УДК 515.12

T. O. BANAKH

(METRICALLY) QUARTER-STRATIFIABLE SPACES AND THEIR APPLICATIONS IN THE THEORY OF SEPARATELY CONTINUOUS FUNCTIONS

T. O. Banakh. (Metrically) quarter-stratifiable spaces and their applications in the theory of separately continuous functions, Matematychni Studii, 18 (2002) 10–28.

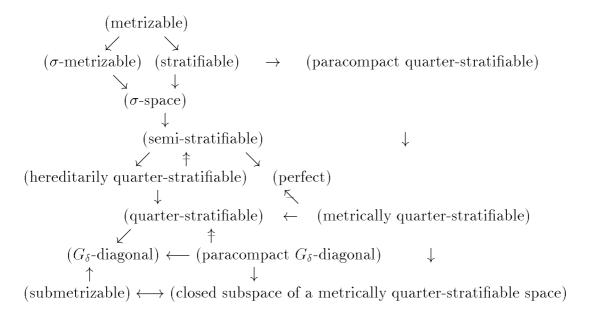
We introduce and study (metrically) quarter-stratifiable spaces and then apply them to generalize Rudin and Kuratowski-Montgomery theorems about the Baire and Borel complexity of separately continuous functions.

Т. О. Банах. (Метрически) четверть-стратифицируемые пространства и их приложения в теории раздельно непрерывных функций // Математичні Студії. – 2002. – Т.18, №1. – С.10–28.

Вводятся и изучаются (метрически) четверть-стратифицируемые пространства, которые впоследствии применяются для обобщения теорем Рудина и Куратовского-Монтгомери, касающихся борелевой и бэровой классификации раздельно непрерывных функций.

The starting point for writing this paper was the desire to improve the results of V. K. Maslyuchenko et al. [15], [16], [11], [12] who generalized a classical theorem of W. Rudin [19] which states that every separately continuous function $f: X \times Y \to \mathbb{R}$ on the product of a metrizable space X and a topological space Y belongs to the first Baire class. It was proven in [15] that the metrizability of X in the Rudin theorem can be weakened to the σ -metrizability and paracompactness of X. A subtle analysis of Rudin's original proof reveals that this theorem is still valid for a much wider class of spaces X. These spaces are of independent interest, so we decided to give them a special name — metrically quarterstratifiable spaces. (Metrically) quarter-stratifiable spaces are introduced and studied in details in the first three sections of this paper, where we investigate relationships between the class of (metrically) quarter-stratifiable spaces and other known classes of generalized metric spaces. It turns out that each semi-stratifiable space is quarter-stratifiable (this is a reason for the choice of the term "quarter-stratifiable"), while each quarter-stratifiable Hausdorff space has G_{δ} -diagonal. Because of this, the class of quarter-stratifiable spaces is "orthogonal" to the class of compacta — their intersection contains only metrizable compacta. The class of quarter-stratifiable spaces is quite wide and has many nice inheritance properties. Moreover, every (submetrizable) space with G_{δ} -diagonal is homeomorphic to a closed subset of a (metrically) quarter-stratifiable T_1 -space. The following diagram describes the interplay between the class of (metrically) quarter-stratifiable spaces and other classes of generalized metric spaces in the framework of Hausdorff spaces.

2000 Mathematics Subject Classification: 54E20, 54C05, 54C08.



In the last three sections we apply metrically quarter-stratifiable spaces for generalizing classical theorems of Rudin [19] and Kuratowski-Montgomery [13], [14], [17].

1. Quarter-stratifiable spaces

Before introducing quarter-stratifiable spaces we recall some concepts from the theory of generalized metric spaces, see [8]. All topological spaces considered in this paper are T_1 -spaces, all maps (unlike to functions) are continuous.

- **1.1. Definition.** A topological space X is
- (1) perfect if each open set in X is an F_{σ} -set;
- (2) submetrizable if X admits a condensation (i.e., a bijective continuous map) onto a metrizable space;
- (3) σ -metrizable if X is covered by a countable collection of closed metrizable subspaces;
- (4) a G_{δ} -diagonal if the diagonal is a G_{δ} -set in the square $X \times X$;
- (5) a σ -space if X has a σ -discrete network;
- (6) developable if there exists a sequence $\{\mathcal{U}_n\}_{n\in\mathbb{N}}$ of open covers of X such that for each $x\in X$ the set $\{\mathcal{S}t(x,\mathcal{U}_n)\}_{n\in\mathbb{N}}$ is a base at x, where $\mathcal{S}t(x,\mathcal{U}_n)=\bigcup\{U\in\mathcal{U}_n:x\in U\};$
- (7) a *Moore space* if X is regular and developable;
- (8) semi-stratifiable (resp. stratifiable) if there exists a function G which assigns to each $n \in \mathbb{N}$ and a closed subset $H \subset X$, an open set G(n, H) containing H such that
 - (i) $H = \bigcap_{n \in \mathbb{N}} G(n, U)$ (resp. $H = \bigcap_{n \in \mathbb{N}} \overline{G(n, U)}$) and
 - (ii) $G(n,K) \supset G(n,H)$ for every closed subset $K \supset H$ and $n \in \mathbb{N}$.

The semi-stratifiable spaces admit the following characterization, see [8, 5.8].

1.2. Theorem. A topological space (X, τ) is semi-stratifiable if and only if there exists a function $g: \mathbb{N} \times X \to \tau$ such that for every $x \in X$

(1)
$$\{x\} = \bigcap_{n \in \mathbb{N}} g(n, x)$$

(2)
$$(x \in g(n, x_n), n \in \mathbb{N}) \Rightarrow (x_n \to x).$$

Weakening the first condition to $\bigcup_{x \in X} g(n, x) = X$ leads to the definition of a quarter-stratifiable space — the principal concept in this paper.

- **1.3. Definition.** A topological space (X, τ) is called *quarter-stratifiable* if there exists a function $g: \mathbb{N} \times X \to \tau$ (called *quarter-stratifying function*) such that
- (1) $X = \bigcup_{x \in X} g(n, x)$ for every $n \in \mathbb{N}$;
- (2) $(x \in g(n, x_n), n \in \mathbb{N}) \Rightarrow (x_n \to x).$

A space X is hereditarily quarter-stratifiable if every subspace of X is quarter-stratifiable.

Since the semi-stratifiability is a hereditary property, we get that each semi-stratifiable space is hereditarily quarter-stratifiable. As we shall see later, the converse is not true: the Sorgenfrey line, being hereditarily quarter-stratifiable, is not semi-stratifiable.

First, we give characterizations of the quarter-stratifiability in terms of open covers as well as of lower semi-continuous multivalued functions. We recall that a multivalued function $\mathcal{F}\colon X\to Y$ is lower semi-continuous if for every open set $U\subset Y$ its "preimage" $\mathcal{F}^{-1}(U)=\{x\in X: \mathcal{F}(x)\cap U\neq\varnothing\}$ is open in X. For a topological space X by X_d we denote X endowed with the discrete topology.

- **1.4. Theorem.** For a space X the following statements are equivalent:
- (1) X is quarter-stratifiable;
- (2) there exists a sequence $\{\mathcal{U}_n\}_{n\in\mathbb{N}}$ of open covers of X and a sequence $\{s_n \colon \mathcal{U}_n \to X\}_{n\in\mathbb{N}}$ of functions such that $s_n(U_n) \to x$ if $x \in U_n \in \mathcal{U}_n$, $n \in \mathbb{N}$;
- (3) there exists a sequence $\{\mathcal{F}_n \colon X \to X_d\}_{n \in \mathbb{N}}$ of lower semi-continuous multivalued functions tending to the identity map of X in the sense that for every point $x \in X$ and every neighborhood $O(x) \subset X$ of x there is $n_0 \in \mathbb{N}$ such that $\mathcal{F}_n(x) \subset O(x)$ for every $n \geq n_0$.
- Proof. (1) \Rightarrow (2) Assume that (X, τ) is quarter-stratifiable and fix a function $g: \mathbb{N} \times X \to \tau$ from Definition 1.3. Let $\mathcal{U}_n = \{g(n, x) : x \in X\}$ and for every $U \in \mathcal{U}_n$ find $x \in X$ with U = g(n, x) and let $s_n(U) = x$. Clearly, the so-defined sequences $\{\mathcal{U}_n\}$ and $\{s_n\}$ satisfy our requirements.
- $(2) \Rightarrow (3)$ For every $n \in \mathbb{N}$ define $\mathcal{F}_n \colon X \to X_d$ letting $\mathcal{F}_n(x) = \{s_n(U) : x \in U \in \mathcal{U}_n\}$ for $x \in X$. Clearly, \mathcal{F}_n is lower-semicontinuous and $\mathcal{F}_n(x) \to x$ for each $x \in X$.
- $(3) \Rightarrow (1)$ For each $(n,x) \in \mathbb{N} \times X$ let $g(n,x) = \mathcal{F}_n^{-1}(x)$ and check that the so-defined function $g \colon \mathbb{N} \times X \to \tau$ fits.

Given a topological space X, by l(X) and d(X) we denote respectively the Lindelöf number and the density of X.

Like other classes of generalized metric spaces, the class of quarter-stratifiable spaces has many nice inheritance properties.

- **1.5. Theorem.** Let X be a quarter-stratifiable space.
- (1) Every open subspace and every retract of X is quarter-stratifiable.
- (2) If X is Hausdorff, then it has a G_{δ} -diagonal and countable pseudo-character.
- (3) If X is Hausdorff, then every paracompact Čech-complete subspace and every countably compact subspace of X is metrizable.

- (4) $d(X) \leq l(X)$.
- (5) If $f: Y \to X$ is a condensation with sequentially continuous inverse f^{-1} , then Y is quarter-stratifiable.
- (6) If $f: X \to Y$ is a finite-to-one open surjective map, then the space Y is quarter-stratifiable.

Proof. Using Theorem 1.4, fix a map $g: \mathbb{N} \times X \to \tau$, a sequence $\{\mathcal{F}_n: X \to X_d\}_{n \in \mathbb{N}}$ of lower-semicontinuous multivalued functions tending to the identity map of X, and sequences $\{\mathcal{U}_n\}_{n \in \mathbb{N}}$ of open covers and functions $\{s_n\}_{n \in \mathbb{N}}$ satisfying the conditions of Definition 1.3 and Theorem 1.4.

