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We introduce and study (metrically) quarter-stratifiable spaces and then apply them to
generalize Rudin and Kuratowski-Montgomery theorems about the Baire and Borel complexity
of separately continuous functions.
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BeogaTcs n mayqatorces (MeTPHIECKH) Y€ TBEPTh-CTPATHMUIHPYEMBIE TPOCTPAHCTBA, KOTO-
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MepH, Kacalumxcs 6openeBol 1 63poBoll KaaccuduKali pasfelbHO HEMPEPHIBHBIX (DYHKITH.

The starting point for writing this paper was the desire to improve the results of V. K. Mas-
lyuchenko et al. [15], [16], [11], [12] who generalized a classical theorem of W. Rudin [19]
which states that every separately continuous function f: X x Y — R on the product of
a metrizable space X and a topological space Y belongs to the first Baire class. It was
proven in [15] that the metrizability of X in the Rudin theorem can be weakened to the
o-metrizability and paracompactness of X. A subtle analysis of Rudin’s original proof re-
veals that this theorem is still valid for a much wider class of spaces X. These spaces are
of independent interest, so we decided to give them a special name — metrically quarter-
stratifiable spaces. (Metrically) quarter-stratifiable spaces are introduced and studied in
details in the first three sections of this paper, where we investigate relationships between
the class of (metrically) quarter-stratifiable spaces and other known classes of generalized
metric spaces. It turns out that each semi-stratifiable space is quarter-stratifiable (this is
a reason for the choice of the term “quarter-stratifiable”), while each quarter-stratifiable
Hausdorff space has Gs-diagonal. Because of this, the class of quarter-stratifiable spaces is
“orthogonal” to the class of compacta — their intersection contains only metrizable com-
pacta. The class of quarter-stratifiable spaces is quite wide and has many nice inheritance
properties. Moreover, every (submetrizable) space with Gis-diagonal is homeomorphic to a
closed subset of a (metrically) quarter-stratifiable Ti-space. The following diagram describes
the interplay between the class of (metrically) quarter-stratifiable spaces and other classes
of generalized metric spaces in the framework of Hausdorff spaces.
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In the last three sections we apply metrically quarter-stratifiable spaces for generalizing
classical theorems of Rudin [19] and Kuratowski-Montgomery [13], [14], [17].

1. QUARTER—STRATIFIABLE SPACES

Before introducing quarter-stratifiable spaces we recall some concepts from the theory
of generalized metric spaces, see [8]. All topological spaces considered in this paper are
Ti-spaces, all maps (unlike to functions) are continuous.

1.1. Definition. A topological space X is
(1) perfect if each open set in X is an F,-set;

(2) submetrizable if X admits a condensation (i.e., a bijective continuous map) onto a
metrizable space;

(3) o-metrizable if X is covered by a countable collection of closed metrizable subspaces;
(4) a Gs-diagonal if the diagonal is a Gis-set in the square X x X;

(5) a o-space if X has a o-discrete network;
(6)

developable if there exists a sequence {U, },en of open covers of X such that for each

x € X the set {St(x,U,) }nen is a base at v, where St(x,U,) = {U €U, : x € U}
(7) a Moore space if X is regular and developable;

(8) semi-stratifiable (vesp. stratifiable) if there exists a function G which assigns to each
n € N and a closed subset H C X, an open set G(n, H) containing H such that

(i) H=),enG(n,U) (resp. H = (), G(n,U)) and
(ii) G(n, K) D G(n, H) for every closed subset K O H and n € N.

The semi-stratifiable spaces admit the following characterization, see [8, 5.8].

1.2. Theorem. A topological space (X, 7) is semi-stratifiable if and only if there exists
a function g: N x X — 7 such that for every x € X

(1) {z} = Nyeng(n; )
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(2) (x € g(n,x,), n € N) = (2, = ).

Weakening the first condition to |J, .y g(n,x) = X leads to the definition of a quarter-
stratifiable space — the principal concept in this paper.

1.3. Definition. A topological space (X, 7) is called quarter-stratifiable if there exists a
function g: N x X — 7 (called quarter-stratifying function) such that

(1) X =U,ex 9(n, ) for every n € N;
(2) (x € g(n,x,), n € N) = (z, = ).
A space X is hereditarily quarter-stratifiable if every subspace of X is quarter-stratifiable.

Since the semi-stratifiability is a hereditary property, we get that each semi-stratifiable
space is hereditarily quarter-stratifiable. As we shall see later, the converse is not true: the
Sorgenfrey line, being hereditarily quarter-stratifiable, is not semi-stratifiable.

First, we give characterizations of the quarter-stratifiability in terms of open covers as
well as of lower semi-continuous multivalued functions. We recall that a multivalued function
F: X =Y is lower semi-continuous if for every open set U C Y its “preimage” F~H(U) =
{r € X : F(a)NU # @} is open in X. For a topological space X by X, we denote X
endowed with the discrete topology.

1.4. Theorem. For a space X the following statements are equivalent:
(1) X is quarter-stratifiable;

(2) there exists a sequence {U, },en of open covers of X and a sequence {s,: U, — X },en
of functions such that s,(U,) — « if x € U, € U,, n € N;

(3) there exists a sequence {F,: X — Xy}nen of lower semi-continuous multivalued func-
tions tending to the identity map of X in the sense that for every point * € X and
every neighborhood O(x) C X of x there is ng € N such that F,(x) C O(x) for every
n > ng.

Proof. (1) = (2) Assume that (X, 7) is quarter-stratifiable and fix a function g: Nx X — 7
from Definition 1.3. Let U, = {g(n,x) : € X} and for every U € U, find © € X with
U =g(n,z) and let s, (U) = . Clearly, the so-defined sequences {U,,} and {s,} satisfy our
requirements.

(2) = (3) For every n € N define F,,: X — Xy letting F,.(2) = {s,(U) : 2 € U € U, }
for @ € X. Clearly, F, is lower-semicontinuous and F,(z) — « for each x € X.

(3) = (1) For each (n,z) € N x X let g(n,z) = F,'(x) and check that the so-defined

n

function g: N x X — 7 fits. 0

Given a topological space X, by [(X) and d(X) we denote respectively the Lindelof
number and the density of X.
Like other classes of generalized metric spaces, the class of quarter-stratifiable spaces has
many nice inheritance properties.
1.5. Theorem. Let X be a quarter-stratifiable space.
(1) Every open subspace and every retract of X is quarter-stratifiable.

(2) If X is Hausdorft, then it has a (i5-diagonal and countable pseudo-character.

(3) If X is Hausdorff, then every paracompact Cech-complete subspace and every countably
compact subspace of X is metrizable.
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(4) d(X) < 1(X).

(5) If f: Y — X is a condensation with sequentially continuous inverse f~', then Y is
quarter-stratifiable.

(6) If f: X — Y is a finite-to-one open surjective map, then the space Y is quarter-
stratifiable.

Proof. Using Theorem 1.4, fix a map ¢: N x X — 7, a sequence {F,: X — Xy},en of
lower-semicontinuous multivalued functions tending to the identity map of X, and sequences
{Uy, }nen of open covers and functions {s, },en satisfying the conditions of Definition 1.3 and
Theorem 1.4.

