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The relations between two definitions of quasiconformality of homeomorphisms are consid-

ered. A new geometric condition ensuring a boundedness of distortions and therefore quasi-
conformality is established.

A.JL Toanbepr. O 2eomempuueckom U GHAAUTNUNECKOM ONPEJEACHUAT KeazukoHGopmunocmu [/
MatemaTuaui Crymii. — 2002. — T.18, Nel. — C.29-34.

PaccMoTpeHbI COOTHOIEHNA MeXK Y ABYMA ONpPeNeTeHuAMEI KBa3snKOHOPMHOCTH TOMEOMOP-
du3MOB. YCTaHOBIEHO HOBOE Te€OMETPHUIECKOEe YCIOBHE MapaHTHPYIONIee OTPAHMIeHHOCTE HC-
KayKeHNdA, a 3HAYUT KBa3NKOH(OPMHOCTb.

There are various (in general, not equivalent) definitions of quasiconformality, which in-
volve different features of mappings. The mostly accepted are the definitions suggested by
Reshetnyak [2] and Vaisala [3]. In the present paper, we investigate the relations between
these definitions and obtain a new geometric criterion for quasiconformality of homeomor-
phisms.

Let G and G* be bounded domains in R™, n > 2, and let a mapping f: G — G* be
differentiable at a point « € (. This means that there exists a linear mapping f'(z): R” —
R™, called the (strong) derivative of the mapping f at x, such that

flz+0) = f(x)+ fl(x)h +w(z, h)|h], w(x,h)—0ash—0.

Denote

J(x, f) =det f'(x), Uz, [)= min |f'(x)h], Lz, f)= 1|fhﬂ|i>1<|f'($)h|-
The quantities

Hi(x, f) = M Ho(z, f) = M H(x, f) = Lz, f)

M) Sz, f)I’ Iz, f)
are called, respectively, the inner, outer and linear dilatations of f at x. If n = 2, then

Hi(x, f) = Ho(x, f) = H(x, f). In the general case, we have the relations:
H(l‘,f) < miH(H[(l',f),Ho(Jf,f)) < Hn/z(xvf) < maX(H[(l’,f),Ho(J},f)) < Hn_l(xvf)'
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Definition 1 [3]. A homeomorphism f: G — G* is called quasiconformal if:
(a) fis ACL (absolutely continuous on lines);

(b) f is differentiable almost everywhere in

(c) for almost all # € (G there exists a number ¢ (1 < ¢ < o0) such that

Hi(z,f) <q, Ho(z,f)<q.

The quantity gy = inf ¢ is called the quasiconformality coefficient of the mapping f in G.
Here the infimum is taken over all admissible q.

The geometric approach to investigation of properties of quasiconformal mappings is
going back to the classical work of Menshov [1]. His method is based on the appropriate
change of the radii of the normal neighborhood bases.

Let @ be a point in R™. Assume that some closed neighborhood G(x) of x is defined
for any t € (0,1]. Following [2], we say that a set of the neighborhoods G;(x) of the point
x constitutes a normal system, if there exists a continuous function v: R™ — R such that
v(x) =0, v(y) > 0 for any y # x. Here Gi(z) = {y € R": v(y) < t} for any t € (0,1]. Let
['i(z) ={y € R": v(y) =1} denote the boundary of G;(x).

The function v is called the generating function for a given normal system {G;(x)}.

Denote

r(xvt):yeiglf)|y_x|v R(l’,t): Slgll())|y—$|-
t\x yel't(x

These values r(x,t) and R(x,t) are equal, respectively, to the minimal and the maximal

radii of the neighborhood G;(x). The limit

, R(x,t)
A(z) = limsu
=)
is called the regularity parameter of the family {G;(x),0 <t < 1}. Any such system {G;(x)}
is called the regular normal system, provided A(z) < oo.
Let f: G — G* be a homeomorphism and let {G;(z)} be a normal system of neighbor-

hoods of € (. One can introduce similar to above the minimal and the maximal radii for
the image of G;(x) by

ri(e,t) = il [f(y) = f(2)], R(z,1) = sup [f(y) = [(z)].

y€Ele(x) yel(z)

Definition 2 [2]. A mapping f is called quasiconformal at point © € G if there exists
a normal regular system {G;(x)} of neighborhoods of & such that

limn sup R*(x,t) R(x,t)

im0 (1) r(x,t)

ZQ(xvf) < 00.

