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ON THE SUPERPOSITIONS WITH FUNCTIONS FROM
GEHRING’S, MUCKENHOUPT’S AND RELATED CLASSES

N. A. Malaksiano. On the superpositions with functions from Gehring’s, Muckenhoupt’s and
related classes, Matematychni Studii, 18 (2002) 107-112.

A necessary and sufficient condition for a monotone external function such that the superpo-
sition with an arbitrary function from the fixed Gehring class belongs to the fixed Muckenhoupt
class is found. The analogous questions for the limiting cases of Gehring and Muckenhoupt
classes are solved as well.

H. A. Marakcuano. O cynepnosuyuaz ¢ gynwkyuamu us kaaccos I'epunea, Makenzaynma u
podemeenunix kaaccos [/ Maremaruuani Crymil. — 2002, — T.18, Nel. — C.107-112.

Jlisi MOHOTOHHOCTH BHENTHEN (PYHKIIUU HAUAeHO HeOOXOMMOe I JOCTATOYHOE YCIOBHE Ta-
KO€e, YTO CYIePIO3UIHN ¢ TPOM3BOJILHON (PYHKINMEN 3 (PUKCHPOBAHOTO Kjiacca |epuHra mpu-
HalIeXKuT GUKCHpOBaHOMY KJaaccy MakenxaynTa. PellleHbl Takike TOJT06HBIE BONPOCHT AMIA
TIpellebHBIX cay4daeB kaacca lepunra m Makenxaymnra.

Introduction. We will deal only with non-negative measurable functions on a cube Qg C R”
and cubes, whose edges are parallel to the coordinate axes. Let |E| denote the Lebesgue

measure of a subset £ C Qg and fg = 7[ fla)de = |E| / fla)de.
A function f is said to belong to the Muckenhoupt class A, (¢ > 1) on the cube Qg C R"

()= A Q0) = s (|g2—| /Q f(x)dx) <|EQ—| /Q f‘ﬁ@)dx)q_l < oo,

where the supremum is taken over all cubes @) C (). Similarly, Gehring class G/, (p > 1) on
the cube )y C R" is defined by the following condition

Gyl f:Qo) = sup (@2—| /Q f%x)dxf (@—| /Q f(w)dw>_1 < o,

We will say that a function f belongs to the Muckenhoupt class A; on the cube @)y C R™ if

if

Gp(f)

) = A5 Qo) = s (S (ess ind f(2)) ) < oe,

QCQo
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Similarly, Gehring class G, consists of functions f satisfying

G} = Gl i) = sup (o) -esssup f(2) ) < o=

QCQo TEQ
We will say that a function f belongs to the Muckenhoupt class A, if for some o > 0

_ O Jig f(@)dx (IQl)a
Al f) = Acclf3 o) QCQSBPECQ fQ fla)da £ =
where the supremum is taken over all cubes ) C )y and all measurable sets £ C Q).

It is obvious that if we take a function f from the Muckenhoupt (Gehring) class and
multiply it by a constant or make a linear substitution of its argument, we will obtain
a new function belonging to the same Muckenhoupt (Gehring) class. It is natural to ask
the following questions:

1) For which function ¢ does the condition f € A, (or G,) imply f-g € A, (or G,)?

2) For which non-linear substitution of the variable ¢ does the condition f € A, (or G)
imply f(v) € Ay, (or Gy, )7

3) For which external function ¢ does the condition f € A, (or G,) imply ¢(f) € A,
(or Gy, )?

Questions 1) and 2) are answered by Johnson, Neugebauer and Buckley [1, 2, 3, 4, 5].
There is a number of papers, where the superpositions of the form ¢(f), with f € G, (or
A,) and with a power function ¢ are studied (see, for example, [7]). But we don’t know any
work which answer the third question when ¢ is not a power function. The aim of this work
is to find the necessary and sufficient conditions for a non-decreasing external function ¢
such that the superposition with an arbitrary function from the class X will belong to the
class Y, where X is one of the classes A, G,, A,, A1 or G, and Y is one of the classes
As, G, or A, In particular the following theorems hold.