1) Given an open subspace Y of X, let V, ={UNY :U € U,},n € N. For each V €V,
find a set U(V) € U, with V = U(V)NY and let 3,(V) = s,(U(V)) if 5,(U) € Y and
5,(V') be any point of Y, otherwise. Clearly, V,, is an open cover of Y. Now fix any point
y of Y and take a sequence V,, € V,, with y € V,, for n € N. Since s,(U(V,)) — y, we get
sn(U(V3,)) € Y for all n beginning from some ng. Then 3,(V,) = s,(U(V,)) for n > ng and
thus 3, (V) = y, which proves that Y is a quarter-stratifiable space.

Now suppose that a subspace Y of X is a retract of X and let r: X — Y be the
corresponding retraction. One can readily prove that {r o F,|Y: Y — Y,} is a sequence of
lower-semicontinuous multivalued functions tending to the identity map of Y.

2) Assume that the quarter-stratifiable space X is Hausdorff. Let G, = [J;, U x U C
X xX. We claim that (1, . G coincides with the diagonal of X x X. To show this, take any
distinct points x,y € X and take disjoint neighborhood O(x), O(y) of & and y, respectively.
It follows from the choice of the sequences {U,} and {s,} that there is n € N such that
$m(Up) € O(x) and s, (V) € O(y) for all m > n and @ € U, € U, y € Vi € Uy,
We claim that (z,y) ¢ G,. Assuming the converse, we would find a set U, € U, with
(x,y) € U, x U,. Then x,y € U, and s,(U,) € O(x) N O(y), a contradiction. Thus X has a
Gis-diagonal, which implies the countability of the pseudo-character of X.

3) If X is Hausdorff and Y C X is a paracompact Cech-complete or countably compact
subspace of X, then Y has a G-diagonal and by [3, 8.2] or [8, 2.14] is metrizable.

4) To see that d(X) < [(X) we may take the subset D = {s,(U) : U € V,,n € N}, where
V,, is a subcover of U, of size |V,| < (X)) for n € N. Clearly, D is a dense subset in X of
size |D| < 1(X).

5) If f: Y — X is a condensation with sequentially continuous inverse f~' we may
consider the function gy assigning to each pair (n,y) € N x Y the open set f~'(g(n, f(y)))
of Y. One may easily show that the so-defined function gy turns Y into a quarter-stratifiable
space.

6) Suppose f: X — Y is an open finite-to-one surjective map. It can be shown that
for every n € N the multivalued map fo F, o f7': Y — Y, defined by fo F,o f7! =
Uxef_l(y) f(Fu(x)) for y € YV is lower-semicontinuous. Moreover, the sequence {f o F, o
f '} en tends to the identity map of Y. Then according to Theorem 1.4, the space Y is
quarter-stratifiable. O

Next, we show that the quarter-stratifiability is stable with respect to certain set-theoretic
operations.

1.6. Theorem.
1) The countable product of quarter-stratifiable spaces is quarter-stratifiable.
p q 1Y q
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2} A space X is quarter-stratifiable, provided X = AU B is a union of two quarter-
P q , P q
stratifiable subspaces of X, one of which is a closed Gs-set in X.

(3) A space X is quarter-stratifiable, provided X can be covered by a o-locally finite col-
lection of quarter-stratifiable closed GGs-subspaces of X.

Proof. 1) Let X, i € N, be a sequence of quarter-stratifiable spaces. For every i € N, fix a
point *; € X; and a sequence {F;, : X; = (X})a}nen of lower-semicontinuous multivalued
functions tending to the identity map of X; as n — oo. Let X =[], Xi and for every n € N
identify the product [];_, X; with the subspace {(@;)ien : ; = *; for i > n} of X. For every
n € N define a multivalued function F,: X — Xy as follows: F,((2:)ien) = [[ie; Fin(@i)-
It is easy to see that each function F, is lower semicontinuous and the sequence {F, } tends
to ldX

2) Suppose X = AU B, where A, B are quarter-stratifiable subspaces and B is a
closed Gs-set in X. Fix a decreasing sequence {O,(B)},en of open subsets of X with
B = (,enyOn(B). By Theorem 1.5(1), the open subspace A\ B = X \ B of A is quarter-
stratifiable and thus admits a function g4\p: N x (A\ B) — 7 into the topology 7 of X such
that UxeA\B gas(n,x) O A\ B for each n € N, and = € ga\g(n,v,) = x, — x for each
z,x, € A\ B,n eN.

Using the quarter-stratifiability of B find a function gg: N x B — 7 such that B C
U.ep 98(n,2) C O, (B) for every n € N, and z € gg(n,2,) = x, — x for each 2,2, € B,
n € N. It is easy to verify that the function g: N x X — 7 defined by

gag(n,z) ifze A\ B,
g(n,x) = :
g(n, ) ifxeB

turns X into a quarter-stratifiable space.

3) Let { X }iez be a o-locally finite collection of quarter-stratifiable closed (is-subspaces
of a space X. Write T = J, oy Zx so that the collection {X;}iez, is locally finite for every
k € N. Without loss of generality, 7, C Zyy; for every k. For every k fix an open cover Wy
of X whose any element W € W, meets only finitely many of the sets X;’s with ¢ € Z;. We
may additionally require that the cover W is inscribed into the cover Wy_; for k > 1.

Since X;’s are Gig-sets in X, for every ¢ € 7 we may find a decreasing sequence {O,,(X;) bnen
of open subsets

On(X;) CSHX W) ={WeW,: WnN X, #a}

with mneN On(XZ) == XZ

Let < be any well-ordering of the index set Z such that : < j for every i,5 € [ with
i € I, # j for some k. It follows from the local finiteness of the collections { X, },ez, that for
every ¢ € 7 the set Uj<i X is closed in X. Using the quarter-stratifiability of open subsets of
X,’s, for every ¢ € N fix a sequence {U; , }nen of open covers of the set V; = X \ Uj<i X, and
a sequence {s;,: U, — Y;} of functions such that s; ,(U,) — y for every Y; 3 y € U, € U, ,,
n € N. Without loss of generality, we may assume that each U € i, is an open subset of
X lying in O,(X;) \ Uj<i X;. Now for every n € N consider the open cover U, = ;.7 Uin
and the function s, = ;o7 Sin: U — X.

To show that the space X is quarter-stratifiable, it suffices to verify that for every @ € X
and a sequence U, € U,, n € N, with @ € U, we have s,(U,) — . Let i = min{j €
Z:x € X;}. Then « € Y,. For every n € N find ¢, € T with U,, € U;, . Since v € U, C
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O;, (Xi)\UjQ'n X, we get 1, <1 for all n € N. It follows from the choice of the cover W, and
the sets 0,(%2) that (), _y(Uy: On(X,) = Uy, X;. Conseauently, # ¢ (Fy (Uy; O0n(X;)
and there is ng € N such that z ¢ Uj<i O,(X;) for every n > ng. Since x € U, C 0,(X,,)
for every n € N, we conclude that ¢, =1 for n > ng. Then = € U,, € U;,, for all n > ng and
$n(Uy) = 8;n(U,) — x, which completes the proof of the quarter-stratifiability of X. O

1.7. Remark. The Gis-condition in Theorem 1.6(2) is essential: the one-point compactification
al’ of an uncountable discrete space I' may be written as the union al' = {co} U T of two
metrizable subspaces, one of which is closed. But al', being a non-metrizable compactum, is
not quarter-stratifiable, see Theorem 1.5(3). Yet, we do not know the answer to the following
question.