This quantity is called the coefficient of quasiconformality of f at = in the sense of Reshet-
nyak.
Similarly, a homeomorphism f: G — G* is called quasiconformal in G, if f is quasicon-

formal at every point @ € (G and there exists a constant ¢, 1 < ¢ < oo, such that ¢(z, f) < ¢
for all x € G.
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The next example shows that in the case n > 3 the above two definitions of quasiconfor-
mality are not equivalent.
Let G ={2=(21,...,2,): 0 <y < Lk e{l,....n—1},¢"" <z, <1}, ¢ > 1,

0<p<1and
xl=p
g(x) = (xl,...,xn_l,”—>.
L—=p

The mapping ¢ is a homeomorphism, which is differentiable in 7, and G* = ¢(G) = {y =

Y1y yn):0< e < Lk {l,....n—1},¢®V7/(1 —p) <y, < 1/(1 —p)}. It is easy to
see that

l(:z;,g) =1, L(l‘,g) = |J($,g)| = H[(x,g) = H(:z;,g) = x;pv HO(xvg) = xgzl_n)pv

and that the inequality ¢(x, f) < ¢ is equalent to the condition H(x, f) < ¢. Hence, g is
a quasiconformal mapping in the sense of Definition 2, and its coefficient of quasiconformality
equals ¢. On the other hand, the mapping ¢ is quasiconformal also in the sense of Definition 1,
but in this sense, ¢ has the coefficient of quasiconformality ¢"~! > ¢.

Let us now define quasiconformal homeomorphisms in somewhat other way. We set

il (6,()}) = limsup L0 RO )

and

Ko(e, {Gi(x)}) = limsup — f?;?;,%,)tm’

where B(x,h) = {y € R" : |y — 2| < h} is n-dimensional ball in R” and mA denotes the
n-dimensional Lebesgue measure of the set A. Let @ = mB(0,1).

(2)

Definition 3. A homeomorphism f: G — G* is called quasiconformal in the domain G, if
for almost all @ € (& there exist the normal regular systems {Gi(x)} C G of neighborhoods
of x, which satisfy

Ki(z,{Gu(2)}) < K({G:}) <00, Kolw,{Gi(2)}) < K({G:}) < 0. (3)

We set K = inf K({G:}), where the infinum is taken over all such systems of neighbor-
hoods. This value will be called the quasiconformality coefficient of f in G.

Theorem. Definitions 1 and 3 are equivalent.

Proof. 1) = 3). Let f be a homeomorphism satisfying the conditions of Definition 1. We
show that f satisfies Definition 3, with K < gy.

Let @ € GG be a point of differentiability of the mapping f and suppose that |J(a, f)| # 0.
The image of the unit ball under the linear mapping f” is an ellipsoid FE(f). Let [1,ls,...,1,
be the semi-axes of E(f), ly > 1y > --- > 1, > 0. We assume that f(a) = a =0, and f'(0)
is given by

f(0)ey = liey, ..., f'(0)e, = l.en,
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where e, denotes the vth unit basis vector.
Consider the normal system of neighborhoods

2 2
0 _ n . 1 Ln 2,2
{Qt(O),0<t§1}_{x€R '<1+tl1> + +<1+tln> g/,ct} (4)

of the origin and choose y > 0 so that GY(0) C G for any ¢ € (0,1]. Then R(0,¢) = ut(1+tl),
r(0,t) = pt(1 4+ tl,).

Since the mapping f is differentiable at @ = 0, there exists ¢, 0 < ¢ < [,, such that
|f(z) — f(0)z| < ept for z € GP(0). Fix any such e. From the last inequality we obtain

R*(0,t) < ptly + pt?li + eput,

and
r*(0,1) > ptl, + pt*l> — cput.
Thus
m f(B(0,R(0,1))) (R(O,t)y <~ mf(B(0,R(0,1))) ( pt + pt*l )”
QR"(0,1) r*(0,t) ) ~ QR"(0,1) A, + pt?l2 —ept )
Qr(0,1t) (R*(O,t))” < Qr(0,1t) (/,Ltll + wt* Ay + wt)”
m f(B(0,r(0,£))) \ r(0,t) m f(B(0,r(0,1))) pt + pt?l, '
But
mf(B(0,h
1ir?jglp% = [J(0, f)I;

thus one obtains, letting ¢ — 0 and then ¢ — 0, the relations

mf(BO,R0,1)) _ 1J(0, /)

li = H;(0
T eeen <o e
, QOR*"(0,1) Iy
lim sup < = Ho (0, f).

