \frac{|J(x,f)|}{l^n(x,f)}, \quad H_O(x,f) = \frac{L^n(x,f)}{|J(x,f)|}, \quad H(x,f) = \frac{L(x,f)}{l(x,f)}$$

are called, respectively, the inner, outer and linear dilatations of f at x. If n = 2, then $H_I(x, f) = H_O(x, f) = H(x, f)$. In the general case, we have the relations:

$$H(x,f) \le \min(H_I(x,f), H_O(x,f)) \le H^{n/2}(x,f) \le \max(H_I(x,f), H_O(x,f)) \le H^{n-1}(x,f).$$

2000 Mathematics Subject Classification: 30C65.

Definition 1 [3]. A homeomorphism $f: G \to G^*$ is called *quasiconformal* if:

- (a) f is ACL (absolutely continuous on lines);
- (b) f is differentiable almost everywhere in G;
- (c) for almost all $x \in G$ there exists a number q $(1 \le q < \infty)$ such that

$$H_I(x, f) \le q$$
, $H_O(x, f) \le q$.

The quantity $q_V = \inf q$ is called the *quasiconformality coefficient* of the mapping f in G. Here the infimum is taken over all admissible q.

The geometric approach to investigation of properties of quasiconformal mappings is going back to the classical work of Menshov [1]. His method is based on the appropriate change of the radii of the normal neighborhood bases.

Let x be a point in \mathbb{R}^n . Assume that some closed neighborhood $\mathcal{G}_t(x)$ of x is defined for any $t \in (0,1]$. Following [2], we say that a set of the neighborhoods $\mathcal{G}_t(x)$ of the point x constitutes a normal system, if there exists a continuous function $v \colon \mathbb{R}^n \to \mathbb{R}$ such that v(x) = 0, v(y) > 0 for any $y \neq x$. Here $\mathcal{G}_t(x) = \{y \in \mathbb{R}^n \colon v(y) \leq t\}$ for any $t \in (0,1]$. Let $\Gamma_t(x) = \{y \in \mathbb{R}^n \colon v(y) = t\}$ denote the boundary of $\mathcal{G}_t(x)$.

The function v is called the *generating function* for a given normal system $\{\mathcal{G}_t(x)\}$. Denote

$$r(x,t) = \inf_{y \in \Gamma_t(x)} |y - x|, \quad \mathcal{R}(x,t) = \sup_{y \in \Gamma_t(x)} |y - x|.$$

These values r(x,t) and $\mathcal{R}(x,t)$ are equal, respectively, to the minimal and the maximal radii of the neighborhood $\mathcal{G}_t(x)$. The limit

$$\Delta(x) = \limsup_{t \to 0} \frac{\mathcal{R}(x, t)}{r(x, t)}$$

is called the regularity parameter of the family $\{\mathcal{G}_t(x), 0 < t \leq 1\}$. Any such system $\{\mathcal{G}_t(x)\}$ is called the regular normal system, provided $\Delta(x) < \infty$.

Let $f: G \to G^*$ be a homeomorphism and let $\{\mathcal{G}_t(x)\}$ be a normal system of neighborhoods of $x \in G$. One can introduce similar to above the minimal and the maximal radii for the image of $\mathcal{G}_t(x)$ by

$$r^*(x,t) = \inf_{y \in \Gamma_t(x)} |f(y) - f(x)|, \quad \mathcal{R}^*(x,t) = \sup_{y \in \Gamma_t(x)} |f(y) - f(x)|.$$

Definition 2 [2]. A mapping f is called quasiconformal at point $x \in G$ if there exists a normal regular system $\{\mathcal{G}_t(x)\}$ of neighborhoods of x such that

$$\limsup_{t\to 0} \frac{\mathcal{R}^*(x,t)}{r^*(x,t)} \frac{\mathcal{R}(x,t)}{r(x,t)} = q(x,f) < \infty.$$

This quantity is called the *coefficient of quasiconformality* of f at x in the sense of Reshetnyak.

Similarly, a homeomorphism $f: G \to G^*$ is called quasiconformal in G, if f is quasiconformal at every point $x \in G$ and there exists a constant $q, 1 \le q < \infty$, such that $q(x, f) \le q$ for all $x \in G$.