1.8. Question. Is a (regular) space X quarter-stratifiable if it is a union of two closed
quarter-stratifiable subspaces?

According to Theorem 1.5(1), every open subspace of a quarter-stratifiable space is
quarter-stratifiable. It is not true for closed subspaces of quarter-stratifiable spaces: ev-
ery (5-diagonal space is homeomorphic to a closed subset of a quarter-stratifiable Ti-space.

1.9. Theorem. Every space X with Gs-diagonal is homeomorphic to a closed subspace of
a quarter-stratifiable Ty-space Y with |Y \ X| < max{l{(X),d(X)}.

Proof. Suppose X is a space with Gs-diagonal. By Theorem 2.2 of [§], X admits a sequence
{Vi}nen of covers such that {z} = (1, oy St(z,V,) for every x € X. Replacing each V, by a
suitable subcover, we may assume that |V,| < (X)) for every n, and each cover V,, consists
of non-empty subsets of X. Let D C X be a dense subset of X with |D| < d(X). For every
n € N and every V €V, pick a point ¢(V) e VN D. Let S, = {0} U{l/i:7 > n} denote a
tail of the convergent sequence 5.

Consider the subset Y = X x {0} U {(c¢(V),1/n):V €V,, n € N} C X x 5;. It is clear
that |Y\ X[ < min{|U, o Val, [P} < min{l(X),d(X)}. Identify X with the subset X x {0}
of Y. Define a topology 7 on Y letting U’ C Y be open if and only if U N X is open in X and
for every & € UNX there is ng € N such that {(¢(V),1/n):x2 €V €V,, n > ng} CU. Thus
X is homeomorphic to a closed subspace of Y, while all points of Y \ X are isolated. Since
each one-point subset of Y is closed, Y is a Ti-space. To show that Y is a quarter-stratifiable
space, consider open covers U, = {{y},(V x S,)NY :y e Y\ X, VeV,},neN of V.
For every U € U, let

() Yy if U ={y} for some y € Y\ X;
sp(U) =
(c(V),1/n) U =(VxS,)NY for VeV,

It follows from the choice of the topology 7 on Y that + € U, € U,, n € N, implies
sn(Uy) = @ ie., Y is a quarter-stratifiable Tj-space. O

1.10. Problem. Describe the class of subspaces of regular (Tychonoff) quarter-stratifiable
T1-spaces.

2. METRICALLY QUARTER-STRATIFIABLE SPACES

In this section we introduce and study metrically quarter-stratifiable spaces forming a
class, intermediate between the class of paracompact quarter-stratifiable Hausdorff spaces



16 T. O. BANAKH

and the class of submetrizable quarter-stratifiable spaces. We start with defining a quarter-
stratifying topology.

2.1. Definition. A topology 7’ on a topological space (X, 7) is called quarter-stratifying if
there exists a quarter-stratifying function g: N x X — 7 for X such that g(N x X) C 7.

A topological space X is defined to be metrically quarter-stratifiable if it admits a weaker
metrizable quarter-stratifying topology.

The following theorem characterizes metrically quarter-stratifiable spaces.
2.2. Theorem. For a space X the following statements are equivalent:
(1) X admits a weaker metrizable quarter-stratifying topology;
(2) X admits a weaker paracompact Hausdorfl quarter-stratifying topology;

(3) there exists a weaker metrizable topology 7, on X, a sequence {U, },en of covers of X
by Tm-open subsets and a sequence {s,: U, — X },en of functions such that s,(U,) — «
inX ifeelU, el,, neN;

(4) there exists a weaker paracompact Hausdorff topology 7, on X, a sequence {V, }nen of
covers of X by 7,-open subsets and a sequence {3,: V,, — X },en of functions such that

§.(V) main X ife eV, €V, neN;

Proof. The equivalence (1) < (3) and (2) < (4) can be proved by analogy with the corre-
sponding equivalences in Theorem 1.4; the implication (3) = (4) is trivial.

(4) = (3) Assume that 7, is a weaker paracompact Hausdorff topology on X, {U, },en
is a sequence of 7,-open covers of X, and {s,: U, — X},en is a sequence of functions such
that s,(U,) — ¢ in X if ¢ € U, € U,, n € N. Let [1(U,) denote the Banach space of all
absolutely summable functions f: U, — R equipped with the norm || f|| = >, [f(U)].

Using the paracompactness of the topology 7, C 7, for every n € N find a partition of
unity {A: X = [0,1]}en, such that A\;'(0,1] C U for U € U,,. Observe that this partition
of unity can be regarded as a continuous map A, : X — [1(U,) acting as A, (z) = (Av(2))veu,
(the continuity of A, follows from the local finiteness of the cover {\;'(0,1]: U € U, } ).

Let At X — [],enl1(Uy) denote the diagonal product of the maps A,. By analogy with
the proof of Theorem 1.5(2), show that the map A is injective. Then the weakest topology
T, on X for which the map A is continuous is metrizable. Observe that for each n € N
and U € U, the set V(U) = A\;'(0,1] is 7-open. Let V, = {V(U) : U € U,}. For every
VeV, find U el, withV =V (U) and let 5,(V) = s,(U). One can easily check that the
metrizable topology 7, on X and the sequences {V, },.en, {8, }nen satisfy condition (3). O

In the following theorem we collect some elementary properties of metrically quarter-
stratifiable spaces.
2.3. Theorem.
(1) Fach paracompact Hausdorff quarter-stratifiable space is metrically quarter-stratifiable.
(2) FEach metrically quarter-stratifiable space is submetrizable and quarter-stratifiable.

(3) Every open subspace of a metrically quarter-stratifiable space is metrically quarter-
stratifiable.

(4) If X is a metrically quarter-stratifiable space and f: Y — X is a condensation with
sequentially continuous inverse f~!, then the space Y is metrically quarter-stratifiable.
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(5) The product X =[] .y X, of a countable collection of metrically quarter-stratifiable
spaces X,,, n € N, is a metrically quarter-stratifiable space.

(6) A space X is metrically quarter-stratifiable if there exist a weaker paracompact Haus-
dorff topology T, and two subspaces A, B C X such that AUB = X, A is a closed
G's-set in (X, 7,) and the topologies induced by the topology 7, on A and B are quarter-
stratifying.

(7) A space X is metrically quarter-stratifiable if there exist a weaker paracompact Haus-
dorff topology 7, on X and a o-locally finite cover C of (X, 7,) by closed Gis-subspaces
such that the topology induced by 1, on each C € C is quarter-stratifying (with respect
to the original topology of C');

(8) A space X is metrically quarter-stratifiable if there is a weaker metrizable topology T,
on X and a cover C of X, well-ordered by the inclusion relation, such that the topology
Tm induces the original topology on each C' € C;

(9) Every submetrizable space is homeomorphic to a metrically quarter- stratifiable space.

Proof. All statements (except (8)) easily follow from the definitions or can be proved by
analogy with the corresponding properties of the quarter-stratifiable spaces.