o mf(B(0,7(0,1))) = [J(0, f)]

It follows that there exists the normal system (4) of neighborhoods at the point a €
for which

Ki(a {G%a)}) < av,  Kola{G%)}) < av.

Since the mapping f is differentiable almost everywhere in (¢, and the point a is arbitrary,
the above relations imply K ({G}) < qv, and, hence, K < gy .

3) = 1). We show that the conditions (a)—(c) of Definition 1 follow from Definition 3
and that gy < K. To this end, we need the following statements.

Lemma 1. Let f: G — G* be a homeomorphism. Then almost all points * € (G admit the
normal regular systems {G:(x)} C G of neighborhoods such that under inequalities (3) the
mapping f is AC L-mapping and differentiable almost everywhere in G.
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The proof of this lemma is similar to that of Lemmas 8.2-8.3 and Theorem 8.1 from [2]
by using the inequality

*(x,1
lim supR (2.1) < K¥m, (5)
two (2, 1)

instead of the corresponding Reshetnyak’s inequality. The inequality (5) is a consequence of

relations (1)—(3).

Lemma 2. Let f: G — G* be a homeomorphism. Suppose that almost all points * € G
have the normal regular systems {G:(x)} C G of neighborhoods of x satisfying (3). Then
there exists a number ¢, 1 < g < oo, which does not depend on = and such that for almost
all x € (G, we have inequalities

Hj(x,f)ﬁq, Ho(x,f)ﬁq

Proof. Let x9g € (G be a point at which the mapping f is differentiable and |.J(xzo, f)| # 0.
Without loss of generality, one can assume that f(x,) = 29 = 0 and

f(0)ey = liey, ..., f'(0)e, = l.en,
where
L>l>->1,>0.

This can be achieved by suitable choice of the coordinate system.
Let

r(t) = r(0,8), R(t) = R(0,1), r*(t) = r*(0,¢), R*(t) = R*(0,¢), 't = I',(0).
The differentiability of f at 0 yields
fx) = f1(0)x + w(@)]xl,

where w(z) — 0 as « — 0.
Suppose that a(t) > 0 and b(¢) > 0 are such that a(t)e; € I'y, b(t)e, € I'y. Then

r(t) < |fO(b)en)l, R = [fla(t)er)]-

It follows that

TmﬂBULR@D)>7nﬂBULR@D)< (1) )” -
Q) T QR(1) [f(b(t)en) )

QR (1) Qr(t) |f(a(t)e)[\"
mﬂBmwm>2mﬂmmwm>< a(l) )’ o

and in view of differentiability of f at 0,

Fla(t)er) = ha(t)er +wr(aler)alt),  F(b(t)en) = Lb(t)e, +wa(b(t)en)b(t),
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where w — 0 as t = 0. Hence

|f(a(t)ed)]
T
as t — 0. Letting in (5)—(6) t — 0, we get

Hi(0, f) < K1(0,{G:(0)}),  Ho(0, f) < Ko(0,{G:(0)}).

Since x¢ € (¢ was an arbitrary point and f is differentiable almost everywhere in G, it follows
that for almost all x € G,

Hi(z, f) < Ki(e, {Gi(2)}) < K1({G:}),  Ho(w, [) < Ko(z,{Gi(2)}) < Ko({G:}).

Letting

q = max{sup Kr(z, {Gi(2)}), sup Ko(z, {G:(2)})},

where each supremum is taken over those # € (i, at which the inequalities (3) hold, one
obtains

H[(l‘,f) < q < I(({gt}) < o0, Ho(l',f) < q < I(({gt}) < 09, (8)
also almost everywhere in (. This completes the proof of Lemma 2. 0

The last inequalities (8) show that ¢y < K({G:}) which implies ¢v < K. Now applying
Lemmas 1-2 completes the proof of Theorem. O
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