1) Given an open subspace Y of X, let $\mathcal{V}_n = \{U \cap Y : U \in \mathcal{U}_n\}$, $n \in \mathbb{N}$. For each $V \in \mathcal{V}_n$ find a set $U(V) \in \mathcal{U}_n$ with $V = U(V) \cap Y$ and let $\tilde{s}_n(V) = s_n(U(V))$ if $s_n(U) \in Y$ and $\tilde{s}_n(V)$ be any point of Y, otherwise. Clearly, \mathcal{V}_n is an open cover of Y. Now fix any point Y of Y and take a sequence $V_n \in \mathcal{V}_n$ with $Y \in V_n$ for $Y \in \mathbb{N}$. Since $S_n(U(V_n)) \to Y$, we get $S_n(U(V_n)) \in Y$ for all $Y \in Y$ for all $Y \in Y$ for some $Y \in Y$. Then $\tilde{s}_n(V_n) = S_n(U(V_n))$ for $Y \in Y$ for all $Y \in Y$ is a quarter-stratifiable space.

Now suppose that a subspace Y of X is a retract of X and let $r: X \to Y$ be the corresponding retraction. One can readily prove that $\{r \circ \mathcal{F}_n | Y: Y \to Y_d\}$ is a sequence of lower-semicontinuous multivalued functions tending to the identity map of Y.

- 2) Assume that the quarter-stratifiable space X is Hausdorff. Let $G_n = \bigcup_{U \in \mathcal{U}_n} U \times U \subset X \times X$. We claim that $\bigcap_{n \in \mathbb{N}} G_n$ coincides with the diagonal of $X \times X$. To show this, take any distinct points $x, y \in X$ and take disjoint neighborhood O(x), O(y) of x and y, respectively. It follows from the choice of the sequences $\{\mathcal{U}_n\}$ and $\{s_n\}$ that there is $n \in \mathbb{N}$ such that $s_m(U_m) \in O(x)$ and $s_m(V_m) \in O(y)$ for all $m \geq n$ and $x \in U_m \in \mathcal{U}_m$, $y \in V_m \in \mathcal{U}_m$. We claim that $(x,y) \notin G_n$. Assuming the converse, we would find a set $U_n \in \mathcal{U}_n$ with $(x,y) \in U_n \times U_n$. Then $x,y \in U_n$ and $s_n(U_n) \in O(x) \cap O(y)$, a contradiction. Thus X has a G_δ -diagonal, which implies the countability of the pseudo-character of X.
- 3) If X is Hausdorff and $Y \subset X$ is a paracompact Čech-complete or countably compact subspace of X, then Y has a G_{δ} -diagonal and by [3, 8.2] or [8, 2.14] is metrizable.
- 4) To see that $d(X) \leq l(X)$ we may take the subset $D = \{s_n(U) : U \in \mathcal{V}_n, n \in \mathbb{N}\}$, where \mathcal{V}_n is a subcover of \mathcal{U}_n of size $|\mathcal{V}_n| \leq l(X)$ for $n \in \mathbb{N}$. Clearly, D is a dense subset in X of size $|D| \leq l(X)$.
- 5) If $f: Y \to X$ is a condensation with sequentially continuous inverse f^{-1} , we may consider the function g_Y assigning to each pair $(n, y) \in \mathbb{N} \times Y$ the open set $f^{-1}(g(n, f(y)))$ of Y. One may easily show that the so-defined function g_Y turns Y into a quarter-stratifiable space.
- 6) Suppose $f: X \to Y$ is an open finite-to-one surjective map. It can be shown that for every $n \in \mathbb{N}$ the multivalued map $f \circ \mathcal{F}_n \circ f^{-1}: Y \to Y_d$ defined by $f \circ \mathcal{F}_n \circ f^{-1} = \bigcup_{x \in f^{-1}(y)} f(\mathcal{F}_n(x))$ for $y \in Y$ is lower-semicontinuous. Moreover, the sequence $\{f \circ \mathcal{F}_n \circ f^{-1}\}_{n \in \mathbb{N}}$ tends to the identity map of Y. Then according to Theorem 1.4, the space Y is quarter-stratifiable.

Next, we show that the quarter-stratifiability is stable with respect to certain set-theoretic operations.

1.6. Theorem.

(1) The countable product of quarter-stratifiable spaces is quarter-stratifiable.

- (2) A space X is quarter-stratifiable, provided $X = A \cup B$ is a union of two quarter-stratifiable subspaces of X, one of which is a closed G_{δ} -set in X.
- (3) A space X is quarter-stratifiable, provided X can be covered by a σ -locally finite collection of quarter-stratifiable closed G_{δ} -subspaces of X.
- Proof. 1) Let X_i , $i \in \mathbb{N}$, be a sequence of quarter-stratifiable spaces. For every $i \in \mathbb{N}$, fix a point $*_i \in X_i$ and a sequence $\{\mathcal{F}_{i,n} : X_i \to (X_i)_d\}_{n \in \mathbb{N}}$ of lower-semicontinuous multivalued functions tending to the identity map of X_i as $n \to \infty$. Let $X = \prod_{i \in \mathbb{N}} X_i$ and for every $n \in \mathbb{N}$ identify the product $\prod_{i=1}^n X_i$ with the subspace $\{(x_i)_{i \in \mathbb{N}} : x_i = *_i \text{ for } i > n\}$ of X. For every $n \in \mathbb{N}$ define a multivalued function $\mathcal{F}_n : X \to X_d$ as follows: $\mathcal{F}_n((x_i)_{i \in \mathbb{N}}) = \prod_{i=1}^n \mathcal{F}_{i,n}(x_i)$. It is easy to see that each function \mathcal{F}_n is lower semicontinuous and the sequence $\{\mathcal{F}_n\}$ tends to id_X .
- 2) Suppose $X = A \cup B$, where A, B are quarter-stratifiable subspaces and B is a closed G_{δ} -set in X. Fix a decreasing sequence $\{O_n(B)\}_{n\in\mathbb{N}}$ of open subsets of X with $B = \bigcap_{n\in\mathbb{N}} O_n(B)$. By Theorem 1.5(1), the open subspace $A \setminus B = X \setminus B$ of A is quarter-stratifiable and thus admits a function $g_{A\setminus B} : \mathbb{N} \times (A \setminus B) \to \tau$ into the topology τ of X such that $\bigcup_{x\in A\setminus B} g_{A\setminus B}(n,x) \supset A \setminus B$ for each $n\in\mathbb{N}$, and $x\in g_{A\setminus B}(n,x_n) \Rightarrow x_n \to x$ for each $x, x_n \in A \setminus B$, $n\in\mathbb{N}$.

Using the quarter-stratifiability of B find a function $g_B : \mathbb{N} \times B \to \tau$ such that $B \subset \bigcup_{x \in B} g_B(n,x) \subset O_n(B)$ for every $n \in \mathbb{N}$, and $x \in g_B(n,x_n) \Rightarrow x_n \to x$ for each $x, x_n \in B$, $n \in \mathbb{N}$. It is easy to verify that the function $g : \mathbb{N} \times X \to \tau$ defined by

$$g(n,x) = \begin{cases} g_{A \setminus B}(n,x) & \text{if } x \in A \setminus B, \\ g_B(n,x) & \text{if } x \in B \end{cases}$$

turns X into a quarter-stratifiable space.

3) Let $\{X_i\}_{i\in\mathcal{I}}$ be a σ -locally finite collection of quarter-stratifiable closed G_{δ} -subspaces of a space X. Write $\mathcal{I} = \bigcup_{k\in\mathbb{N}} \mathcal{I}_k$ so that the collection $\{X_i\}_{i\in\mathcal{I}_k}$ is locally finite for every $k\in\mathbb{N}$. Without loss of generality, $\mathcal{I}_k\subset\mathcal{I}_{k+1}$ for every k. For every k fix an open cover \mathcal{W}_k of X whose any element $W\in\mathcal{W}_k$ meets only finitely many of the sets X_i 's with $i\in\mathcal{I}_k$. We may additionally require that the cover \mathcal{W}_k is inscribed into the cover \mathcal{W}_{k-1} for k>1.

Since X_i 's are G_{δ} -sets in X, for every $i \in \mathcal{I}$ we may find a decreasing sequence $\{O_n(X_i)\}_{n \in \mathbb{N}}$ of open subsets

$$O_n(X_i) \subset \mathcal{S}t(X_i, \mathcal{W}_n) = \{W \in \mathcal{W}_n : W \cap X_i \neq \emptyset\}$$

with $\bigcap_{n\in\mathbb{N}} O_n(X_i) = X_i$.

Let \leq be any well-ordering of the index set \mathcal{I} such that i < j for every $i, j \in I$ with $i \in I_k \not\ni j$ for some k. It follows from the local finiteness of the collections $\{X_i\}_{i \in \mathcal{I}_k}$ that for every $i \in \mathcal{I}$ the set $\bigcup_{j < i} X_j$ is closed in X. Using the quarter-stratifiability of open subsets of X_i 's, for every $i \in \mathbb{N}$ fix a sequence $\{\mathcal{U}_{i,n}\}_{n \in \mathbb{N}}$ of open covers of the set $Y_i = X_i \setminus \bigcup_{j < i} X_j$ and a sequence $\{s_{i,n} \colon \mathcal{U}_{i,n} \to Y_i\}$ of functions such that $s_{i,n}(U_n) \to y$ for every $Y_i \ni y \in U_n \in \mathcal{U}_{i,n}$, $n \in \mathbb{N}$. Without loss of generality, we may assume that each $U \in \mathcal{U}_{i,n}$ is an open subset of X lying in $O_n(X_i) \setminus \bigcup_{j < i} X_j$. Now for every $n \in \mathbb{N}$ consider the open cover $\mathcal{U}_n = \bigcup_{i \in \mathcal{I}} \mathcal{U}_{i,n}$ and the function $s_n = \bigcup_{i \in \mathcal{I}} s_{i,n} \colon \mathcal{U}_n \to X$.

To show that the space X is quarter-stratifiable, it suffices to verify that for every $x \in X$ and a sequence $U_n \in \mathcal{U}_n$, $n \in \mathbb{N}$, with $x \in U_n$ we have $s_n(U_n) \to x$. Let $i = \min\{j \in \mathcal{I} : x \in X_i\}$. Then $x \in Y_i$. For every $n \in \mathbb{N}$ find $i_n \in \mathcal{I}$ with $U_n \in \mathcal{U}_{i_n,n}$. Since $x \in U_n \subset \mathcal{I}$

 $O_{i_n}(X_i)\setminus\bigcup_{j\leqslant i_n}X_j$, we get $i_n\leq i$ for all $n\in\mathbb{N}$. It follows from the choice of the cover \mathcal{W}_n and the sets $O_n(X_j)$ that $\bigcap_{n=1}(\bigcup_{j\leqslant i}O_n(X_j))=\bigcup_{j\leqslant i}X_j$. Consequently, $x\notin\bigcap_{n=1}^{\infty}(\bigcup_{j\leqslant i}O_n(X_j))$ and there is $n_0\in\mathbb{N}$ such that $x\notin\bigcup_{j\leqslant i}O_n(X_j)$ for every $n\geq n_0$. Since $x\in U_n\subset O_n(X_{i_n})$ for every $n\in\mathbb{N}$, we conclude that $i_n=i$ for $n\geq n_0$. Then $x\in U_n\in\mathcal{U}_{i,n}$ for all $n\geq n_0$ and $s_n(U_n)=s_{i,n}(U_n)\to x$, which completes the proof of the quarter-stratifiability of X.