The next example shows that in the case $n \geq 3$ the above two definitions of quasiconformality are not equivalent.

Let $G = \{x = (x_1, \dots, x_n) : 0 < x_k < 1, k \in \{1, \dots, n-1\}, q^{-1/p} < x_n < 1\}, q > 1, 0$

$$g(x) = \left(x_1, \dots, x_{n-1}, \frac{x_n^{1-p}}{1-p}\right).$$

The mapping g is a homeomorphism, which is differentiable in G, and $G^* = g(G) = \{y = (y_1, \ldots, y_n) : 0 < y_k < 1, k \in \{1, \ldots, n-1\}, q^{(p-1)/p}/(1-p) < y_n < 1/(1-p)\}$. It is easy to see that

$$l(x,g) = 1, L(x,g) = |J(x,g)| = H_I(x,g) = H(x,g) = x_n^{-p}, H_O(x,g) = x_n^{(1-n)p},$$

and that the inequality $q(x, f) \leq q$ is equalent to the condition $H(x, f) \leq q$. Hence, g is a quasiconformal mapping in the sense of Definition 2, and its coefficient of quasiconformality equals q. On the other hand, the mapping g is quasiconformal also in the sense of Definition 1, but in this sense, g has the coefficient of quasiconformality $g^{n-1} \geq q$.

Let us now define quasiconformal homeomorphisms in somewhat other way. We set

$$K_I(x, \{\mathcal{G}_t(x)\}) = \limsup_{t \to 0} \frac{mf(B(x, \mathcal{R}(x, t)))}{\Omega r^{*n}(x, t)},\tag{1}$$

and

$$K_O(x, \{\mathcal{G}_t(x)\}) = \limsup_{t \to 0} \frac{\Omega \mathcal{R}^{*^n}(x, t)}{m f(B(x, r(x, t)))},$$
(2)

where $B(x,h) = \{y \in \mathbb{R}^n : |y-x| < h\}$ is n-dimensional ball in \mathbb{R}^n and mA denotes the n-dimensional Lebesgue measure of the set A. Let $\Omega = mB(0,1)$.

Definition 3. A homeomorphism $f: G \to G^*$ is called quasiconformal in the domain G, if for almost all $x \in G$ there exist the normal regular systems $\{\mathcal{G}_t(x)\}\subset G$ of neighborhoods of x, which satisfy

$$K_I(x, \{\mathcal{G}_t(x)\}) \le K(\{\mathcal{G}_t\}) < \infty, \quad K_O(x, \{\mathcal{G}_t(x)\}) \le K(\{\mathcal{G}_t\}) < \infty.$$
 (3)

We set $K = \inf K(\{\mathcal{G}_t\})$, where the infinum is taken over all such systems of neighborhoods. This value will be called the *quasiconformality coefficient* of f in G.

Theorem. Definitions 1 and 3 are equivalent.

Proof. 1) \Rightarrow 3). Let f be a homeomorphism satisfying the conditions of Definition 1. We show that f satisfies Definition 3, with $K \leq q_V$.

Let $a \in G$ be a point of differentiability of the mapping f and suppose that $|J(a, f)| \neq 0$. The image of the unit ball under the linear mapping f' is an ellipsoid E(f). Let l_1, l_2, \ldots, l_n be the semi-axes of E(f), $l_1 \geq l_2 \geq \cdots \geq l_n > 0$. We assume that f(a) = a = 0, and f'(0) is given by

$$f'(0)e_1 = l_1e_1, \ldots, f'(0)e_n = l_ne_n,$$

where e_{ν} denotes the ν th unit basis vector.

Consider the normal system of neighborhoods

$$\{\mathcal{G}_t^0(0), 0 < t \le 1\} = \left\{ x \in \mathbb{R}^n : \left(\frac{x_1}{1 + tl_1}\right)^2 + \dots + \left(\frac{x_n}{1 + tl_n}\right)^2 \le \mu^2 t^2 \right\}$$
(4)

of the origin and choose $\mu > 0$ so that $\mathcal{G}_t^0(0) \subset G$ for any $t \in (0,1]$. Then $\mathcal{R}(0,t) = \mu t(1+tl_1)$, $r(0,t) = \mu t(1+tl_n)$.