To prove statement (8), fix a continuous metric d on X and a well-ordered (by the
inclusion relation) cover C of X such that d induces the original topology on each C' € C.
Let U,, denotes the collection of all open 1/n-balls with respect to the metric d. For every
U e U, let C(U) be the smallest set C' € C meeting U and let s,(U) € UN C(U) be any
point.

Fix any € X and a sequence x € U, € U,,, n € N. We have to show that s,(U,) — .
Let C'(x) be the smallest set C' € C containing the point . Since # € C'(x)NU,, we conclude
that s,(U,) € C(x). By the choice of the sets U,, diam(U,) < 2/n. Then d(x, s,(U,)) <
diam(U,) < 2/n, n € N, and thus s, (U,) — @ (because d induces the topology of C(x)). O

According to Theorem 2.3(2) each metrically quarter-stratifiable space is submetrizable
and quarter-stratifiable. We do not know if the converse is also true.

2.4. Question. Is every submetrizable quarter-stratifiable space metrically quarter-strati-

fiable?

3. SOME EXAMPLES

In this section we collect some examples exposing the difference between the class of
(metrizable) quarter-stratifiable spaces and other classes of generalized metric spaces. It is
known that every Moore space is semi-stratifiable and each collectively normal Moore space
is metrizable, see [8]. Yet, there exist Moore spaces which are not submetrizable, see [18].
Thus we have

3.1. Example. There exists a quarter-stratifiable (Moore) space which is not metrically
quarter-stratifiable.

Theorems 1.9 and 2.3(9) show that the class of quarter-stratifiable spaces is much wider
than that of semi-stratifiable spaces. Using these theorems many wild (metrically) quarter-
stratifiable spaces may be constructed. But in general, so-constructed spaces are not hered-
itarily quarter-stratifiable.
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3.2. Example. The Sorgenfrey line Z is not semi-stratifiable but every subspace of Z is
Lindelof, separable, and metrically quarter-stratifiable.

Proof. Recall that the Sorgenfrey line Z is the semi-interval [0, 1) endowed with the topology
generated by the base consisting of all semi-intervals [a,b) where 0 < a < b < 1, see [5, 1.2.2].
Since Z embeds into a linearly ordered space (“two arrows” of Aleksandrov [5, 3.10.C]),
Z is monotonically normal, see [8, 5.21]. If Z would be semi-stratifiable, then Z, being
monotonically normal, would be stratifiable according to Theorem 5.16 of [8]. Since each
stratifiable space is a o-space [8, 5.9] and Lindel6f o-spaces have countable network [8, 4.4],
this would imply that Z has countable network, which is a contradiction. Therefore, the
Sorgenfrey line Z is not semi-stratifiable.

Next, we show that every subspace X of Z is quarter-stratifiable. For every n € N
consider the finite open cover U, = {X N[EL,5): 0 < k < n} of X. For every element
U € U, choose a point s,(U) € X as follows. If the set 1 U = {2z € X : ¢ > supU}
is not empty, then let s,(U) be any point of X with s,(U) < inf T U + L; otherwise, let
$,(U) be any point of X. It can be shown that s,(U,) — = for every @ € X and every
sequence x € U, € U,, n € N. Thus the space X is quarter-stratifiable. It is well known
that the Sorgenfrey line is hereditarily Lindelof and hereditarily separable which implies that
the space X is Lindelof and separable. Then X is also paracompact ([5, 5.1.2]) and hence,
being quarter-stratifiable, is metrically quarter-stratifiable. O

Since the metrical quarter-stratifiability is productive, we get

3.3. Example. The square of the Sorgenfrey line is metrically quarter-stratifiable but not
normal.

Another example of a metrically quarter-stratifiable non-normal space is the Nemytski
plane. Unlike to (semi-)stratifiable spaces, metrically quarter-stratifiable spaces need not be
perfect (or paracompact).

3.4. Example. A separable zero-dimensional metrically quarter-stratifiable T'ychonov space
which is neither perfect nor Lindelof.

Proof. Consider the Cantor cube 2¢ = {0, 1}, i.e., the set of all functions w — {0,1}. There
is a natural partial order on 2¥: = < y iff x(:) < y(v) for each ¢ € w. For k € {0,1} let
2¢ = {(2)iew : In € w with x(:) = k for all ¢ > n}. For a point # € 2* and n € w let
Ulx,n) ={y €2¥:y>axand y(i) = x(z) for i« < n}. On the set 2¥ consider the topology
T generated by the base {U(x,n) : « € 2, n € w}. Clearly, the space X = (2¥,7) is
Tychonoff, zero-dimensional, and separable (2¢ is a countable dense set in X).

Let us show that the space X is metrically quarter-stratifiable. For every n € w identify
2" with the subset {(x;) € 2* : 2; = 0 for « > n} C 2¥ and consider the finite cover
U, = {U(x,n) : x € 2"} of 2¥. It is clear that each set U(x,n) € U,, is open is the product
topology of 2¢ which is metrizable. To each U € U, assign the point s,(U) = maxU € 2¢.
One may easily verify that s,(U,) — « for every @ € X and a sequence x € U, € U,,, n € w.
Thus the space X is metrically quarter-stratifiable.

Now we show that the space X is not perfect. Note that 2§ is a closed subset of X. We
claim that it is not a Gs-subset of X. Assume conversely that 2§ = mnEN 0O,,, where O,, are
open subsets of X. Since the topology of X coincides with the usual product topology at
every point of the set 2§, we may assume that each set O, is open in the product topology of
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2¥. Then by the Baire theorem, the intersection () ., O, is a dense Gis-subset in 2%, which
contains a point = ¢ 2¢, a contradiction.
By Theorem 2.3(3) the open subspace Y = X \ 2§ of X is metrically quarter-stratifiable.
Since X is regular and 2 is not a Gs-set in X, we conclude that the space Y is not Lindelof.
Then the product X x Y is a separable Tychonov zero-dimensional metrically quarter-
stratifiable space which is neither perfect nor Lindelof. O

3.5. Question. Is there a hereditarily quarter-stratifiable space which is not perfect?

We recall that a topological space X is finally compact if [(X) < Ry, i.e., every open
cover of X admits a countable subcover. Finally compact regular spaces are called Lindelof.

3.6. Example. A hereditarily finally compact submetrizable uncountable space whose un-
countable subspaces are neither separable nor quarter-stratifiable.

Proof. Let X be the interval (0,1) with the topology generated by the sets of the form
(a,0)\C,where 0 < a < b < 1andC is a countable set. Clearly, the space X is submetrizable
and hereditarily finally compact. Yet, every countable subset of X is closed which implies
that every uncountable subspace Y of X is not separable. Since the finally compact quarter-
stratifiable spaces are separable, see Theorem 1.6(4), we conclude that the space Y is not
quarter-stratifiable. O

The space constructed in Example 3.6 is not regular. There is also a regular submetrizable
non-quarter-stratifiable space.

Given a subset B C R denote by Rp the real line R endowed with the topology consisting
of the sets U U A, where U open in R and A C B, see [5, 5.1.22, 5.5.2]. It is known that for
every B C R the space Rp is hereditarily paracompact; Rp is perfect if and only if B is a
Gs-set in R. If B C R is a Bernstein set, then the space Rp is Lindel6f, see [5, 5.5.4]. Recall
that a subset B C R is called a Bernstein set if C N B # @ # C\ B for every uncountable
compactum C' C R. Bernstein sets can be easily constructed by transfinite induction, see [5,

5.4.4].