Theorem 1. Let ¢ : [0,4+00) — [0,+00) be a non-decreasing function and p; > 1, p» > 1
be fixed. For any f € (i, the superposition ¢(f) belongs to the class G, iff for every o > g—;
there is K such that

plar) < K- 2% p(a) foralla>0 and x > 1.

Theorem 2. Let ¢ : [0,+00) — [0,4+00) be a non-decreasing function and ¢; > g2 > 1 be
2=1

fixed. For any f € A, the superposition ¢(f) belongs to the class A,, iff for every o > pp,

there is K such that
plar) < K- 2% p(a) foralla>0 and x > 1.

Theorem 3. Let ¢ : [0,+00) — [0,4+00) be a non-decreasing function and ¢ > ¢1 > 1 be
fixed. For any f € A, the superposition ¢(f) belongs to the class A, iff for every o > 1
there is K such that

plar) < K- 2% p(a) foralla>0 and x > 1.

Theorem 4. Let ¢ : [0,+00) — [0,+00) be a non-decreasing function and p > 1 be fixed.
For any f € Ay the superposition ¢(f) belongs to the class i, iff for every ag > 0 and every
o> zla there is K such that

plar) < K -a%-p(a) for all a > ag and x > 1.
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These theorems can be proved by the same scheme so we will produce only the proof of
Theorem 4.

The author wishes to express his gratitude to A. M. Sedletskii for raising the problem
and for attention to the results, and also to A. A. Korenovskyy for permanent attention to
our work, posing problems and his valuable suggestions.

Preliminary results. We will use the non-increasing rearrangement of a function f on the
set I/ C R™ which can be defined as follows

ff)y=inf{a>0: {x € E: f(z)>a}| <t} 0<t<|FE|

Clearly, the function f* is non-increasing on (0, |E|) and equimeasurable with f. We will
need the following well-known property of rearrangement

su z)dx = *(r)dr
s [ gte= [ i)

The following lemma easily follows from the definition of rearrangement.

Lemma 1. If ¢ : (0,00) — (0,00) does not decrease, and function f is measurable on
) =

E CR" then o(f*(t)) = (p(f))*(t) a. e. on (0,|E]|).
The following three lemmas can be found, for example, in [6].

Lemma 2. For every p > 1 and C > 1 there is M > 0 such that G,(f; Qo) < C implies
(f-x0) (1Q1/2) = M - fo for all Q C Q.

Lemma 3. Let p > 1 be fixed. For every C > 1 there is Cy > 1 such that A;(f; Qo) < C
implies G,(f; Qo) < Cf.
Lemma 4. If f € GG, then f € A.

The following theorem describes a fundamental property of G, classes which plays an
important role in many questions where Gehring classes are used.

Theorem A. (Gehring, [8]) For every p > 1 and C' > 1 there are py > p and Cy > 1 such
that G,(f) < C implies G, (f) < C}.

Lemma 5. If f C G, on the cube ()9 C R" then there are § < zla and C' depending only on
p, G,(f) and dimension n such that

=B
N [
Foner =0 () o te (010l o
for every () C QQy. Conversely, if there are < zla and C such that (1) holds for all cubes
Q C Qo, then f € G,,.

In this lemma the first statement immediately follows from Lemma 4 and Theorem A,
the second statement can be easily deduced from the definition of GG, classes.

Lemma 6. Let ¢ be a function such that f € Ay implies p(f) € G, on (0,1). Then tor every
fixed function fy € Ay and numbers as > a1 > 0 there is number C' = C (¢, fo, p, a1, a2) > 1,
such that the condition ay fo(x) < g(x) < asfo(x), x € (0,1) implies Gp(e(g); (0,1)) < C.
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The important feature is that the number ' does not depend on the choice of a function
¢ in the lemma.