1.7. Remark. The G_{δ} -condition in Theorem 1.6(2) is essential: the one-point compactification $\alpha\Gamma$ of an uncountable discrete space Γ may be written as the union $\alpha\Gamma = \{\infty\} \cup \Gamma$ of two metrizable subspaces, one of which is closed. But $\alpha\Gamma$, being a non-metrizable compactum, is not quarter-stratifiable, see Theorem 1.5(3). Yet, we do not know the answer to the following question.

1.8. Question. Is a (regular) space X quarter-stratifiable if it is a union of two closed quarter-stratifiable subspaces?

According to Theorem 1.5(1), every open subspace of a quarter-stratifiable space is quarter-stratifiable. It is not true for closed subspaces of quarter-stratifiable spaces: every G_{δ} -diagonal space is homeomorphic to a closed subset of a quarter-stratifiable T_1 -space.

1.9. Theorem. Every space X with G_{δ} -diagonal is homeomorphic to a closed subspace of a quarter-stratifiable T_1 -space Y with $|Y \setminus X| \leq \max\{l(X), d(X)\}$.

Proof. Suppose X is a space with G_{δ} -diagonal. By Theorem 2.2 of [8], X admits a sequence $\{\mathcal{V}_n\}_{n\in\mathbb{N}}$ of covers such that $\{x\} = \bigcap_{n\in\mathbb{N}} \mathcal{S}t(x,\mathcal{V}_n)$ for every $x\in X$. Replacing each \mathcal{V}_n by a suitable subcover, we may assume that $|\mathcal{V}_n| \leq l(X)$ for every n, and each cover \mathcal{V}_n consists of non-empty subsets of X. Let $D\subset X$ be a dense subset of X with $|D|\leq d(X)$. For every $n\in\mathbb{N}$ and every $V\in\mathcal{V}_n$ pick a point $c(V)\in V\cap D$. Let $S_n=\{0\}\cup\{1/i:i\geq n\}$ denote a tail of the convergent sequence S_1 .

Consider the subset $Y = X \times \{0\} \cup \{(c(V), 1/n) : V \in \mathcal{V}_n, n \in \mathbb{N}\} \subset X \times S_1$. It is clear that $|Y \setminus X| \leq \min\{|\bigcup_{n \in \mathbb{N}} \mathcal{V}_n|, |D|\} \leq \min\{|l(X), d(X)\}$. Identify X with the subset $X \times \{0\}$ of Y. Define a topology τ on Y letting $U \subset Y$ be open if and only if $U \cap X$ is open in X and for every $x \in U \cap X$ there is $n_0 \in \mathbb{N}$ such that $\{(c(V), 1/n) : x \in V \in \mathcal{V}_n, n \geq n_0\} \subset U$. Thus X is homeomorphic to a closed subspace of Y, while all points of $Y \setminus X$ are isolated. Since each one-point subset of Y is closed, Y is a T_1 -space. To show that Y is a quarter-stratifiable space, consider open covers $\mathcal{U}_n = \{\{y\}, (V \times S_n) \cap Y : y \in Y \setminus X, V \in \mathcal{V}_n\}, n \in \mathbb{N}$, of Y. For every $U \in \mathcal{U}_n$ let

$$s_n(U) = \begin{cases} y & \text{if } U = \{y\} \text{ for some } y \in Y \setminus X; \\ (c(V), 1/n) & \text{if } U = (V \times S_n) \cap Y \text{ for } V \in \mathcal{V}_n. \end{cases}$$

It follows from the choice of the topology τ on Y that $x \in U_n \in \mathcal{U}_n$, $n \in \mathbb{N}$, implies $s_n(U_n) \to x$ i.e., Y is a quarter-stratifiable T_1 -space.

1.10. Problem. Describe the class of subspaces of regular (Tychonoff) quarter-stratifiable T_1 -spaces.

2. Metrically quarter-stratifiable spaces

In this section we introduce and study metrically quarter-stratifiable spaces forming a class, intermediate between the class of paracompact quarter-stratifiable Hausdorff spaces

and the class of submetrizable quarter-stratifiable spaces. We start with defining a quarter-stratifying topology.

2.1. Definition. A topology τ' on a topological space (X,τ) is called *quarter-stratifying* if there exists a quarter-stratifying function $g \colon \mathbb{N} \times X \to \tau$ for X such that $g(\mathbb{N} \times X) \subset \tau'$.

A topological space X is defined to be *metrically quarter-stratifiable* if it admits a weaker metrizable quarter-stratifying topology.

The following theorem characterizes metrically quarter-stratifiable spaces.

- **2.2. Theorem.** For a space X the following statements are equivalent:
- (1) X admits a weaker metrizable quarter-stratifying topology;
- (2) X admits a weaker paracompact Hausdorff quarter-stratifying topology;
- (3) there exists a weaker metrizable topology τ_m on X, a sequence $\{\mathcal{U}_n\}_{n\in\mathbb{N}}$ of covers of X by τ_m -open subsets and a sequence $\{s_n \colon \mathcal{U}_n \to X\}_{n\in\mathbb{N}}$ of functions such that $s_n(U_n) \to x$ in X if $x \in U_n \in \mathcal{U}_n$, $n \in \mathbb{N}$;
- (4) there exists a weaker paracompact Hausdorff topology τ_p on X, a sequence $\{\mathcal{V}_n\}_{n\in\mathbb{N}}$ of covers of X by τ_p -open subsets and a sequence $\{\tilde{s}_n\colon \mathcal{V}_n\to X\}_{n\in\mathbb{N}}$ of functions such that $\tilde{s}_n(V_n)\to x$ in X if $x\in V_n\in\mathcal{V}_n$, $n\in\mathbb{N}$;

Proof. The equivalence $(1) \Leftrightarrow (3)$ and $(2) \Leftrightarrow (4)$ can be proved by analogy with the corresponding equivalences in Theorem 1.4; the implication $(3) \Rightarrow (4)$ is trivial.

 $(4) \Rightarrow (3)$ Assume that τ_p is a weaker paracompact Hausdorff topology on X, $\{U_n\}_{n\in\mathbb{N}}$ is a sequence of τ_p -open covers of X, and $\{s_n \colon \mathcal{U}_n \to X\}_{n\in\mathbb{N}}$ is a sequence of functions such that $s_n(U_n) \to x$ in X if $x \in U_n \in \mathcal{U}_n$, $n \in \mathbb{N}$. Let $l_1(\mathcal{U}_n)$ denote the Banach space of all absolutely summable functions $f \colon \mathcal{U}_n \to \mathbb{R}$ equipped with the norm $||f|| = \sum_{U \in \mathcal{U}_n} |f(U)|$.

Using the paracompactness of the topology $\tau_p \subset \tau$, for every $n \in \mathbb{N}$ find a partition of unity $\{\lambda_U \colon X \to [0,1]\}_{U \in \mathcal{U}_n}$ such that $\lambda_U^{-1}(0,1] \subset U$ for $U \in \mathcal{U}_n$. Observe that this partition of unity can be regarded as a continuous map $\Lambda_n \colon X \to l_1(\mathcal{U}_n)$ acting as $\Lambda_n(x) = (\lambda_U(x))_{U \in \mathcal{U}_n}$ (the continuity of Λ_n follows from the local finiteness of the cover $\{\lambda_U^{-1}(0,1] \colon U \in \mathcal{U}_n\}$).

Let $\Lambda: X \to \prod_{n \in \mathbb{N}} l_1(\mathcal{U}_n)$ denote the diagonal product of the maps Λ_n . By analogy with the proof of Theorem 1.5(2), show that the map Λ is injective. Then the weakest topology τ_m on X for which the map Λ is continuous is metrizable. Observe that for each $n \in \mathbb{N}$ and $U \in \mathcal{U}_n$ the set $V(U) = \lambda_U^{-1}(0,1]$ is τ_m -open. Let $\mathcal{V}_n = \{V(U) : U \in \mathcal{U}_n\}$. For every $V \in \mathcal{V}_n$ find $U \in \mathcal{U}_n$ with V = V(U) and let $\tilde{s}_n(V) = s_n(U)$. One can easily check that the metrizable topology τ_m on X and the sequences $\{V_n\}_{n \in \mathbb{N}}$, $\{\tilde{s}_n\}_{n \in \mathbb{N}}$ satisfy condition (3). \square

In the following theorem we collect some elementary properties of metrically quarterstratifiable spaces.

2.3. Theorem.

- (1) Each paracompact Hausdorff quarter-stratifiable space is metrically quarter-stratifiable.
- (2) Each metrically quarter-stratifiable space is submetrizable and quarter-stratifiable.
- (3) Every open subspace of a metrically quarter-stratifiable space is metrically quarter-stratifiable.
- (4) If X is a metrically quarter-stratifiable space and $f: Y \to X$ is a condensation with sequentially continuous inverse f^{-1} , then the space Y is metrically quarter-stratifiable.

- (5) The product $X = \prod_{n \in \mathbb{N}} X_n$ of a countable collection of metrically quarter-stratifiable spaces X_n , $n \in \mathbb{N}$, is a metrically quarter-stratifiable space.
- (6) A space X is metrically quarter-stratifiable if there exist a weaker paracompact Hausdorff topology τ_p and two subspaces $A, B \subset X$ such that $A \cup B = X$, A is a closed G_{δ} -set in (X, τ_p) and the topologies induced by the topology τ_p on A and B are quarter-stratifying.
- (7) A space X is metrically quarter-stratifiable if there exist a weaker paracompact Hausdorff topology τ_p on X and a σ -locally finite cover \mathcal{C} of (X, τ_p) by closed G_{δ} -subspaces such that the topology induced by τ_p on each $C \in \mathcal{C}$ is quarter-stratifying (with respect to the original topology of C);
- (8) A space X is metrically quarter-stratifiable if there is a weaker metrizable topology τ_m on X and a cover \mathcal{C} of X, well-ordered by the inclusion relation, such that the topology τ_m induces the original topology on each $C \in \mathcal{C}$;
- (9) Every submetrizable space is homeomorphic to a metrically quarter- stratifiable space.