3.7. Example. If B C R is not o-compact, then the space Rp is not quarter-stratifiable.
Consequently, if B C R is the set of irrationals, then Rp is a hereditarily paracompact sub-
metrizable perfect zero-dimensional space which is neither separable nor quarter-stratifiable;
if B C R is a Bernstein set, then Rp is a submetrizable hereditarily paracompact Lindelof
zero-dimensional space which is neither perfect nor separable nor quarter-stratifiable.

Proof. Assume that B C R is not o-compact. Suppose the space Rp is quarter-stratifiable
and fix a sequence {U,},en of open covers of Rp and a sequence {s,: U, — Rp}en of
functions such that s,(U,) — « for every @ € U, € U,, n € N. Since the real line is
hereditarily Lindelof and the topology of R g coincides with the usual topology at the points of
the set R\ B, we may find countable subcovers V,, C U,,, n € N, of the set R\ B. Observe that
C = {s,(V):V €V,, n € N} is countable while the intersection G = (1 . St(R\ B,V,) is
a Gs-set in the usual topology of R. Since B is not o-compact, there is a point z € BNG\ C.
Choose for every n € N an element V,, € V,, with V,, 5 &. Then = # s,(V,) for all n and by
the definition of the topology of Rp, s,(V,,) /4 . This contradiction shows that the space
Rp is not quarter-stratifiable. O
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4. A GENERALIZATION OF KURATOWSKI-MONTGOMERY THEOREM

In this section we apply metrically quarter-stratifiable spaces to generalize a theorem
of Kuratowski [14] and Montgomery [17] which asserts that for metrizable spaces XY, 7
a function f: X xY — Z is Borel measurable of class o + 1, o a countable ordinal, if f is
continuous with respect to the first variable and Borel measurable of class a with respect to
the second variable.

At first, we recall the definitions of the multiplicative and additive Borel classes. Given
a topological space X let Ay(X) and M(X) denote the classes of all open and all closed
subsets of X, respectively. Assuming that for a countable ordinal « the classes Ag(X),
Mp(X), 0 < a, are already defined, let A, (X) ={J_, M, : M, € Upeoa Mp(X) for all
n€N}and M, (X)={M CX: X\ Me A, (X)}.

We say that a function f: X — Y between topological spaces is Borel measurable of
class « if the preimage f~'(U) of any open set U C Y belongs to the additive class A, (X)
(of course, this is equivalent to saying that the preimage f~(F') of any closed subset F' C Y’
belongs to the multiplicative class M, (X)).

The set of all Borel measurable functions f: X — Y of class « is denoted by H,(X,Y).
For topological spaces X,Y, 7 and a countable ordinal « let CH,(X x Y,Z) denote the
set of all functions f: X x Y — Z which are continuous with respect to the first variable
and are Borel measurable of class a with respect to the second variable. The Kuratowski-
Montgomery Theorem states that C H, (X X Y, Z) C Ho11(X x Y, Z) for metrizable spaces
X,Y, 7 and a countable ordinal a.

A subset A of a topological space X is called a Gs-set if A = mnEN U, = mnEN U, for
some open sets U, C X, n € N. Observe that every Gs-set is a closed Gs-set and every
closed Gis-set in a normal space is a Gs-set. Consequently, every closed subset of a perfectly
normal space is a Gs-set.

4.1. Theorem. The inclusion CH,(X X Y, Z) C Hoy1(X X Y, Z) holds for any countable
ordinal «, any metrically quarter-stratifiable space X, any topological space Y, and any
topological space Z whose every closed subset is a (G5-set.

Proof. Using Theorem 2.2, fix a weaker metrizable topology 7,, on the metrically quarter-
stratifiable space X, a sequence {U,, },en of 7,,-open covers of X and a sequence {s,: U, —
X }ren of functions such that s, (U,) — x if # € U, € U,,, n € N. According to the classical
Stone Theorem [21], we may assume that each cover U, is locally finite and o-discrete.

Fix any function f € CH,(X xY, Z). To show that f € H,+1(X xY, Z) we have to verify
that the preimage f~!'(F') of any closed subset F' C Z belongs to the class M, (X x Y.

The set I, being Gis-set, can be written as F = N, W,,, where W,, C W,,_; are open
neighborhoods of F'. For every n € N and U € U, let I';: Y — Z be the map defined by
fu(y) = f(su(U),y) fory € Y. Ttis clear that fir € H,(Y, Z) which yields f;;'(W,.) € A, (Y)
for every m. Since the set U is functionally open in X, we get U x f;'(W,,) € A,(X xY),
m € N. Using this observation and the o-discreteness of the cover U,,, show that A4, , =

U U x f7'(W,) € AL (X x Y).

UElty
Now to get fTH(F) € Mu41(X xY) it suffices to verify that f~'(F) =("_, U,>,, Anm-
To verify the inclusion f~'(F) C (), .cny Unsi Anim, fix any m € N and (z,y) €EXxY
with f(z,y) € F. Let U, € U,, n € N, be a sequence of open sets containing the point .
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Since s,(U,) — @ and f is continuous with respect to the first variable, we may find & > m

with f(sx(Ur),y) = fu,(y) € W,,. Thus

(2,y) € Up x f7! (W) C Agw € | Aun

n>m

for every m.

Next, assume that (z,y) ¢ f~'(F). Then f(x,y) & F and there is & € N with W, ¥
f(z,y). By the choice of the covers U, and the continuity of f with respect to the first
variable, there is m > k such that f(s,(U,),y) ¢ Wy for any n > m and « € U, € U,. Since
W C Wy, we get (z,y) ¢ U5, Anm- O

4.2. Remark. The inclusion CC(X x Y, 7Z) C Hi(X x Y, 7Z) is not true without restrictions
on spaces X, Y, Z. If X =Y = {oco} UT is the one-point compactification of un uncountable
discrete space I', then the function f: X x Y — R defined by

1, fe=yely
Hay) = {0, otherwise

is separately continuous but does not belong to the class H;(X x Y,R).

5. A GENERALIZATION OF THE RUDIN THEOREM

In [19] W.Rudin proved that every separately continuous function f: X xY — Z defined
on the product of a metrizable space X and a topological space Y and acting into a locally
convex topological vector space Z belongs to the first Baire class By(X x Y, 7). In [15] it
was proved that the metrizability of X Rudin Theorem can be replaced by the paracompact-
ness and the o-metrizability; moreover, if the space X is finite-dimensional then the local
convexity of Z is superfluous, see [11].

In this section we shall prove that the Rudin Theorem is still valid if X is replaced by
any metrically quarter-stratifiable space and Z by a locally convex equiconnected space Z.

We remind that an equiconnected space is a pair (Z, A) consisting of a topological space
7 and a continuous map A: Z X Z x [0,1] — Z such that A(x,y,0) = &, AM(z,y,1) = v,
and A(z,x,t) = x for every x,y € X, ¢ € [0,1]. For a subset A C Z of an equiconnected
space (Z,\) let A°(A) = A and A\*(A) = AMA"H(A) x A x [0,1]) for n > 1. Let also
A(A) = U,en A"(A). An equiconnected space (Z,A) is called locally convex if for every
point z € Z and a neighborhood O(z) C Z of z there is a neighborhood U C Z of z with
A2(U) C O(z).

