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Let Gr be an infinite connected graph with a set of vertices V. A subset @@ C V is called
a quasiray if there exists a bijection f: w — V such that d(f(4), f(i + 1)) < 3 for every i € w,
where d is a path metric on V. A quasiray decomposition is applied to partition an infinite
group into countably many large subsets.
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ITycte Gr — 6ecKOHEYHBIN CBA3HEBIN Ipad ¢ MEOKecTBoM Bepmma V. [TogmuoxecTBo A CV
HA3BIBAETCA KBA3MIYYOM, €ClH cylecTByeT Gueknnd f: w— V rakas, aro d(f(i), f(i + 1)) <

3 mas Beex @ € w, rae d(x,y) — AIMHA KpaTdalliero MyTH Mexay # u y. Ksasmiydebasd
MEKOMITO3UIINAA TPUMEHAETCA Mid pa3bueHns GeCKOHETHON TPYIILL HA CIeTHOE YHCAO GOMBITHX
TTOIMHOXKECTB.

Let Gr = (V,e) be a connected graph with the set of vertices V and the set of edges F.
For any x,y € V denote by d(x,y) the length of the shortest path between x and y. For
every subset A C V., denote by Gr[A] the graph (A, E(A)), where F(A) = (A x A)N E.
The diameter diam A is the supremum of {d(x,y) : (x,y) € A}.

Consider a finite connected graph Gr = (V| E), |V| = n and suppose that v,y € V, « # y,
(x,y) € E. By the quasicycle lemma [1, Lemma 3], there exists a bijection f: {1,2,...,n} —
V such that f(1) = @, f(n) = y and d(f(z),f(z + 1)) < 3 for every 1 € {1,2,...n — 1}.
Applying this lemma and arguments from [1, §4], it is not difficult to prove the following
two theorems.

Theorem 1. Let Gr = (V, F) be a countable connected graph. Then there exists a partition
A of V into infinite subsets such that for every A € A the following conditions hold:

(i) there exists a bijection f: w — A such that d(f(z), fli+ 1)) < 3 for every 1 € w;

(ii) Gr[A] is connected.
Theorem 2. Let Gr = (V, E) be an infinite connected graph. Then there exists a partition
A of V into infinite subsets such that for every A € A the following conditions hold:

(i) there exists a bijection f: w — A such that d(f(z), fli+ 1)) < 3 for every 1 € w;

(ii) there exists « € V such that Gr[A U {x}] is connected.
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family {F,, : n € w} of partitions of V with the following properties:
(i) |F|=n+1 and diam F' < 3n for every F' € F,;

(ii) F., is an enlargement of F,, provided that n + 1 is a divisor of m + 1, i.e. every cell of
F,. is a union of cells of F,,.

Proof. Use a partition A from Theorem 2. Take any x,y € V and say that =,y are in the
same cell of F, if and only if z,y € A for some A € A and there exists & € w such that
En+1) < fYz) <k(n+1)+n, k(n+1) < f~Hy) < k(n+1) + n, where f is a bijection
from (i) of Theorem 2. O

Theorem 4. Let G be an infinite group with the identity e and let S be a finite subset of
(¢ generating an infinite subgroup, S = S™!, ¢ € S. Then there exists a countable family
{F, : n € w} of partitions of G with the following properties:

i =n+1and xy™ € 5" for all z,y € I' and every I' € F;;
) |F 1 d L e §3n f 1l F and FeF

11 m 18 an enlargement of ¥, provided that n + 1 is a divisor of m + 1.
i) F.. 1 larg fF ided th 11 divi f 1

Proof. Consider the Cayley graph Cay = (G, F) of G determined by S, where (z,y) € E if
and only if # # y and zy~' € S. Then apply Theorem 3 to each connected component of
Cay. O

Theorem 5. Let G be an infinite group with the identity e and let S be a finite subset of
(¢ generating an infinite subgroup, S = S™', ¢ € S. Then, for every n € w, there exists a
partition G = Xo U X; U---U X, such that G = S X; = X;S°" for every 1 € {0,1,...,n}.

Proof. Consider the partition F, from Theorem 4. By transversality argument [2, Theorem
7.4.4], there exists a partition G = Xo U X; U--- U X, such that [X; N F|=|X;nF =1
for every ¢ € {0,1,...,n} and every F' € F,,. O

Theorem 6. Let G be an infinite group with the identity e and let S be a finite subset ofG
generating an infinite subgroup, S = S !, e € S. Then there exists a partition G = | J
such that G = S3*@ X, = X, §3x" for every n € w.

nEw

Proof. Apply transversality argument to the family of partitions {F;" : n € w} from Theo-
rem 4. U

Theorem 7. Let G be a group and let H be a finite subgroup of G, |H| = n+ 1. Then
there exists a partition G = Xo U Xy U --- U X, such that G = HX, = X;H for every
1 €{0,1,...,n}.

Proof. Apply Theorem 7.4.4 from [2]. O

Theorem 8. Let G be an infinite group and let Hy C Hy--- C H, C --- be an increasing
chain of its subgroups, |Ho| > 1. Then there exists a partition G = |J,.,, X, such that
G=F,X, =X,F, for everyn € w.

Proof. Apply Theorem 7.4.4 from [2]. O

A subset X of a group G is called large if there exists a finite subset F' such that
G = FX = XF. In [3] Bella and Malykhin posed the following question:

Does every infinite group contain two disjoint large subsets?
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Proof. 1f every finite subset of (G generates a finite subgroup, then there exists an increasing
chain Hy C Hy C --- C H, C ... of finite subgroups. Apply Theorem 8. Otherwise, there
exists a finite subset S C (¢ which generates an infinite subgroup. Apply Theorem 6. 0
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