Proof. All statements (except (8)) easily follow from the definitions or can be proved by analogy with the corresponding properties of the quarter-stratifiable spaces.

To prove statement (8), fix a continuous metric d on X and a well-ordered (by the inclusion relation) cover \mathcal{C} of X such that d induces the original topology on each $C \in \mathcal{C}$. Let \mathcal{U}_n denotes the collection of all open 1/n-balls with respect to the metric d. For every $U \in \mathcal{U}_n$ let C(U) be the smallest set $C \in \mathcal{C}$ meeting U and let $s_n(U) \in U \cap C(U)$ be any point.

Fix any $x \in X$ and a sequence $x \in U_n \in \mathcal{U}_n$, $n \in \mathbb{N}$. We have to show that $s_n(U_n) \to x$. Let C(x) be the smallest set $C \in \mathcal{C}$ containing the point x. Since $x \in C(x) \cap U_n$, we conclude that $s_n(U_n) \in C(x)$. By the choice of the sets U_n , diam $(U_n) \leq 2/n$. Then $d(x, s_n(U_n)) \leq \dim(U_n) \leq 2/n$, $n \in \mathbb{N}$, and thus $s_n(U_n) \to x$ (because d induces the topology of C(x)). \square

According to Theorem 2.3(2) each metrically quarter-stratifiable space is submetrizable and quarter-stratifiable. We do not know if the converse is also true.

2.4. Question. Is every submetrizable quarter-stratifiable space metrically quarter-stratifiable?

3. Some Examples

In this section we collect some examples exposing the difference between the class of (metrizable) quarter-stratifiable spaces and other classes of generalized metric spaces. It is known that every Moore space is semi-stratifiable and each collectively normal Moore space is metrizable, see [8]. Yet, there exist Moore spaces which are not submetrizable, see [18]. Thus we have

3.1. Example. There exists a quarter-stratifiable (Moore) space which is not metrically quarter-stratifiable.

Theorems 1.9 and 2.3(9) show that the class of quarter-stratifiable spaces is much wider than that of semi-stratifiable spaces. Using these theorems many wild (metrically) quarterstratifiable spaces may be constructed. But in general, so-constructed spaces are not hereditarily quarter-stratifiable. **3.2. Example.** The Sorgenfrey line Z is not semi-stratifiable but every subspace of Z is Lindelöf, separable, and metrically quarter-stratifiable.

Proof. Recall that the Sorgenfrey line Z is the semi-interval [0,1) endowed with the topology generated by the base consisting of all semi-intervals [a,b) where $0 \le a < b \le 1$, see [5,1.2.2]. Since Z embeds into a linearly ordered space ("two arrows" of Aleksandrov [5,3.10.C]), Z is monotonically normal, see [8,5.21]. If Z would be semi-stratifiable, then Z, being monotonically normal, would be stratifiable according to Theorem 5.16 of [8]. Since each stratifiable space is a σ -space [8,5.9] and Lindelöf σ -spaces have countable network [8,4.4], this would imply that Z has countable network, which is a contradiction. Therefore, the Sorgenfrey line Z is not semi-stratifiable.

Next, we show that every subspace X of Z is quarter-stratifiable. For every $n \in \mathbb{N}$ consider the finite open cover $\mathcal{U}_n = \{X \cap [\frac{k-1}{n}, \frac{k}{n}) : 0 < k \leq n\}$ of X. For every element $U \in \mathcal{U}_n$ choose a point $s_n(U) \in X$ as follows. If the set $\uparrow U = \{x \in X : x \geq \sup U\}$ is not empty, then let $s_n(U)$ be any point of X with $s_n(U) < \inf \uparrow U + \frac{1}{n}$; otherwise, let $s_n(U)$ be any point of X. It can be shown that $s_n(U_n) \to x$ for every $x \in X$ and every sequence $x \in U_n \in \mathcal{U}_n$, $n \in \mathbb{N}$. Thus the space X is quarter-stratifiable. It is well known that the Sorgenfrey line is hereditarily Lindelöf and hereditarily separable which implies that the space X is Lindelöf and separable. Then X is also paracompact ([5, 5.1.2]) and hence, being quarter-stratifiable, is metrically quarter-stratifiable.

Since the metrical quarter-stratifiability is productive, we get

3.3. Example. The square of the Sorgenfrey line is metrically quarter-stratifiable but not normal.

Another example of a metrically quarter-stratifiable non-normal space is the Nemytski plane. Unlike to (semi-)stratifiable spaces, metrically quarter-stratifiable spaces need not be perfect (or paracompact).

3.4. Example. A separable zero-dimensional metrically quarter-stratifiable Tychonov space which is neither perfect nor Lindelöf.

Proof. Consider the Cantor cube $2^{\omega} = \{0,1\}^{\omega}$, i.e., the set of all functions $\omega \to \{0,1\}$. There is a natural partial order on 2^{ω} : $x \leq y$ iff $x(i) \leq y(i)$ for each $i \in \omega$. For $k \in \{0,1\}$ let $2_k^{\omega} = \{(x_i)_{i \in \omega} : \exists n \in \omega \text{ with } x(i) = k \text{ for all } i \geq n\}$. For a point $x \in 2^{\omega}$ and $n \in \omega$ let $U(x,n) = \{y \in 2^{\omega} : y \geq x \text{ and } y(i) = x(i) \text{ for } i \leq n\}$. On the set 2^{ω} consider the topology τ generated by the base $\{U(x,n) : x \in 2^{\omega}, n \in \omega\}$. Clearly, the space $X = (2^{\omega}, \tau)$ is Tychonoff, zero-dimensional, and separable (2_1^{ω}) is a countable dense set in X).

Let us show that the space X is metrically quarter-stratifiable. For every $n \in \omega$ identify 2^n with the subset $\{(x_i) \in 2^\omega : x_i = 0 \text{ for } i \geq n\} \subset 2^\omega$ and consider the finite cover $\mathcal{U}_n = \{U(x,n) : x \in 2^n\}$ of 2^ω . It is clear that each set $U(x,n) \in \mathcal{U}_n$ is open is the product topology of 2^ω which is metrizable. To each $U \in \mathcal{U}_n$ assign the point $s_n(U) = \max U \in 2_1^\omega$. One may easily verify that $s_n(U_n) \to x$ for every $x \in X$ and a sequence $x \in \mathcal{U}_n \in \mathcal{U}_n$, $n \in \omega$. Thus the space X is metrically quarter-stratifiable.

Now we show that the space X is not perfect. Note that 2_0^{ω} is a closed subset of X. We claim that it is not a G_{δ} -subset of X. Assume conversely that $2_0^{\omega} = \bigcap_{n \in \mathbb{N}} O_n$, where O_n are open subsets of X. Since the topology of X coincides with the usual product topology at every point of the set 2_0^{ω} , we may assume that each set O_n is open in the product topology of

 2^{ω} . Then by the Baire theorem, the intersection $\bigcap_{n\in\mathbb{N}} O_n$ is a dense G_{δ} -subset in 2^{ω} , which contains a point $x\notin 2_0^{\omega}$, a contradiction.

By Theorem 2.3(3) the open subspace $Y = X \setminus 2_0^{\omega}$ of X is metrically quarter-stratifiable. Since X is regular and 2_0^{ω} is not a G_{δ} -set in X, we conclude that the space Y is not Lindelöf.

Then the product $X \times Y$ is a separable Tychonov zero-dimensional metrically quarter-stratifiable space which is neither perfect nor Lindelöf.

3.5. Question. Is there a hereditarily quarter-stratifiable space which is not perfect?

We recall that a topological space X is finally compact if $l(X) \leq \aleph_0$, i.e., every open cover of X admits a countable subcover. Finally compact regular spaces are called Lindelöf.

3.6. Example. A hereditarily finally compact submetrizable uncountable space whose uncountable subspaces are neither separable nor quarter-stratifiable.

Proof. Let X be the interval (0,1) with the topology generated by the sets of the form $(a,b)\backslash C$, where $0 \le a < b \le 1$ and C is a countable set. Clearly, the space X is submetrizable and hereditarily finally compact. Yet, every countable subset of X is closed which implies that every uncountable subspace Y of X is not separable. Since the finally compact quarter-stratifiable spaces are separable, see Theorem 1.6(4), we conclude that the space Y is not quarter-stratifiable.

The space constructed in Example 3.6 is not regular. There is also a regular submetrizable non-quarter-stratifiable space.

Given a subset $B \subset \mathbb{R}$ denote by \mathbb{R}_B the real line \mathbb{R} endowed with the topology consisting of the sets $U \cup A$, where U open in \mathbb{R} and $A \subset B$, see [5, 5.1.22, 5.5.2]. It is known that for every $B \subset \mathbb{R}$ the space \mathbb{R}_B is hereditarily paracompact; \mathbb{R}_B is perfect if and only if B is a G_{δ} -set in \mathbb{R} . If $B \subset \mathbb{R}$ is a Bernstein set, then the space \mathbb{R}_B is Lindelöf, see [5, 5.5.4]. Recall that a subset $B \subset \mathbb{R}$ is called a Bernstein set if $C \cap B \neq \emptyset \neq C \setminus B$ for every uncountable compactum $C \subset \mathbb{R}$. Bernstein sets can be easily constructed by transfinite induction, see [5, 5.4.4].

3.7. Example. If $B \subset \mathbb{R}$ is not σ -compact, then the space \mathbb{R}_B is not quarter-stratifiable. Consequently, if $B \subset \mathbb{R}$ is the set of irrationals, then \mathbb{R}_B is a hereditarily paracompact submetrizable perfect zero-dimensional space which is neither separable nor quarter-stratifiable; if $B \subset \mathbb{R}$ is a Bernstein set, then \mathbb{R}_B is a submetrizable hereditarily paracompact Lindelöf zero-dimensional space which is neither perfect nor separable nor quarter-stratifiable.