Equiconnected spaces are tightly connected with absolute extensors. We remind that
a space Z is an absolute extensors for a class C of topological spaces if every continuous
map f: B — Z from a closed subspace B of a space (' € C admits a continuous extension
f:C — Z over all C. It is known that each equiconnected space is an absolute extensor for
strongly countable-dimensional stratifiable spaces, while each locally convex equiconnected
space is an absolute extensor for the class of stratifiable spaces. Moreover, a stratifiable space
7 is an absolute extensor for stratifiable spaces if and only if Z is admits an equiconnecting
function A turning Z into a locally convex equiconnected spaces, see [3], [4], [10].

Obvious examples of (locally convex) equiconnected spaces are convex subsets of (locally
convex) linear topological spaces and their retracts. Also every contractible topological
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group (7 is an equiconnected space: an equiconnecting function A on ' can be defined by
AMa,y,t) = hy(xy™")-hy(e)™" -y, where e is the neutral element of G and {h;: G — G}igpoqy is
a contraction of GG with hg = id and h{(G) = {e}. Let us recall that a topological space X is
contractible if it admits a homotopy h: X x[0,1] — X such that h(x,0) = x and h(x,1) = *
for all x € X and some fixed point * € X.

Given topological spaces X and Y denote by C,(X,Y") the subspace of the Tychonov
product Y, consisting of all continuous functions from X to Y. Let By(X,Y) = C,(X,Y)
and by transfinite induction for every ordinal oo > 0 define the Baire class B,(X,Y) to be
the sequential closure of the set |, Be(X,Y) in Yy,

Now let us look at the Rudin theorem from the following point of view. Actually, this
theorem states that every continuous function f: X — C,(Y, Z) from a metrizable space X
is a pointwise limit of “jointly continuous” functions. This observation leads to the following
question: Under which conditions every continuous map f: X — Z is a pointwise limit of
some “nice” functions, and what should be understood under a “nice” function?

In case of an equiconnected space (7, A) under “nice” functions we shall understand so-
called piecewise-linear functions which are defined as follows. Let PL(X, Z) be the smallest
non-empty subset of C,(X, 7) satisfying the conditions:

(1) for every point zg € Z and functions f € PL(X,7), a € C(X,][0,1]) the function
g(x) = A(f(x), z0, a(x)) belongs to PL(X, Z);

(2) a function f: X — Z belongs to PL(X, 7) if there is an open cover U of X such that
for every U € U there is a function g € PL(X, Z) with f|U = ¢|U.

Equivalently, the set PL(X,Z) can be defined constructively as the set of functions
f: X — Z for which there is an open cover U of X such that for every U € U there are
points zg,...,z, € Z and functions ay,...,a, € C(X,[0,1]) such that f|U = f,|U, where
fo = zo and fiy1(x) = A(fi(x), zi, () for 0 <0 < n.

By PL1y(X,Z) we denote the sequential closure of PL(X,Z) in Z*.

We recall that a topological space X is defined to be strongly countable-dimensional if X
can be represented as the countable union | J°, X, of closed subspaces with dim X,, < oo
for all n. According to [6, 5.1.10] a paracompact space X is strongly countable-dimensional
if and only if X can be represented as the countable union X = [ J7_, X,, of closed subspaces
such that every open cover U of X has an open refinement ¥V with the property ord V| X,, < n
for every n € N (that is, every point « € X,, belongs to at most n elements of the cover V).

5.1. Theorem. Let X be a metrically quarter-stratifiable Ty-space and (Z, \) be an equicon-
nected space. If X is paracompact and strongly countable-dimensional or Z is locally convex,

then Cp(X, Z) C PL(l)(X, Z)

Proof. Fix any function f € C,(X, 7). Using Theorem 2.2, find a weaker paracompact
topology 7, on X, a sequence {U, },en of T,-open covers of X and a sequence {s,: U, —
X }en of functions such that (v € U, € U,, n € N) = (s,(U,) — x). Since the space
(X, 7,) is paracompact, we may assume that each cover U, is locally finite and contains no
empty set.

If the space X is paracompact and strongly countable-dimensional, then according to the
above-mentioned Theorem 5.1.10 of [6], we may additionally assume that X is represented
as the union X = J°_, X,, of closed subsets such that ord V,,|X,, < m for every n,m € N.

For every n € N take any partition of unity {o,v: X — [0, 1]}veu, subordinated to U,,
that is oz;}U(O, 1] ¢ U for each U € U,, and EUeL{n anu = 1.
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Let §o: X = N(Up), §nt @+ Y 5y anp () - U, be the canonical map into the nerve of
the cover U, see [7, VI. §3]. Next, we construct a map n,: N(U,) — Z as follows. Denote
by N*®)(U,,) the k-skeleton of N(2,,), where k > 0. The map 7, will be defined by induction.
Let n,(U) = f(s,(U)) for every U € NO(U,) = U,. Suppose that 7, is already defined
on the k-skeleton N¥)(24,) of N(U,). We shall extend n, onto N*+D(Z4,). Take any point
x € NFD(U,)\ N*(U,) and find a k-dimensional simplex o 3 . Fix any vertex v of o. The
point = can be uniquely written as x = tv + (1 — {)y, where t € [0,1] and y € o N N®(U,,).
Let n,(x) = A(na(y), na(v),t) and observe that the so-extended map 7, : N(k"'l)(un) — 7 is
continuous.

The inductive construction yields a continuous map nn (Un) — Z/ which has the
following property: n,(o) C A (n,(c®) = A“(UUGU )) for every simplex o of
N(U,). Observe also that n, o &, € PL(X, 7).

We claim that n, 0§, — f, provided X is strongly countable-dimensional or Z is locally
convex. To show this, fix any point € X and a neighborhood O(f(x)) C Z of f(x).

First, we consider the case when the space X is paracompact and strongly countable-
dimensional. In this case € X, for some m € N and ord,|X,, < m for each n, which
implies &, (x) € NU™(U,) for every n. Using the continuity of the map A, find a neighborhood
Oy C Z of f(x) such that A" (Oy1) C O(f(x)). By the choice of the sequences {i4,, } and {s,},
there is ng € N such that s,(U,) € f~*(0,) for every n > ng and U,, € U,, with U,, > x. Tt
follows from the construction of the map n, that n, o &, (x) € A™(01) C O(f(x)) for every
n > ng. Thusn, o0&, — f.

Now suppose that the equiconnected space (7, ) is locally convex. Then we may find
a neighborhood Oy C 7 of f(x) with A*(0;) C O(f(x)) and a number ng € N such that
s,(U,) € f71(O0y) for every n > ng and x € U, € U,. Tt follows from the construction of the
map 7, that n,0&,(x) C A*°(01) C O(f(x)) for every n > ng. Thus in both cases the function
sequence {1, 0 {,}p2, C PL(X,Z) tends to f, which proves that f € PL;(X, 7). O

Now we use Theorem 5.1 to generalize the Rudin Theorem as well as the results of [15],
[16], [12], [11]. By CC(X x Y, Z) the set of separately continuous functions X x Y — 7 is
denoted.