Since the mapping f is differentiable at a = 0, there exists ε , $0 < \varepsilon < l_n$, such that $|f(x) - f'(0)x| \le \varepsilon \mu t$ for $x \in \mathcal{G}_t^0(0)$. Fix any such ε . From the last inequality we obtain

$$\mathcal{R}^*(0,t) \le \mu t l_1 + \mu t^2 l_1^2 + \varepsilon \mu t,$$

and

$$r^*(0,t) \ge \mu t l_n + \mu t^2 l_n^2 - \varepsilon \mu t.$$

Thus

$$\frac{mf(B(0,\mathcal{R}(0,t)))}{\Omega\mathcal{R}^n(0,t)} \left(\frac{\mathcal{R}(0,t)}{r^*(0,t)}\right)^n \leq \frac{mf(B(0,\mathcal{R}(0,t)))}{\Omega\mathcal{R}^n(0,t)} \left(\frac{\mu t + \mu t^2 l_1}{\mu t \lambda_n + \mu t^2 l_n^2 - \varepsilon \mu t}\right)^n,$$

$$\frac{\Omega r^n(0,t)}{mf(B(0,r(0,t)))} \left(\frac{\mathcal{R}^*(0,t)}{r(0,t)}\right)^n \le \frac{\Omega r^n(0,t)}{mf(B(0,r(0,t)))} \left(\frac{\mu t l_1 + \mu t^2 \lambda_1^2 + \varepsilon \mu t}{\mu t + \mu t^2 l_n}\right)^n.$$

But

$$\limsup_{t \to 0} \frac{mf(B(0,h))}{\Omega h^n} = |J(0,f)|;$$

thus one obtains, letting $\varepsilon \to 0$ and then $t \to 0$, the relations

$$\limsup_{t \to 0} \frac{mf(B(0, \mathcal{R}(0, t)))}{\Omega r^{*n}(0, t)} \le \frac{|J(0, f)|}{l_n^n} = H_I(0, f),$$

$$\limsup_{t \to 0} \frac{\Omega \mathcal{R}^{*^n}(0,t)}{mf(B(0,r(0,t)))} \le \frac{l_1^n}{|J(0,f)|} = H_O(0,f).$$

It follows that there exists the normal system (4) of neighborhoods at the point $a \in G$ for which

$$K_I(a, \{\mathcal{G}_t^0(a)\}) \le q_V, \quad K_O(a, \{\mathcal{G}_t^0(a)\}) \le q_V.$$

Since the mapping f is differentiable almost everywhere in G, and the point a is arbitrary, the above relations imply $K(\{\mathcal{G}_t^0\}) \leq q_V$, and, hence, $K \leq q_V$.

 $3) \Rightarrow 1$). We show that the conditions (a)–(c) of Definition 1 follow from Definition 3 and that $q_V \leq K$. To this end, we need the following statements.

Lemma 1. Let $f: G \to G^*$ be a homeomorphism. Then almost all points $x \in G$ admit the normal regular systems $\{\mathcal{G}_t(x)\} \subset G$ of neighborhoods such that under inequalities (3) the mapping f is ACL-mapping and differentiable almost everywhere in G.

The proof of this lemma is similar to that of Lemmas 8.2–8.3 and Theorem 8.1 from [2] by using the inequality

$$\limsup_{t \to 0} \frac{\mathcal{R}^*(x,t)}{r^*(x,t)} \le K^{2/n}.$$
 (5)

instead of the corresponding Reshetnyak's inequality. The inequality (5) is a consequence of relations (1)–(3).

Lemma 2. Let $f: G \to G^*$ be a homeomorphism. Suppose that almost all points $x \in G$ have the normal regular systems $\{\mathcal{G}_t(x)\}\subset G$ of neighborhoods of x satisfying (3). Then there exists a number $q, 1 \leq q < \infty$, which does not depend on x and such that for almost all $x \in G$, we have inequalities

$$H_I(x, f) \le q$$
, $H_O(x, f) \le q$.