Proof. Assume that $B \subset \mathbb{R}$ is not σ -compact. Suppose the space \mathbb{R}_B is quarter-stratifiable and fix a sequence $\{\mathcal{U}_n\}_{n\in\mathbb{N}}$ of open covers of \mathbb{R}_B and a sequence $\{s_n\colon \mathcal{U}_n\to\mathbb{R}_B\}_{n\in\mathbb{N}}$ of functions such that $s_n(U_n)\to x$ for every $x\in U_n\in\mathcal{U}_n$, $n\in\mathbb{N}$. Since the real line is hereditarily Lindelöf and the topology of \mathbb{R}_B coincides with the usual topology at the points of the set $\mathbb{R}\setminus B$, we may find countable subcovers $\mathcal{V}_n\subset\mathcal{U}_n$, $n\in\mathbb{N}$, of the set $\mathbb{R}\setminus B$. Observe that $C=\{s_n(V):V\in\mathcal{V}_n,\ n\in\mathbb{N}\}$ is countable while the intersection $G=\bigcap_{n\in\mathbb{N}}\mathcal{S}t(\mathbb{R}\setminus B,\mathcal{V}_n)$ is a G_δ -set in the usual topology of \mathbb{R} . Since B is not σ -compact, there is a point $x\in B\cap G\setminus C$. Choose for every $n\in\mathbb{N}$ an element $V_n\in\mathcal{V}_n$ with $V_n\ni x$. Then $x\not=s_n(V_n)$ for all n and by the definition of the topology of \mathbb{R}_B , $s_n(V_n)\not\to x$. This contradiction shows that the space \mathbb{R}_B is not quarter-stratifiable.

4. A GENERALIZATION OF KURATOWSKI-MONTGOMERY THEOREM

In this section we apply metrically quarter-stratifiable spaces to generalize a theorem of Kuratowski [14] and Montgomery [17] which asserts that for metrizable spaces X, Y, Z a function $f: X \times Y \to Z$ is Borel measurable of class $\alpha + 1$, α a countable ordinal, if f is continuous with respect to the first variable and Borel measurable of class α with respect to the second variable.

At first, we recall the definitions of the multiplicative and additive Borel classes. Given a topological space X let $\mathcal{A}_0(X)$ and $\mathcal{M}_0(X)$ denote the classes of all open and all closed subsets of X, respectively. Assuming that for a countable ordinal α the classes $\mathcal{A}_{\beta}(X)$, $\mathcal{M}_{\beta}(X)$, $\beta < \alpha$, are already defined, let $\mathcal{A}_{\alpha}(X) = \{\bigcup_{n=1}^{\infty} M_n : M_n \in \bigcup_{\beta < \alpha} \mathcal{M}_{\beta}(X) \text{ for all } n \in \mathbb{N}\}$ and $\mathcal{M}_{\alpha}(X) = \{M \subset X : X \setminus M \in \mathcal{A}_{\alpha}(X)\}.$

We say that a function $f: X \to Y$ between topological spaces is Borel measurable of class α if the preimage $f^{-1}(U)$ of any open set $U \subset Y$ belongs to the additive class $\mathcal{A}_{\alpha}(X)$ (of course, this is equivalent to saying that the preimage $f^{-1}(F)$ of any closed subset $F \subset Y$ belongs to the multiplicative class $\mathcal{M}_{\alpha}(X)$).

The set of all Borel measurable functions $f: X \to Y$ of class α is denoted by $H_{\alpha}(X,Y)$. For topological spaces X,Y,Z and a countable ordinal α let $CH_{\alpha}(X \times Y,Z)$ denote the set of all functions $f: X \times Y \to Z$ which are continuous with respect to the first variable and are Borel measurable of class α with respect to the second variable. The Kuratowski-Montgomery Theorem states that $CH_{\alpha}(X \times Y,Z) \subset H_{\alpha+1}(X \times Y,Z)$ for metrizable spaces X,Y,Z and a countable ordinal α .

A subset A of a topological space X is called a \overline{G}_{δ} -set if $A = \bigcap_{n \in \mathbb{N}} U_n = \bigcap_{n \in \mathbb{N}} \overline{U}_n$ for some open sets $U_n \subset X$, $n \in \mathbb{N}$. Observe that every \overline{G}_{δ} -set is a closed G_{δ} -set and every closed G_{δ} -set in a normal space is a \overline{G}_{δ} -set. Consequently, every closed subset of a perfectly normal space is a \overline{G}_{δ} -set.

4.1. Theorem. The inclusion $CH_{\alpha}(X \times Y, Z) \subset H_{\alpha+1}(X \times Y, Z)$ holds for any countable ordinal α , any metrically quarter-stratifiable space X, any topological space Y, and any topological space Z whose every closed subset is a \overline{G}_{δ} -set.

Proof. Using Theorem 2.2, fix a weaker metrizable topology τ_m on the metrically quarterstratifiable space X, a sequence $\{U_n\}_{n\in\mathbb{N}}$ of τ_m -open covers of X and a sequence $\{s_n\colon \mathcal{U}_n \to X\}_{n\in\mathbb{N}}$ of functions such that $s_n(U_n) \to x$ if $x \in U_n \in \mathcal{U}_n$, $n \in \mathbb{N}$. According to the classical Stone Theorem [21], we may assume that each cover \mathcal{U}_n is locally finite and σ -discrete.

Fix any function $f \in CH_{\alpha}(X \times Y, Z)$. To show that $f \in H_{\alpha+1}(X \times Y, Z)$ we have to verify that the preimage $f^{-1}(F)$ of any closed subset $F \subset Z$ belongs to the class $\mathcal{M}_{\alpha+1}(X \times Y)$.

The set F, being \overline{G}_{δ} -set, can be written as $F = \bigcap_{n=1}^{\infty} \overline{W}_n$, where $W_n \subset W_{n-1}$ are open neighborhoods of F. For every $n \in \mathbb{N}$ and $U \in \mathcal{U}_n$ let $F_U \colon Y \to Z$ be the map defined by $f_U(y) = f(s_n(U), y)$ for $y \in Y$. It is clear that $f_U \in H_{\alpha}(Y, Z)$ which yields $f_U^{-1}(W_m) \in \mathcal{A}_{\alpha}(Y)$ for every m. Since the set U is functionally open in X, we get $U \times f_U^{-1}(W_m) \in \mathcal{A}_{\alpha}(X \times Y)$, $m \in \mathbb{N}$. Using this observation and the σ -discreteness of the cover \mathcal{U}_n , show that $A_{n,m} = \bigcup_{U \in \mathcal{U}_n} U \times f_U^{-1}(W_n) \in \mathcal{A}_{\alpha}(X \times Y)$.

Now to get $f^{-1}(F) \in \mathcal{M}_{\alpha+1}(X \times Y)$ it suffices to verify that $f^{-1}(F) = \bigcap_{m=1}^{\infty} \bigcup_{n \geq m} A_{n,m}$. To verify the inclusion $f^{-1}(F) \subset \bigcap_{m \in \mathbb{N}} \bigcup_{n \geq m} A_{n,m}$, fix any $m \in \mathbb{N}$ and $(x,y) \in X \times Y$ with $f(x,y) \in F$. Let $U_n \in \mathcal{U}_n$, $n \in \mathbb{N}$, be a sequence of open sets containing the point x. Since $s_n(U_n) \to x$ and f is continuous with respect to the first variable, we may find $k \ge m$ with $f(s_k(U_k), y) = f_{U_k}(y) \in W_m$. Thus

$$(x,y) \in U_k \times f_{U_k}^{-1}(W_m) \subset A_{k,m} \subset \bigcup_{n \ge m} A_{n,m}$$

for every m.

Next, assume that $(x,y) \notin f^{-1}(F)$. Then $f(x,y) \notin F$ and there is $k \in \mathbb{N}$ with $\overline{W}_k \not\ni f(x,y)$. By the choice of the covers \mathcal{U}_n and the continuity of f with respect to the first variable, there is $m \geq k$ such that $f(s_n(U_n), y) \notin \overline{W}_k$ for any $n \geq m$ and $x \in U_n \in \mathcal{U}_n$. Since $W_m \subset W_k$, we get $(x,y) \notin \bigcup_{n \geq m} A_{n,m}$.

4.2. Remark. The inclusion $CC(X \times Y, Z) \subset H_1(X \times Y, Z)$ is not true without restrictions on spaces X, Y, Z. If $X = Y = \{\infty\} \cup \Gamma$ is the one-point compactification of un uncountable discrete space Γ , then the function $f: X \times Y \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} 1, & \text{if } x = y \in \Gamma; \\ 0, & \text{otherwise} \end{cases}$$

is separately continuous but does not belong to the class $H_1(X \times Y, \mathbb{R})$.

5. A GENERALIZATION OF THE RUDIN THEOREM

In [19] W.Rudin proved that every separately continuous function $f: X \times Y \to Z$ defined on the product of a metrizable space X and a topological space Y and acting into a locally convex topological vector space Z belongs to the first Baire class $B_1(X \times Y, Z)$. In [15] it was proved that the metrizability of X Rudin Theorem can be replaced by the paracompactness and the σ -metrizability; moreover, if the space X is finite-dimensional then the local convexity of Z is superfluous, see [11].

In this section we shall prove that the Rudin Theorem is still valid if X is replaced by any metrically quarter-stratifiable space and Z by a locally convex equiconnected space Z.

We remind that an equiconnected space is a pair (Z,λ) consisting of a topological space Z and a continuous map $\lambda \colon Z \times Z \times [0,1] \to Z$ such that $\lambda(x,y,0) = x$, $\lambda(x,y,1) = y$, and $\lambda(x,x,t) = x$ for every $x,y \in X$, $t \in [0,1]$. For a subset $A \subset Z$ of an equiconnected space (Z,λ) let $\lambda^0(A) = A$ and $\lambda^n(A) = \lambda(\lambda^{n-1}(A) \times A \times [0,1])$ for $n \geq 1$. Let also $\lambda^{\infty}(A) = \bigcup_{n \in \mathbb{N}} \lambda^n(A)$. An equiconnected space (Z,λ) is called locally convex if for every point $z \in Z$ and a neighborhood $O(z) \subset Z$ of z there is a neighborhood $U \subset Z$ of z with $\lambda^{\infty}(U) \subset O(z)$.

Equiconnected spaces are tightly connected with absolute extensors. We remind that a space Z is an absolute extensors for a class \mathcal{C} of topological spaces if every continuous map $f \colon B \to Z$ from a closed subspace B of a space $C \in \mathcal{C}$ admits a continuous extension $\bar{f} \colon C \to Z$ over all C. It is known that each equiconnected space is an absolute extensor for strongly countable-dimensional stratifiable spaces, while each locally convex equiconnected space is an absolute extensor for the class of stratifiable spaces. Moreover, a stratifiable space Z is an absolute extensor for stratifiable spaces if and only if Z is admits an equiconnecting function X turning Z into a locally convex equiconnected spaces, see [3], [4], [10].