5.2. Corollary. Let X be a metrically quarter-stratifiable space, Y be a topological
space, and (Z, ) be an equiconnected space. If X is paracompact and strongly countable-

dimensional or 7 is locally convex, then CC(X x Y, Z) C Bi(X x Y, 7).

Proof. In obvious way the equiconnecting function A induces an equiconnecting function on
Co(Y, Z). Moreover, the equiconnected space C,,(Y, Z) is locally convex if so is Z. Hence, we
may apply Theorem 5.1 to conclude that C,(X,C,(Y,Z)) C PLuy(X,Cp(Y,Z)). Observe
that the space C,(X, C,(Y, Z)) may be identified with CC(X x Y, Z) while every element of
PL(X,C,(Y, 7)) is jointly continuous as a function X x Y — Z. This yields that CC(X x
Y,Z) C Bi(X X Y, Z). O

For an ordinal o and topological spaces X,Y, 7 denote by CB,(X x Y, Z) the set of
functions f: X xY — Z such that for every 2o € X and yo € Y we have f(-,y0) € C(X, 7)
and f(xg, ) € Ba(Y,Z). Thus CBo(X x Y, Z) = CC(X x Y, 7). Generalizing the Rudin
Theorem, V. K. Maslyuchenko et al. [15] proved that CB,(X x Y, 7Z) C Bay1(X x Y, Z) for
any countable ordinal «, any metrizable space X, any topological space Y and any locally
convex space 7, see [15]. Below we have a further generalization.
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5.3. Theorem. Let X be a metrically quarter-stratifiable space, Y be a topological space
and 7 be a contractible space. Then CB,(X XY, 7Z) C By11(X x Y, Z) for every countable
ordinal a > 0.

Proof. Let o > 1 be a countable ordinal and f € CB,(X x Y, 7). Fix a non-decreasing
sequence (a,) of ordinals with o = sup,, o, + 1 and let h: Z x [0,1] — Z be a contraction
of Z with h(z,0) = z and h(z,1) = * for all z € Z and some fixed point * € Z.

Using Theorem 2.2, find a weaker metrizable topology 7, on X, a sequence {U,},en of
Tm-open cover of X and a sequence {s,: U, — X },en of maps such that s,(U,) — « for
every @ € U, € U,, n € N. Using the paracompactness of (X, 7,,), for every n € N find a
partition of unity {a, v: (X, 7n) — [0,1]}vewy, subordinated to U, that is, oz;}U(O, 1]cuU
for U € U,,. Then {Q;IU(O, 1} vew, is a locally finite cover of X by functionally open sets.

Fix any well-ordering < on the set U,. For every U € U, and m € N consider the closed
set Frou = a,y[l/m. 1\ Uy o,y (0,1]. Clearly, {F, v}uey, is a discrete collection of
closed subsets of (X, 7n) for every m e N Using the collective normality of (X, 7,,), for
every (m,U) € N x U,, we may find a continuous function 3, : (X, 7,) — [0, 1] such that
ﬁ;lU(l) D F,u and {ﬁ;}U(O, 1 }oew, is a discrete collection in (X, 7, ) for every m € N.

For every U € U, find a function sequence {fnu}men C U£<a Be(Y,7Z) with
limy oo fro(y) = f(s,(U),y) for every y € Y. Without loss of generality, we may as-
sume that f,, € B,,, (Y, 7) for every m. Then the function ¢,,,: X x Y — Z defined by the
formula

Jnm(2,y) = {z(fva(y%l — Bmu(x)), if Bnu(z) > 0 for some U € Up,;

belongs to the class B,, (X x Y,Z) for every m,n € N. Let us show that the limit
limy, 00 gmon (2, y) exists for every (z,y) € X X Y and n € N. Indeed, given (z,y) € (X,Y)
and n € Nlet U, = min{U € U, : a,u(x) > 0}. Then x € F,,p, for all sufficiently
large m and gm,n(x) = h(an,Un(y) — Bm Un( )) = fm,Un(y) — f(SN(UN)vy) as m — 0.
Thus g,(2,y) = iMoo Gma(2,y) = f(s,(Un),y) exists and g, € B,(X x Y, 7). Next,
since s,(U,) — x, we get f(s,(U,),y) — f(x,y) which yields that f = lim,—c g5 and
feBun(X XY, 2). O

, otherwise

The following corollary generalizes a result from [15].

5.4. Corollary. Let X;,.... X, be metrically quarter-stratifiable spaces, Y be a topological
space, and (Z,\) be an equiconnected space. If X is paracompact and strongly countable-
dimensional or 7 is locally convex, then every separately continuous function f: X; x -+ X
X, XY — Z belongs to the n-th Baire class.

We do not know if the conditions on X; or Z are essential.

5.5. Question. Does every separately continuous function f: X xY — Z defined on
the product of metrizable compacta and acting into a linear metric space belong to the first
Baire class?

5.6. Remark. Actually, according to [15], the Rudin Theorem holds in a more strong form:
CC(X xY,Z) C Bi(X xY, Z) for any metrizable space X, topological space Y, and a locally
convex space Z, where C'C(X x Y, Z) stands for the set of functions for which there is a
dense subset D C X such that for every #¢o € D and every yo € Y the functions f(xo,-) and
f(-,yo) are continuous. It is interesting to remark that the metrizability of X is essential in
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this stronger form of the Rudin Theorem and can not be replaced by stratifiability; namely
CC(A x[0,1],R) & Bi(A x[0,1],R), where A is the Arens fan.

We recall the definition of the Arens fan A, see [5, 1.6.19]. Consider the following points
of the real line: ag =0, a, = % and a,, = %—I— %, where 1 < n? < m. Let Ay = {a, : n >
0} U{anm : k <n <n*<m} for k€ N. On the union A = Uken Ax consider the strongest
topology inducing the original topology on each compactum Ajg. Clearly, the so-defined
space A is countable and stratifiable. The space A is known as an example of a sequential
space which is not a Fréchet-Urysohn space.

5.7. Example. CC(A x [0,1],R) ¢ Bi(A x [0,1],R) for the Arens fan A.

Proof. We shall construct a function f € CC(A x [0,1],R) which is not of the first Baire
class. Take any function fo € By([0,1],R)\ B1(]0,1],R). Write fo = lim,—c fr, where
{fatnen C B1([0,1],R). In its turn, represent each f, as a pointwise limit f, = limu—co fum
of continuous functions. Now consider the map f: A x [0,1] = R:

fO(y)v if a = ag;
fn(y)
fam(y), ifa=aum.

fla,y) =

, if a = ay;

It is easy to see that f € CC(A x [0,1],R) but f & B;(A x [0,1],R). O
6. RUDIN SPACES

In light of the mentioned generalizations of the Rudin Theorem it is natural to introduce
the following

6.1. Definition. A topological space X is defined to be Rudin if for arbitrary topological
space Y every separately continuous function f: X xY — R belongs to the first Baire class.

In the following theorem we collect all fact concerning Rudin spaces we know at the
moment. Let us recall that a subspace Y of a topological space X is t-embedded, if there is
a continuous extender E: C,(Y) — C,(X), that is a map F such that E(f)|Y = f for every
f e C(Y), see [1, II1.§2.1]. Here C,(X) = C,(X,R).

