УДК 519.512

I. V. Protasov

QUASIRAY DECOMPOSITION OF INFINITE GRAPHS

I. V. Protasov. Quasiray decomposition of infinite graphs, Matematychni Studii, 17 (2002) 220–222.

Let Gr be an infinite connected graph with a set of vertices V. A subset $Q \subseteq V$ is called a quasiray if there exists a bijection $f \colon w \to V$ such that $d(f(i), f(i+1)) \leq 3$ for every $i \in w$, where d is a path metric on V. A quasiray decomposition is applied to partition an infinite group into countably many large subsets.

И. В. Протасов. *Квазилучевые декомпозиции бесконечных графов* // Математичні Студії. – 2002. – Т.17, №2. – С.220–222.

Пусть Gr — бесконечный связный граф с множеством вершин V. Подмножество $A\subseteq V$ называется квазилучом, если существует биекция $f\colon w\to V$ такая, что $d(f(i),f(i+1))\le 3$ для всех $i\in w$, где d(x,y) — длина кратчайшего пути между x и y. Квазилучевая декомпозиция применяется для разбиения бесконечной группы на счетное число больших подмножеств.

Let Gr = (V, e) be a connected graph with the set of vertices V and the set of edges E. For any $x, y \in V$ denote by d(x, y) the length of the shortest path between x and y. For every subset $A \subseteq V$, denote by Gr[A] the graph (A, E(A)), where $E(A) = (A \times A) \cap E$. The diameter diam A is the supremum of $\{d(x, y) : (x, y) \in A\}$.

Consider a finite connected graph Gr = (V, E), |V| = n and suppose that $x, y \in V$, $x \neq y$, $(x, y) \in E$. By the quasicycle lemma [1, Lemma 3], there exists a bijection $f : \{1, 2, ..., n\} \to V$ such that f(1) = x, f(n) = y and $d(f(i), f(i+1)) \leq 3$ for every $i \in \{1, 2, ..., n-1\}$. Applying this lemma and arguments from [1, §4], it is not difficult to prove the following two theorems.

Theorem 1. Let Gr = (V, E) be a countable connected graph. Then there exists a partition **A** of V into infinite subsets such that for every $A \in \mathbf{A}$ the following conditions hold:

- (i) there exists a bijection $f: w \to A$ such that $d(f(i), f(i+1)) \le 3$ for every $i \in \omega$;
- (ii) Gr[A] is connected.

Theorem 2. Let Gr = (V, E) be an infinite connected graph. Then there exists a partition **A** of V into infinite subsets such that for every $A \in \mathbf{A}$ the following conditions hold:

- (i) there exists a bijection $f: w \to A$ such that $d(f(i), f(i+1)) \le 3$ for every $i \in \omega$;
- (ii) there exists $x \in V$ such that $Gr[A \cup \{x\}]$ is connected.

maccinacjonii scaan, , ..., 1.0.2

²⁰⁰⁰ Mathematics Subject Classification: 05C15.