Proof. Let us assume the converse, i. e. there is a sequence of functions {gx}72, such that

arfo(z) < gi(x) < azfo(z), = €(0,1), k=0

and G,(p(gr);(0,1)) > k. Define

g (e —1), ze (27278, ke {0,2,4,... };
=)= g (2—2M12), ze (27 27F) . ke {1,3,5. ...}

For any even k > 0

Go((C);(0,1)) > Gy (p(C); (27%7,27%)) =
=Gy (p(gr (2" = 1)) (2777,277)) = Gole (1) (0, 1)) > &,

consequently ¢(¢) ¢ G, on (0,1).
By the definition of A; classes it is easy to verify that ( € A; on (0,1). Thus by the
conditions of the lemma, this yields ¢(¢) C G on (0,1). So we get the contradiction. O

Lemma 7. Let ¢ be a function such that f € A; implies ¢(f) € G, on (0,1). Then for
every fixed function g € A; and number ag > 0 there is C = C(p,g,p,a0) > 1, such that
Gole(a-g);(0,1)) < C for every a > ay.

Proof. Define

C(l’) _ a02k/29 <2k+1x — 1) , T € <2—k—172—k> 7 ke {072747 o }’
a02k/29 <2 — Qk-l-lx) , x € <2—k—172—k> 7 k c {173757 o }

Using the definition, it is easy to prove that ( € A; on (0,1). Consequently, for every
function fo € A; there is € such that G,(p(ae2"?-¢);(0,1)) < C for every k € {0,1,2,...}.
To finish the proof it remains only to apply Lemma 6. 0

Proof of Theorem 4.

Necessity. Let ¢ be such that ¢(f) € G, for every f € A;. Fix an arbitrary o > ]l). Set
v = aip. It is easy to verify that f(x) = 2™ € A; on (0,1). Fix an arbitrary ag > 0. By
Lemma 7 there is C; such that G,(p(ay - f)) < Oy for every a; > 277ag. Fix an arbitrary
a; > 27 %ag. Lemma 5 implies the existence of 3 < zl? and C, which depend only on p and

(1 such that for every ¢t € (0,1)

(plar- )" (1) < Czt_ﬁ/o olay - f(x))dx.

This inequality together with Lemmas 1 and 2 yield

1

Plart™) = fplar - ) (0 = Gt [ ptar- flade = Ca- (177)7 / olar - f(2))d <

0
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< (- (t_”)g Csp <a1 - f (%)) < CyC5- (tﬂ)”l_p @ (a12") = C,Cs - (t_wa @ (a127).

Note that the number C3 from Lemma 2 depends only on p and (', i.e. on «, p and .
So we have proved that for every ¢ € (0,1) and every a; > 27 7aq

elat™) < CyCs5 - (t_wa @ (ay-27).
Redefine x =t77277, a = a127. We get
plax) < CyC5-2 "a%(a), forall @ > 1, a > ao.
Define K = (5C5 - 27*. As we see from the proof, K depends only on p, o and ¢.
The necessity is proved.

Sufficiency. Fix an arbitrary function f € A;. Fix an arbitrary cube () C )y. By Lemmas 3
and 5 there are § < 1 and C; > 0 depending only on A;(f) such that

-8
(- ve) (1) < 4 <|£2_|> o for every £ € (0,]Q]). 2)

Set o = % <l + pﬁ) It is obvious that l<a <3 and v = fa < =. By the conditions of the

theorem, for the chosen a and ag = essmferO f( ) there is K’ such that p(ax) < K- 2%(a)
for all @ > ap and @ > 1. Lemma 1 and inequality (2) for ¢ < |C§—| imply

(@(f)'XQ)*(t)ag@((f-XQ)*(t)):99( Sor(12), ff o) <>>>
XQ >
Q

(fij:@ <<|_ ) (0o ()=
() o (9))

<x-(g) (&) ﬁa-2f0Q|(¢(f)-XQ)*(8)d8=

oK (g) <|22_|> f@@(f(x))dx,

where the constant Cy, in view of Lemmas 3 and 2, depends only on A;(f). So

e ero= () (G) f ctitanis
121

5+ This implies

e w=() ] et

for every t <

for every t € (0,|Q|), where C5 = 2K - <Q>a 27 depends only on p, 3, ¢ and A;(f). Thus

Cs
Lemma 5 implies ¢(f) € G,,.
The theorem is proved.
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