Obvious examples of (locally convex) equiconnected spaces are convex subsets of (locally convex) linear topological spaces and their retracts. Also every contractible topological

group G is an equiconnected space: an equiconnecting function λ on G can be defined by $\lambda(x,y,t) = h_t(xy^{-1}) \cdot h_t(e)^{-1} \cdot y$, where e is the neutral element of G and $\{h_t : G \to G\}_{t \in [0,1]}$ is a contraction of G with $h_0 = \operatorname{id}$ and $h_1(G) = \{e\}$. Let us recall that a topological space X is contractible if it admits a homotopy $h: X \times [0,1] \to X$ such that h(x,0) = x and h(x,1) = x for all $x \in X$ and some fixed point $x \in X$.

Given topological spaces X and Y denote by $C_p(X,Y)$ the subspace of the Tychonov product Y^X , consisting of all continuous functions from X to Y. Let $B_0(X,Y) = C_p(X,Y)$ and by transfinite induction for every ordinal $\alpha > 0$ define the Baire class $B_{\alpha}(X,Y)$ to be the sequential closure of the set $\bigcup_{\xi < \alpha} B_{\xi}(X,Y)$ in Y^X .

Now let us look at the Rudin theorem from the following point of view. Actually, this theorem states that every continuous function $f: X \to C_p(Y, Z)$ from a metrizable space X is a pointwise limit of "jointly continuous" functions. This observation leads to the following question: Under which conditions every continuous map $f: X \to Z$ is a pointwise limit of some "nice" functions, and what should be understood under a "nice" function?

In case of an equiconnected space (Z, λ) under "nice" functions we shall understand socalled piecewise-linear functions which are defined as follows. Let PL(X, Z) be the smallest non-empty subset of $C_p(X, Z)$ satisfying the conditions:

- (1) for every point $z_0 \in Z$ and functions $f \in PL(X, Z)$, $\alpha \in C(X, [0, 1])$ the function $g(x) = \lambda(f(x), z_0, \alpha(x))$ belongs to PL(X, Z);
- (2) a function $f: X \to Z$ belongs to PL(X, Z) if there is an open cover \mathcal{U} of X such that for every $U \in \mathcal{U}$ there is a function $g \in PL(X, Z)$ with f|U = g|U.

Equivalently, the set PL(X, Z) can be defined constructively as the set of functions $f: X \to Z$ for which there is an open cover \mathcal{U} of X such that for every $U \in \mathcal{U}$ there are points $z_0, \ldots, z_n \in Z$ and functions $\alpha_1, \ldots, \alpha_n \in C(X, [0, 1])$ such that $f|U = f_n|U$, where $f_0 \equiv z_0$ and $f_{i+1}(x) = \lambda(f_i(x), z_i, \alpha_i(x))$ for $0 \le i < n$.

By $PL_{(1)}(X,Z)$ we denote the sequential closure of PL(X,Z) in Z^X .

We recall that a topological space X is defined to be strongly countable-dimensional if X can be represented as the countable union $\bigcup_{n=1}^{\infty} X_n$ of closed subspaces with dim $X_n < \infty$ for all n. According to [6, 5.1.10] a paracompact space X is strongly countable-dimensional if and only if X can be represented as the countable union $X = \bigcup_{n=1}^{\infty} X_n$ of closed subspaces such that every open cover \mathcal{U} of X has an open refinement \mathcal{V} with the property ord $\mathcal{V}|X_n \leq n$ for every $n \in \mathbb{N}$ (that is, every point $x \in X_n$ belongs to at most n elements of the cover \mathcal{V}).

5.1. Theorem. Let X be a metrically quarter-stratifiable T_1 -space and (Z, λ) be an equiconnected space. If X is paracompact and strongly countable-dimensional or Z is locally convex, then $C_p(X, Z) \subset PL_{(1)}(X, Z)$.

Proof. Fix any function $f \in C_p(X, Z)$. Using Theorem 2.2, find a weaker paracompact topology τ_p on X, a sequence $\{\mathcal{U}_n\}_{n\in\mathbb{N}}$ of τ_p -open covers of X and a sequence $\{s_n \colon \mathcal{U}_n \to X\}_{n\in\mathbb{N}}$ of functions such that $(x \in \mathcal{U}_n \in \mathcal{U}_n, n \in \mathbb{N}) \Rightarrow (s_n(\mathcal{U}_n) \to x)$. Since the space (X, τ_p) is paracompact, we may assume that each cover \mathcal{U}_n is locally finite and contains no empty set.

If the space X is paracompact and strongly countable-dimensional, then according to the above-mentioned Theorem 5.1.10 of [6], we may additionally assume that X is represented as the union $X = \bigcup_{m=1}^{\infty} X_m$ of closed subsets such that ord $\mathcal{V}_n | X_m \leq m$ for every $n, m \in \mathbb{N}$.

For every $n \in \mathbb{N}$ take any partition of unity $\{\alpha_{n,U} \colon X \to [0,1]\}_{U \in \mathcal{U}_n}$ subordinated to \mathcal{U}_n , that is $\alpha_{n,U}^{-1}(0,1] \subset U$ for each $U \in \mathcal{U}_n$ and $\sum_{U \in \mathcal{U}_n} \alpha_{n,U} \equiv 1$.

Let $\xi_n \colon X \to N(\mathcal{U}_n)$, $\xi_n \colon x \mapsto \sum_{U \in \mathcal{U}_n} \alpha_{n,U}(x) \cdot U$, be the canonical map into the nerve of the cover \mathcal{U}_n , see [7, VI. §3]. Next, we construct a map $\eta_n \colon N(\mathcal{U}_n) \to Z$ as follows. Denote by $N^{(k)}(\mathcal{U}_n)$ the k-skeleton of $N(\mathcal{U}_n)$, where $k \geq 0$. The map η_n will be defined by induction. Let $\eta_n(U) = f(s_n(U))$ for every $U \in N^{(0)}(\mathcal{U}_n) = \mathcal{U}_n$. Suppose that η_n is already defined on the k-skeleton $N^{(k)}(\mathcal{U}_n)$ of $N(\mathcal{U}_n)$. We shall extend η_n onto $N^{(k+1)}(\mathcal{U}_n)$. Take any point $x \in N^{(k+1)}(\mathcal{U}_n) \setminus N^k(\mathcal{U}_n)$ and find a k-dimensional simplex $\sigma \ni x$. Fix any vertex v of σ . The point x can be uniquely written as x = tv + (1-t)y, where $t \in [0,1]$ and $y \in \sigma \cap N^{(k)}(\mathcal{U}_n)$. Let $\eta_n(x) = \lambda(\eta_n(y), \eta_n(v), t)$ and observe that the so-extended map $\eta_n \colon N^{(k+1)}(\mathcal{U}_n) \to Z$ is continuous.

The inductive construction yields a continuous map $\eta_n \colon N(\mathcal{U}_n) \to Z$ which has the following property: $\eta_n(\sigma) \subset \lambda^{\infty}(\eta_n(\sigma^{(0)}) = \lambda^{\infty}(\bigcup_{U \in \sigma^{(0)}} f(s_n(U)))$ for every simplex σ of $N(\mathcal{U}_n)$. Observe also that $\eta_n \circ \xi_n \in PL(X, Z)$.

We claim that $\eta_n \circ \xi_n \to f$, provided X is strongly countable-dimensional or Z is locally convex. To show this, fix any point $x \in X$ and a neighborhood $O(f(x)) \subset Z$ of f(x).

First, we consider the case when the space X is paracompact and strongly countabledimensional. In this case $x \in X_m$ for some $m \in \mathbb{N}$ and $\operatorname{ord} \mathcal{U}_n | X_m \leq m$ for each n, which implies $\xi_n(x) \in N^{(m)}(\mathcal{U}_n)$ for every n. Using the continuity of the map λ , find a neighborhood $O_1 \subset Z$ of f(x) such that $\lambda^m(O_1) \subset O(f(x))$. By the choice of the sequences $\{\mathcal{U}_n\}$ and $\{s_n\}$, there is $n_0 \in \mathbb{N}$ such that $s_n(U_n) \in f^{-1}(O_1)$ for every $n \geq n_0$ and $U_n \in \mathcal{U}_n$ with $U_n \ni x$. It follows from the construction of the map η_n that $\eta_n \circ \xi_n(x) \in \lambda^m(O_1) \subset O(f(x))$ for every $n \geq n_0$. Thus $\eta_n \circ \xi_n \to f$.

Now suppose that the equiconnected space (Z, λ) is locally convex. Then we may find a neighborhood $O_1 \subset Z$ of f(x) with $\lambda^{\infty}(O_1) \subset O(f(x))$ and a number $n_0 \in \mathbb{N}$ such that $s_n(U_n) \in f^{-1}(O_1)$ for every $n \geq n_0$ and $x \in U_n \in \mathcal{U}_n$. It follows from the construction of the map η_n that $\eta_n \circ \xi_n(x) \subset \lambda^{\infty}(O_1) \subset O(f(x))$ for every $n \geq n_0$. Thus in both cases the function sequence $\{\eta_n \circ \xi_n\}_{n=1}^{\infty} \subset PL(X, Z)$ tends to f, which proves that $f \in PL_{(1)}(X, Z)$.

Now we use Theorem 5.1 to generalize the Rudin Theorem as well as the results of [15], [16], [12], [11]. By $CC(X \times Y, Z)$ the set of separately continuous functions $X \times Y \to Z$ is denoted.

5.2. Corollary. Let X be a metrically quarter-stratifiable space, Y be a topological space, and (Z, λ) be an equiconnected space. If X is paracompact and strongly countable-dimensional or Z is locally convex, then $CC(X \times Y, Z) \subset B_1(X \times Y, Z)$.

Proof. In obvious way the equiconnecting function λ induces an equiconnecting function on $C_p(Y,Z)$. Moreover, the equiconnected space $C_p(Y,Z)$ is locally convex if so is Z. Hence, we may apply Theorem 5.1 to conclude that $C_p(X,C_p(Y,Z)) \subset PL_{(1)}(X,C_p(Y,Z))$. Observe that the space $C_p(X,C_p(Y,Z))$ may be identified with $CC(X\times Y,Z)$, while every element of $PL(X,C_p(Y,Z))$ is jointly continuous as a function $X\times Y\to Z$. This yields that $CC(X\times Y,Z)\subset B_1(X\times Y,Z)$.

For an ordinal α and topological spaces X,Y,Z denote by $CB_{\alpha}(X \times Y,Z)$ the set of functions $f: X \times Y \to Z$ such that for every $x_0 \in X$ and $y_0 \in Y$ we have $f(\cdot, y_0) \in C(X, Z)$ and $f(x_0, \cdot) \in B_{\alpha}(Y, Z)$. Thus $CB_0(X \times Y, Z) = CC(X \times Y, Z)$. Generalizing the Rudin Theorem, V. K. Maslyuchenko et al. [15] proved that $CB_{\alpha}(X \times Y, Z) \subset B_{\alpha+1}(X \times Y, Z)$ for any countable ordinal α , any metrizable space X, any topological space Y and any locally convex space Z, see [15]. Below we have a further generalization.