6.2. Theorem.

(1) A space X is Rudin if and only if the calculation map cx : X xC,(X) = R, ex: (, f) —
f(x), is of the first Baire class.

(2) A space X is Rudin if the space C,(X) is Rudin.

(3) Every metrically quarter-stratifiable space is Rudin.

(4) If a space X is Rudin, then each t-embedded subspace of X is Rudin.

(5) A space X is Rudin if X = AU B, where A, B are Rudin closed subspaces of X and A

is a functionally closed retract of X.

(6) If a Tychonov space X is Rudin, then d(X) < [(X). Consequently, each compact Rudin
space is separable.
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Proof. 1) The “only if” part of the first statement is trivial. To prove the “if” part, assume
that the evaluation map ¢: X x C,(X) — R is of the first Baire class. Observe that every
separately continuous map f: X x Y — R can be seen as a continuous map F: Y — C,(X)
such that f(x,y) = c¢(x, F(y)) for (x,y) € X x Y. Now it is clear that f is of the first Baire
class.

2) The second statement follows immediately from the first one.

3) According to Corollary 4.2, each metrically quarter-stratifiable space is Rudin.

4) Suppose X is a Rudin space and Y a t-embedded subspace of X. Let E: C,(Y) —
Cp(X) be the corresponding extender. Let cx: X x C,(X) = R, ey: YV x C,(Y) = R be
the evaluation functions for the spaces X and Y, respectively. Taking into account that the
function cy is of the first Baire class and ¢y (y, f) = ex(y, E(f)) for every (y, f) € Y x Cp(Y)
we conclude that ¢y is a Tunction of the first Baire class either.

5) Suppose X = AU B, where A, B are Rudin closed subspaces of X and A is a
functionally closed retract in X. Let r: X — A be a retraction and : X — [0,1] a
map with ¢»7'(0) = A. Since the spaces A, B are Rudin, there are sequences of maps
an: A X Cy(A) - Rand 8,: B x C,(B) = R, n € N, tending to the evaluation func-
tions ¢4 and cp of the spaces A, B, respectively. For every n € N consider the function

¥, = min{n, 1} and define the map ¢,: X x C,(X) — R by the formula

ez, f) = {an(:fc,ﬂA), if 2 € A;
o (1 = (@) an(r(z), fIA) + () Bu(z, fIB), ifz € B.

It is easy to see that the maps ¢, are well-defined and continuous, and the sequence {¢,}
tends to the evaluation function of X.

6) Suppose X is a Rudin space. Let {c¢,},en C C(X x Cp(X),R) be a sequence of
continuous functions tending to the evaluation function ¢: X x C,(X) — R. Then ¢~!(0) =
NyerUpsn 601 (=1/n,1/m) is a Gs-set in X x Cy(X). Let {Oy}nen be a sequence of open
sets in X x Cp(X) with (N, _, O, = ¢ '(0). By the continuity of the functions ¢,, for every
z € X and n € N we may find a neighborhood U,(x) and a finite subset F,(z) C X such
that U,(x) x F,(2)* C O,, where A+ = {f € C,(X): f|A = 0} for a subset A C X. For
every n € N choose a subset X,, C X of size |X,| < [(X) with UxeX” Uy(z) = X. We
claim that D = U{F,(2) : # € X,,, n € N} is a dense set in X. Otherwise, we would find
a function f € C,(X) with f|D = 0 and f(z) # 0 for some x € X. It is easy to see that
(2, f) € Npen On but (z, f) ¢ ¢7(0), a contradiction, which shows that D is dense in X and
d(X) <|D| < I(X). O

There are many open question about the structure of Rudin spaces.

6.3. Question. Is there a Rudin space which is not quarter-stratifiable? Is a (compact)
space X Rudin, if {(x,f) : f(x) = 0} is a Gs-set in X x C,(X)? Is every (fragmentable,

scattered or Rosenthal) compact Rudin space metrizable?

Let us remark that according to [2, 11.6.1] each Corson Rudin compactum, being separa-
ble, is metrizable. Concerning the last question let us remark that there are non-metrizable
compact spaces X such that CC(X xY,R) C Bi(X x Y,R) for every compact space Y. The
following result belongs to G. Vera [22].

6.4. Theorem. A compact space X has countable Souslin number if and only if for every
compact space Y every separately continuous function f: X XY — R is of the first Baire
class.
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Proof. Suppose X has a countable Souslin number and f: X X Y — R is a separately
continuous function which can be seen as a continuous map F: Y — C,(X). Then the
image F(Y) C C,(X) is a compact subset of the space C,(X) over a compactum with
countable Souslin number. According to Theorem 14 [1, I1.§2] all such compact subsets are
metrizable. By the Rudin Theorem, the restriction of the separately continuous evaluation
function ¢: X x C,(X) — R onto X x F(Y) is of the first Baire class, which implies that
the map f(x,y) = c¢(x, F(y)) is of the first Baire class either.

Now assume that the Souslin number of a compactum X is uncountable. Then there
exists an uncountable family U/ of pairwise disjoint nonempty open sets in X. For every
U € U fix a continuous function fy: X — [0,1] such that fy|X \ U = 0 and max fy = 1.
Denote by 0 the origin of the vector space C,(X). It is easy to see that the set Y = {0}U{fv :
UelU}in Cp(X) is compact and the evaluation function ¢: X x YV — R, ¢: (2, f) — f(2),
is separately continuous. Yet, since ¢7*(1/2,1] is not an Fj,-set in X x Y, the function ¢ is
not of the first Baire class. In fact, one may show that ¢ ¢ (J, ., Ba(X x Y, Z), i.e., cis not
Baire measurable. O

6.5. Remark. It follows from Theorems 6.2 and 6.4 that any non-separable compact space X
with countable Souslin number is not Rudin but for every compact space Y every separately
continuous function f: X x Y — R belongs to the first Baire class.

Finally let us prove one more result related to Baire classification of separately continuous
functions.

6.6. Theorem. Let X,Y, 7 be compact Hausdorft spaces. If X is separable and Y has
countable Souslin number, then every separately continuous function f: X xY x Z — R
belongs to the second Baire class.

Proof. Fix any separately continuous function f: X x Y x Z — R, which can be seen as a
continuous map F': X — CC(Y x Z,R) into the space of separately continuous functions
endowed with the product topology. According to a recent result of S. Gulko and G. Sokolov
[9] if the space Y has countable Souslin number, then every compactum in CC(Y x Z,R)
is Corson. Now if X is separable and Y has countable Souslin number, then F(X) C
CC(Y x Z,R) is a separable Corson compactum. Since the separable Corson compacta are
metrizable, see [2, 11.6.1], we conclude that the compactum F'(X) is metrizable. By [15] (see
also Corollary 5.4), the evaluation map ¢: F(X) xY x X = R, ¢: (¢,y,2) — g(y, z), being
separately continuous, belongs to the second Baire class. Then the function f belongs to the
second Baire class because f(x,y,z) = c(F(x),y, z). O

6.6. Remark. The class of Rudin spaces includes the class of Lebesgue spaces introduced by
O. Sobchuk in [20].
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