Proof. Let $x_0 \in G$ be a point at which the mapping f is differentiable and $|J(x_0, f)| \neq 0$. Without loss of generality, one can assume that $f(x_0) = x_0 = 0$ and

$$f'(0)e_1 = l_1e_1, \ldots, f'(0)e_n = l_ne_n,$$

where

$$l_1 \geq l_2 \geq \cdots \geq l_n > 0.$$

This can be achieved by suitable choice of the coordinate system.

Let

$$r(t) = r(0,t), \ \mathcal{R}(t) = \mathcal{R}(0,t), \ r^*(t) = r^*(0,t), \ \mathcal{R}^*(t) = \mathcal{R}^*(0,t), \ \Gamma_t = \Gamma_t(0).$$

The differentiability of f at 0 yields

$$f(x) = f'(0)x + \omega(x)|x|,$$

where $\omega(x) \to 0$ as $x \to 0$.

Suppose that a(t) > 0 and b(t) > 0 are such that $a(t)e_1 \in \Gamma_t$, $b(t)e_n \in \Gamma_t$. Then

$$r^*(t) \le |f(b(t)e_n)|, \quad \mathcal{R}^*(t) \ge |f(a(t)e_1)|.$$

It follows that

$$\frac{mf(B(0,\mathcal{R}(t)))}{\Omega r^{*n}(t)} \ge \frac{mf(B(0,\mathcal{R}(t)))}{\Omega \mathcal{R}^{n}(t)} \left(\frac{b(t)}{|f(b(t)e_n)|}\right)^{n},\tag{6}$$

$$\frac{\Omega \mathcal{R}^{*^n}(t)}{m f(B(0, r(t)))} \ge \frac{\Omega r^n(t)}{m f(B(0, r(t)))} \left(\frac{|f(a(t)e_1)|}{a(t)}\right)^n,\tag{7}$$

and in view of differentiability of f at 0,

$$f(a(t)e_1) = l_1a(t)e_1 + \omega_1(a(t)e_1)a(t), \quad f(b(t)e_n) = l_nb(t)e_n + \omega_2(b(t)e_n)b(t),$$

where $\omega \to 0$ as $t \to 0$. Hence

$$\frac{|f(a(t)e_1)|}{a(t)} \to l_1, \quad \frac{|f(b(t)e_n)|}{b(t)} \to l_n,$$

as $t \to 0$. Letting in (5)-(6) $t \to 0$, we get

$$H_I(0,f) \le K_I(0, \{\mathcal{G}_t(0)\}), \quad H_O(0,f) \le K_O(0, \{\mathcal{G}_t(0)\}).$$

Since $x_0 \in G$ was an arbitrary point and f is differentiable almost everywhere in G, it follows that for almost all $x \in G$,

$$H_I(x, f) \le K_I(x, \{\mathcal{G}_t(x)\}) \le K_I(\{\mathcal{G}_t\}), \quad H_O(x, f) \le K_O(x, \{\mathcal{G}_t(x)\}) \le K_O(\{\mathcal{G}_t\}).$$

Letting

$$q = \max\{\sup K_I(x, \{\mathcal{G}_t(x)\}), \sup K_O(x, \{\mathcal{G}_t(x)\})\},\$$

where each supremum is taken over those $x \in G$, at which the inequalities (3) hold, one obtains

$$H_I(x,f) \le q \le K(\{\mathcal{G}_t\}) < \infty, \quad H_O(x,f) \le q \le K(\{\mathcal{G}_t\}) < \infty,$$
 (8)

also almost everywhere in G. This completes the proof of Lemma 2.

The last inequalities (8) show that $q_V \leq K(\{\mathcal{G}_t\})$ which implies $q_V \leq K$. Now applying Lemmas 1–2 completes the proof of Theorem.

REFERENCES

- 1. Menchoff D. E. Sur une généralisation d'un théorème de M. H. Bohr, Mat. sbor. 2 (1937), 339-356.
- 2. Reshetnyak Yu. G. Spacial Mappings with Bounded Distortion, Amer. Math. Soc., 1989.
- 3. Väisälä J. Lectures on n-dimensional Quasiconformal Mappings, Berlin, Springer-Verlag, 1971.

Department of Mathematics and Statistics Bar-Ilan University, 52900 Ramat-Gan, Israel

Received 6.03.2002