5.3. Theorem. Let X be a metrically quarter-stratifiable space, Y be a topological space and Z be a contractible space. Then $CB_{\alpha}(X \times Y, Z) \subset B_{\alpha+1}(X \times Y, Z)$ for every countable ordinal $\alpha > 0$.

Proof. Let $\alpha \geq 1$ be a countable ordinal and $f \in CB_{\alpha}(X \times Y, Z)$. Fix a non-decreasing sequence (α_n) of ordinals with $\alpha = \sup_n \alpha_n + 1$ and let $h: Z \times [0,1] \to Z$ be a contraction of Z with h(z,0) = z and h(z,1) = * for all $z \in Z$ and some fixed point $* \in Z$.

Using Theorem 2.2, find a weaker metrizable topology τ_m on X, a sequence $\{\mathcal{U}_n\}_{n\in\mathbb{N}}$ of τ_m -open cover of X and a sequence $\{s_n \colon \mathcal{U}_n \to X\}_{n\in\mathbb{N}}$ of maps such that $s_n(U_n) \to x$ for every $x \in U_n \in \mathcal{U}_n$, $n \in \mathbb{N}$. Using the paracompactness of (X, τ_m) , for every $n \in \mathbb{N}$ find a partition of unity $\{\alpha_{n,U} \colon (X, \tau_m) \to [0,1]\}_{U \in \mathcal{U}_n}$ subordinated to \mathcal{U}_n , that is, $\alpha_{n,U}^{-1}(0,1] \subset U$ for $U \in \mathcal{U}_n$. Then $\{\alpha_{n,U}^{-1}(0,1]\}_{U \in \mathcal{U}_n}$ is a locally finite cover of X by functionally open sets.

Fix any well-ordering \leq on the set \mathcal{U}_n . For every $U \in \mathcal{U}_n$ and $m \in \mathbb{N}$ consider the closed set $F_{m,U} = \alpha_{n,U}^{-1}[1/m,1] \setminus \bigcup_{V < U} \alpha_{n,V}^{-1}(0,1]$. Clearly, $\{F_{m,U}\}_{U \in \mathcal{U}_n}$ is a discrete collection of closed subsets of (X, τ_m) for every $m \in \mathbb{N}$. Using the collective normality of (X, τ_m) , for every $(m,U) \in \mathbb{N} \times \mathcal{U}_n$ we may find a continuous function $\beta_{m,U} : (X, \tau_m) \to [0,1]$ such that $\beta_{m,U}^{-1}(1) \supset F_{m,U}$ and $\{\beta_{m,U}^{-1}(0,1]\}_{U \in \mathcal{U}_n}$ is a discrete collection in (X, τ_m) for every $m \in \mathbb{N}$.

For every $U \in \mathcal{U}_n$ find a function sequence $\{f_{m,U}\}_{m \in \mathbb{N}} \subset \bigcup_{\xi < \alpha} B_{\xi}(Y,Z)$ with $\lim_{m \to \infty} f_{m,U}(y) = f(s_n(U), y)$ for every $y \in Y$. Without loss of generality, we may assume that $f_m \in B_{\alpha_m}(Y,Z)$ for every m. Then the function $g_{m,n} \colon X \times Y \to Z$ defined by the formula

$$g_{n,m}(x,y) = \begin{cases} h(f_{m,U}(y), 1 - \beta_{m,U}(x)), & \text{if } \beta_{m,U}(x) > 0 \text{ for some } U \in \mathcal{U}_n; \\ *, & \text{otherwise} \end{cases}$$

belongs to the class $B_{\alpha_m}(X \times Y, Z)$ for every $m, n \in \mathbb{N}$. Let us show that the limit $\lim_{m \to \infty} g_{m,n}(x,y)$ exists for every $(x,y) \in X \times Y$ and $n \in \mathbb{N}$. Indeed, given $(x,y) \in (X,Y)$ and $n \in \mathbb{N}$ let $U_n = \min\{U \in \mathcal{U}_n : \alpha_{n,U}(x) > 0\}$. Then $x \in F_{m,U_n}$ for all sufficiently large m and $g_{m,n}(x) = h(f_{m,U_n}(y), 1 - \beta_{m,U_n}(x)) = f_{m,U_n}(y) \to f(s_n(U_n), y)$ as $m \to \infty$. Thus $g_n(x,y) = \lim_{m \to \infty} g_{m,n}(x,y) = f(s_n(U_n),y)$ exists and $g_n \in B_{\alpha}(X \times Y,Z)$. Next, since $s_n(U_n) \to x$, we get $f(s_n(U_n),y) \to f(x,y)$ which yields that $f = \lim_{n \to \infty} g_n$ and $f \in B_{\alpha+1}(X \times Y,Z)$.

The following corollary generalizes a result from [15].

5.4. Corollary. Let X_1, \ldots, X_n be metrically quarter-stratifiable spaces, Y be a topological space, and (Z, λ) be an equiconnected space. If X_1 is paracompact and strongly countable-dimensional or Z is locally convex, then every separately continuous function $f: X_1 \times \cdots \times X_n \times Y \to Z$ belongs to the n-th Baire class.

We do not know if the conditions on X_1 or Z are essential.

- **5.5. Question.** Does every separately continuous function $f: X \times Y \to Z$ defined on the product of metrizable compacta and acting into a linear metric space belong to the first Baire class?
- 5.6. Remark. Actually, according to [15], the Rudin Theorem holds in a more strong form: $\bar{C}C(X\times Y,Z)\subset B_1(X\times Y,Z)$ for any metrizable space X, topological space Y, and a locally convex space Z, where $\bar{C}C(X\times Y,Z)$ stands for the set of functions for which there is a dense subset $D\subset X$ such that for every $x_0\in D$ and every $y_0\in Y$ the functions $f(x_0,\cdot)$ and $f(\cdot,y_0)$ are continuous. It is interesting to remark that the metrizability of X is essential in

this stronger form of the Rudin Theorem and can not be replaced by stratifiability; namely $\bar{C}C(A \times [0,1], \mathbb{R}) \not\subset B_1(A \times [0,1], \mathbb{R})$, where A is the Arens fan.

We recall the definition of the Arens fan A, see [5, 1.6.19]. Consider the following points of the real line: $a_0 = 0$, $a_n = \frac{1}{n}$ and $a_{nm} = \frac{1}{n} + \frac{1}{m}$, where $1 \le n^2 \le m$. Let $A_k = \{a_n : n \ge 0\} \cup \{a_{nm} : k \le n \le n^2 \le m\}$ for $k \in \mathbb{N}$. On the union $A = \bigcup_{k \in \mathbb{N}} A_k$ consider the strongest topology inducing the original topology on each compactum A_k . Clearly, the so-defined space A is countable and stratifiable. The space A is known as an example of a sequential space which is not a Fréchet-Urysohn space.

5.7. Example. $\bar{C}C(A \times [0,1], \mathbb{R}) \not\subset B_1(A \times [0,1], \mathbb{R})$ for the Arens fan A.

Proof. We shall construct a function $f \in \bar{C}C(A \times [0,1], \mathbb{R})$ which is not of the first Baire class. Take any function $f_0 \in B_2([0,1], \mathbb{R}) \setminus B_1([0,1], \mathbb{R})$. Write $f_0 = \lim_{n \to \infty} f_n$ where $\{f_n\}_{n \in \mathbb{N}} \subset B_1([0,1], \mathbb{R})$. In its turn, represent each f_n as a pointwise limit $f_n = \lim_{m \to \infty} f_{nm}$ of continuous functions. Now consider the map $f: A \times [0,1] \to \mathbb{R}$:

$$f(a,y) = \begin{cases} f_0(y), & \text{if } a = a_0; \\ f_n(y), & \text{if } a = a_n; \\ f_{nm}(y), & \text{if } a = a_{nm}. \end{cases}$$

It is easy to see that $f \in \bar{C}C(A \times [0,1], \mathbb{R})$ but $f \notin B_1(A \times [0,1], \mathbb{R})$.

6. Rudin spaces

In light of the mentioned generalizations of the Rudin Theorem it is natural to introduce the following

6.1. Definition. A topological space X is defined to be Rudin if for arbitrary topological space Y every separately continuous function $f: X \times Y \to \mathbb{R}$ belongs to the first Baire class.

In the following theorem we collect all fact concerning Rudin spaces we know at the moment. Let us recall that a subspace Y of a topological space X is t-embedded, if there is a continuous extender $E: C_p(Y) \to C_p(X)$, that is a map E such that E(f)|Y = f for every $f \in C_p(Y)$, see [1, III.§2.1]. Here $C_p(X) = C_p(X, \mathbb{R})$.

6.2. Theorem.

- (1) A space X is Rudin if and only if the calculation map $c_X : X \times C_p(X) \to \mathbb{R}$, $c_X : (x, f) \mapsto f(x)$, is of the first Baire class.
- (2) A space X is Rudin if the space $C_p(X)$ is Rudin.
- (3) Every metrically quarter-stratifiable space is Rudin.
- (4) If a space X is Rudin, then each t-embedded subspace of X is Rudin.
- (5) A space X is Rudin if $X = A \cup B$, where A, B are Rudin closed subspaces of X and A is a functionally closed retract of X.
- (6) If a Tychonov space X is Rudin, then $d(X) \leq l(X)$. Consequently, each compact Rudin space is separable.

- *Proof.* 1) The "only if" part of the first statement is trivial. To prove the "if" part, assume that the evaluation map $c: X \times C_p(X) \to \mathbb{R}$ is of the first Baire class. Observe that every separately continuous map $f: X \times Y \to \mathbb{R}$ can be seen as a continuous map $F: Y \to C_p(X)$ such that f(x,y) = c(x,F(y)) for $(x,y) \in X \times Y$. Now it is clear that f is of the first Baire class.
 - 2) The second statement follows immediately from the first one.
 - 3) According to Corollary 4.2, each metrically quarter-stratifiable space is Rudin.
- 4) Suppose X is a Rudin space and Y a t-embedded subspace of X. Let $E: C_p(Y) \to C_p(X)$ be the corresponding extender. Let $c_X: X \times C_p(X) \to \mathbb{R}$, $c_Y: Y \times C_p(Y) \to \mathbb{R}$ be the evaluation functions for the spaces X and Y, respectively. Taking into account that the function c_X is of the first Baire class and $c_Y(y, f) = c_X(y, E(f))$ for every $(y, f) \in Y \times C_p(Y)$ we conclude that c_Y is a function of the first Baire class either.
- 5) Suppose $X = A \cup B$, where A, B are Rudin closed subspaces of X and A is a functionally closed retract in X. Let $r: X \to A$ be a retraction and $\psi: X \to [0,1]$ a map with $\psi^{-1}(0) = A$. Since the spaces A, B are Rudin, there are sequences of maps $\alpha_n \colon A \times C_p(A) \to \mathbb{R}$ and $\beta_n \colon B \times C_p(B) \to \mathbb{R}$, $n \in \mathbb{N}$, tending to the evaluation functions c_A and c_B of the spaces A, B, respectively. For every $n \in \mathbb{N}$ consider the function $\psi_n = \min\{n\psi, 1\}$ and define the map $c_n \colon X \times C_p(X) \to \mathbb{R}$ by the formula

$$c_n(x,f) = \begin{cases} \alpha_n(x,f|A), & \text{if } x \in A; \\ (1-\psi_n(x))\alpha_n(r(x),f|A) + \psi_n(x)\beta_n(x,f|B), & \text{if } x \in B. \end{cases}$$

It is easy to see that the maps c_n are well-defined and continuous, and the sequence $\{c_n\}$ tends to the evaluation function of X.