family $\{\mathbf{F}_n : n \in \omega\}$ of partitions of V with the following properties:
(i) $ F = n + 1$ and diam $F \le 3n$ for every $F \in \mathbf{F}_n$;
(ii) \mathbf{F}_m is an enlargement of \mathbf{F}_n provided that $n+1$ is a divisor of $m+1$, i.e. every cell of \mathbf{F}_m is a union of cells of \mathbf{F}_n .
<i>Proof.</i> Use a partition A from Theorem 2. Take any $x, y \in V$ and say that x, y are in the same cell of \mathbf{F}_n if and only if $x, y \in A$ for some $A \in \mathbf{A}$ and there exists $k \in \omega$ such that $k(n+1) \leq f^{-1}(x) \leq k(n+1) + n$, $k(n+1) \leq f^{-1}(y) \leq k(n+1) + n$, where f is a bijection from (i) of Theorem 2.
Theorem 4. Let G be an infinite group with the identity e and let S be a finite subset of G generating an infinite subgroup, $S = S^{-1}$, $e \in S$. Then there exists a countable family $\{\mathbf{F}_n : n \in \omega\}$ of partitions of G with the following properties:
(i) $ F = n + 1$ and $xy^{-1} \in S^{3n}$ for all $x, y \in F$ and every $F \in \mathbf{F}_n$;
(ii) \mathbf{F}_m is an enlargement of \mathbf{F}_n provided that $n+1$ is a divisor of $m+1$.
<i>Proof.</i> Consider the Cayley graph $Cay = (G, E)$ of G determined by S , where $(x, y) \in E$ if and only if $x \neq y$ and $xy^{-1} \in S$. Then apply Theorem 3 to each connected component of Cay .
Theorem 5. Let G be an infinite group with the identity e and let S be a finite subset of G generating an infinite subgroup, $S = S^{-1}$, $e \in S$. Then, for every $n \in \omega$, there exists a partition $G = X_0 \cup X_1 \cup \cdots \cup X_n$ such that $G = S^{3n}X_i = X_iS^{3n}$ for every $i \in \{0, 1, \ldots, n\}$.
<i>Proof.</i> Consider the partition \mathbf{F}_n from Theorem 4. By transversality argument [2, Theorem 7.4.4], there exists a partition $G = X_0 \cup X_1 \cup \cdots \cup X_n$ such that $ X_i \cap F = X_i \cap F^{-1} = 1$ for every $i \in \{0, 1, \ldots, n\}$ and every $F \in \mathbf{F}_n$.
Theorem 6. Let G be an infinite group with the identity e and let S be a finite subset of G generating an infinite subgroup, $S = S^{-1}$, $e \in S$. Then there exists a partition $G = \bigcup_{n \in \omega} X_n$ such that $G = S^{3 \times (2^n)} X_n = X_n S^{3 \times (2^n)}$ for every $n \in \omega$.
<i>Proof.</i> Apply transversality argument to the family of partitions $\{F_2^n : n \in \omega\}$ from Theorem 4.
Theorem 7. Let G be a group and let H be a finite subgroup of G , $ H = n + 1$. Then there exists a partition $G = X_0 \cup X_1 \cup \cdots \cup X_n$ such that $G = HX_i = X_iH$ for every $i \in \{0, 1, \ldots, n\}$.
<i>Proof.</i> Apply Theorem 7.4.4 from [2]. \Box

chain of its subgroups, $|H_0| > 1$. Then there exists a partition $G = \bigcup_{n \in \omega} X_n$ such that $G = F_n X_n = X_n F_n$ for every $n \in \omega$.

Proof. Apply Theorem 7.4.4 from [2].

Theorem 8. Let G be an infinite group and let $H_0 \subset H_1 \cdots \subset H_n \subset \cdots$ be an increasing

A subset X of a group G is called *large* if there exists a finite subset F such that G = FX = XF. In [3] Bella and Malykhin posed the following question:

Does every infinite group contain two disjoint large subsets?

<i>Proof.</i> If every finite subset of G generates a finite subgroup, then there exists an increasi	ing
chain $H_0 \subset H_1 \subset \cdots \subset H_n \subset \cdots$ of finite subgroups. Apply Theorem 8. Otherwise, the	ere
exists a finite subset $S \subset G$ which generates an infinite subgroup. Apply Theorem 6.	

REFERENCES

- 1. Protasov I. V. Morphisms of ball's structures of groups and graphs, Ukr. Matem. Zhurn. 53 (2002), №6.
- 2. Ore O. Theory of graphs, Amer. Math. Soc. Colloquium Publications, Vol. XXXVIII, 1962.
- 3. Bella A., Malykhin V. I. Small and others subsets of a group, Q and A in General Topology 11 (1999), 183–187.

Faculty of Cybernetics, Kyiv National University

Received 10.04.2002