6) Suppose X is a Rudin space. Let $\{c_n\}_{n\in\mathbb{N}}\subset C(X\times C_p(X),\mathbb{R})$ be a sequence of continuous functions tending to the evaluation function $c\colon X\times C_p(X)\to\mathbb{R}$. Then $c^{-1}(0)=\bigcap_{n\in\mathbb{N}}\bigcup_{m\geq n}c_m^{-1}(-1/n,1/m)$ is a G_δ -set in $X\times C_p(X)$. Let $\{O_n\}_{n\in\mathbb{N}}$ be a sequence of open sets in $X\times C_p(X)$ with $\bigcap_{n=1}O_n=c^{-1}(0)$. By the continuity of the functions c_n , for every $x\in X$ and $n\in\mathbb{N}$ we may find a neighborhood $U_n(x)$ and a finite subset $F_n(x)\subset X$ such that $U_n(x)\times F_n(x)^\perp\subset O_n$, where $A^\perp=\{f\in C_p(X)\colon f|A\equiv 0\}$ for a subset $A\subset X$. For every $n\in\mathbb{N}$ choose a subset $X_n\subset X$ of size $|X_n|\leq l(X)$ with $\bigcup_{x\in X_n}U_n(x)=X$. We claim that $D=\cup\{F_n(x):x\in X_n,\ n\in\mathbb{N}\}$ is a dense set in X. Otherwise, we would find a function $f\in C_p(X)$ with $f|D\equiv 0$ and $f(x)\neq 0$ for some $x\in X$. It is easy to see that $(x,f)\in\bigcap_{n\in\mathbb{N}}O_n$ but $(x,f)\notin c^{-1}(0)$, a contradiction, which shows that D is dense in X and $d(X)\leq |D|\leq l(X)$.

There are many open question about the structure of Rudin spaces.

6.3. Question. Is there a Rudin space which is not quarter-stratifiable? Is a (compact) space X Rudin, if $\{(x, f) : f(x) = 0\}$ is a G_{δ} -set in $X \times C_p(X)$? Is every (fragmentable, scattered or Rosenthal) compact Rudin space metrizable?

Let us remark that according to [2, II.6.1] each Corson Rudin compactum, being separable, is metrizable. Concerning the last question let us remark that there are non-metrizable compact spaces X such that $CC(X \times Y, \mathbb{R}) \subset B_1(X \times Y, \mathbb{R})$ for every compact space Y. The following result belongs to G. Vera [22].

6.4. Theorem. A compact space X has countable Souslin number if and only if for every compact space Y every separately continuous function $f: X \times Y \to \mathbb{R}$ is of the first Baire class.

Proof. Suppose X has a countable Souslin number and $f: X \times Y \to \mathbb{R}$ is a separately continuous function which can be seen as a continuous map $F: Y \to C_p(X)$. Then the image $F(Y) \subset C_p(X)$ is a compact subset of the space $C_p(X)$ over a compactum with countable Souslin number. According to Theorem 14 [1, II.§2] all such compact subsets are metrizable. By the Rudin Theorem, the restriction of the separately continuous evaluation function $c: X \times C_p(X) \to \mathbb{R}$ onto $X \times F(Y)$ is of the first Baire class, which implies that the map f(x,y) = c(x,F(y)) is of the first Baire class either.

Now assume that the Souslin number of a compactum X is uncountable. Then there exists an uncountable family \mathcal{U} of pairwise disjoint nonempty open sets in X. For every $U \in \mathcal{U}$ fix a continuous function $f_U \colon X \to [0,1]$ such that $f_U | X \setminus U \equiv 0$ and $\max f_U = 1$. Denote by 0 the origin of the vector space $C_p(X)$. It is easy to see that the set $Y = \{0\} \cup \{f_U : U \in \mathcal{U}\}$ in $C_p(X)$ is compact and the evaluation function $c \colon X \times Y \to \mathbb{R}$, $c \colon (x, f) \mapsto f(x)$, is separately continuous. Yet, since $c^{-1}(1/2, 1]$ is not an F_{σ} -set in $X \times Y$, the function c is not of the first Baire class. In fact, one may show that $c \notin \bigcup_{\alpha < \omega_1} B_{\alpha}(X \times Y, Z)$, i.e., c is not Baire measurable.

6.5. Remark. It follows from Theorems 6.2 and 6.4 that any non-separable compact space X with countable Souslin number is not Rudin but for every compact space Y every separately continuous function $f: X \times Y \to \mathbb{R}$ belongs to the first Baire class.

Finally let us prove one more result related to Baire classification of separately continuous functions.

6.6. Theorem. Let X, Y, Z be compact Hausdorff spaces. If X is separable and Y has countable Souslin number, then every separately continuous function $f: X \times Y \times Z \to \mathbb{R}$ belongs to the second Baire class.

Proof. Fix any separately continuous function $f: X \times Y \times Z \to \mathbb{R}$, which can be seen as a continuous map $F: X \to CC(Y \times Z, \mathbb{R})$ into the space of separately continuous functions endowed with the product topology. According to a recent result of S. Gulko and G. Sokolov [9] if the space Y has countable Souslin number, then every compactum in $CC(Y \times Z, \mathbb{R})$ is Corson. Now if X is separable and Y has countable Souslin number, then $F(X) \subset CC(Y \times Z, \mathbb{R})$ is a separable Corson compactum. Since the separable Corson compacta are metrizable, see [2, II.6.1], we conclude that the compactum F(X) is metrizable. By [15] (see also Corollary 5.4), the evaluation map $c: F(X) \times Y \times X \to \mathbb{R}$, $c: (g, y, z) \mapsto g(y, z)$, being separately continuous, belongs to the second Baire class. Then the function f belongs to the second Baire class because f(x, y, z) = c(F(x), y, z).

6.6. Remark. The class of Rudin spaces includes the class of Lebesgue spaces introduced by O. Sobchuk in [20].

REFERENCES

- 1. А. В. Архангельский, Топологические пространства функций, Изд-во МГУ, Москва, 1989.
- 2. А. В. Архангельский, *Пространства отображений и кольца неперерывных функций*, в кн: Итоги науки и техники. Общая топология-3, ВИНИТИ, Москва, V.51, 1989, 81–171.
- 3. C. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), 1–16.

- R. Cauty, Convexité topologique et prolongement des fonctions continues, Compositio Math. 27 (1973), 233-271.
- 5. Р. Энгелькинг, Общая топология, М.:Мир, 1986.
- 6. R. Engelking, Theory of dimensions, finite and infinite, Heldermann Verlag, Lemgo, 1995.
- 7. В. В. Федорчук, В. В. Филиппов, Общая топология. Основные конструкции, М. Изд-во МГУ, 1988.
- 8. G. Gruenhage, *Generalized metric spaces*, Handbook of Set-Theoretic Topology, ed. K.Kunen and J.Vaughan, Elsevier Sci. 1984, 423–501.
- 9. S. Gulko, G. Sokolov, Compact spaces of separately continuous functions in two variables, Topology Appl. 107 (2000), 89–96.
- 10. Bao-Lin Guo, K. Sakai, Spaces of measures on stratifiable spaces, Kobe J. Math. 12(1995), 161–173.
- 11. А. К. Каланча, В. К. Маслюченко, Берівська класифікація векторнозначних нарізно неперервних функцій на добутках із скінченновимірним співмножником, Збірник наукових праць Кам'янець-Подільського пед. ун-ту. Сер. фіз.-мат. 4 (1998), 43–46.
- 12. А. К. Каланча, В. К. Маслюченко, В. В. Михайлюк, Застосування теореми Дугунджі до питань берівської класифікації векторнозначних відображень. (preprint)
- 13. K. Kuratowski, Sur la théorie des fonctions dans les espaces métriques, Fund. Math. 17 (1931), 275–282.
- 14. K. Kuratowski, Quelques problémes concernant les espaces métriques non-séparables, Fund. Math. 25 (1935), 534-545.
- 15. V. K. Maslyuchenko, O. V. Maslyuchenko, V. V. Mykhaylyuk, O. V. Sobchuk, *Paracompactness and separately continuous mappings*, General topology in Banach spaces (T. Banakh ed.), Nova Sci. Publ., NY, 2001, pp.147–169.
- 16. В. К. Маслюченко, О. В. Собчук, *Берівська класифікація і σ-метризовні простори*, Матем. Студії **3** (1994), 95–102.
- 17. D. Montgomery, Non-separable metric spaces, Fund. Math. 25 (1935), 527–533.
- 18. P. J. Nyikos, *The theory of non-metrizable manifolds*, Handbook of Set-Theoretic Topology, ed. K.Kunen and J.Vaughan, Elsevier Sci. (1984), 633–684.
- 19. W. Rudin, Lebesgue first theorem, Math. Analysis and Applications, Part B. Adv. in Math. Supplem Studies 78, Academic Press (ed. Nachbin) (1981), 741-747.
- 20. O. Sobchuk, *PP-spaces and Baire classification*, Intern. Conf. on Funct. Anal. and its Appl. (28–31 May, 2002), Lviv, P.189.
- 21. A. H. Stone, Paracompactness and product spaces, Bull. Amer. Math. Soc. 54 (1948), 977–982.
- 22. G. Vera, Baire measurability of separately continuous functions, Quart. J. Math. Oxford (2) **39** (1988), 109–116.

Faculty of Mechanics and Mathematics, Lviv National University, Universytetska 1, Lviv, 79000, Ukraine tbanakh@franko.lviv.ua

Received 15.01.2001