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All non-free semigroups of exponential growth defined by two-state Mealy automata over
a two-symbol alphabet are described in terms of generators and defining relations. It was
found out, that there are up to isomorphism seven such semigroups. The proofs for these
semigroups are substantially similar, therefore we investigate in details one of them, the semi-
group < fi, f2 | 2 -fhi=fo f} > It is proved that its growth function is sequences like a
Fibonacci series.
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soeanutl, pocm komopoii onpedeasemesn padom Pubonauuu // Maremaruuni Cryaii. — 2002. —
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B TepMmunax o6pasyioniux u onpeesioinK COOTHOIEHNH OMMCAHBI BCe HeCBOGO IHBIE TOJTY-
PPYOIBL SKCIOHEHITHAALHOTO POCTa, MTOPOXK faeMble aBToMaTaMiu Muan ¢ ByMs COCTOAHUAMEA
Ha[ OBYXdaeMeHTHBIM aadauToM. OKazadoch, ITO BIUNIOTH M0 H30MODQI3IMA NMEETCH CEMb
TakuX MOAyTpymi. [TockoabKy Bce JOKa3aTelbCTBA A HUX BIIOJHE AHAJOTHYHEL, B paboTe Mo~
Apo6HO HMccaeyeTcAa OAHA U3 HUX - TOAYTPYIIIa < fi, /o | 2 -fi=fo f? > YcTaHOBIEHO,
9T0 ee PYHKITUA POCTA ABIACTCA MOCAENOBATEIBHOCTHIO THA PUGOHATIN.

1. INTRODUCTION

The groups and semigroups of automatic transformations have been studied actively
since the 60th years of the last century. These investigations are substantially stimulated
by the researches where finite automata have been used for construction of the groups with
various extreme properties: infinite periodic with a finite number of the generators [1], [2],
[3], of intermediate growth [4], [5], just infinite [6]. The Mealy automata became a conve-
nient method of the definition of transformation groups and semigroups, because even small
automata (by the number of states and symbols in alphabet) can define complex semigroups
and groups with interesting properties. In particular, there exist the Mealy automata with
a small number of states considered over two- or three-symbol alphabet which define free
groups and free semigroups [7], [8], [9], groups of Burnside type [2], groups of integer matrices
[10] and others. As usual in such situation, a problem on complete classification of studied
objects for small values of parameters has appeared. The construction of groups defined by
the Mealy automata even in a case of two-state automata over the two-symbol alphabet is
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quite nontrivial. Groups defined by invertible automata of such sort were completely de-
scribed in [11]. In communication [12] we have given the list of all semigroups defined by
two-state Mealy automata over two-symbol alphabet.

From the point of view of current researches, the most interesting sphere is that of prob-
lems concerning automata and semigroups determined by them is connected with investiga-
tions of their growth [13], [14], so we have studied completely the growth of all semigroups
from the mentioned class. It was found out that polynomial growth of such automata and
semigroups 1s always linear, and there are as free, as well as non-free semigroups of expo-
nential growth. The papers of one of the authors [7], [15] are devoted to the description of
automata that determine free semigroups. In this article we pay attention to the studying
of automata that determine non-free semigroups of exponential growth. There are exactly
32 such automata, as it is noted in [12]. The researches of these automata and semigroups
determined by them are substantially similar, therefore we investigate in details one of such

semigroups and discuss the others. Let a Mealy automaton A over the alphabet {a,b} (for

the definition see Sec.2) be defined by its Moore diagram (fig. 1), where o, = a b and

a a
a b
gp = b b .

Fig 1.: Moore diagram of automaton A

Let us denote the transformations determined by A at the states ¢;, ¢ by the symbols
fi1 and fy respectively, and let Sy = (fi, f2) be the automatic transformation semigroup
determined by the automaton A. The main result of this article is the following one:

Theorem. 1. The semigroup S4 has the following co-presentation:
Sa={fufa | fih=hR). (1)

2. The amount W (n) of those elements of the semigroup Sa that can be represented as the
product of minimal possible length n of the generators f; and f, satisfies the following
recurrent relation:

Wnt1)=Wmn)+Wn—1)+1, (2)

where W (1) =2, W (2) =4, n > 2.
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The corollary follows immediately from this theorem.

Corollary. 1. The subsemigroup of the semigroup S4 generated by the transformations
f1 and fif, 1s a proper free subsemigroup of S4.

2. The growth function of the automaton A is defined by the equality:

= (-9 (552) + (o) (B2E) )1

where n > 1.

3. The growth function of the semigroup S, with respect to the system of generators f;
and fy is defined by the equality:

Vs, (n) = % ((5\/5— 11) (1 _2\/5>n+ (5\/5+ 11) (1 +2\/5>n> —(n+5)
(4)

where n > 1.

2. MEALY AUTOMATA AND GROWTH FUNCTIONS

Recall that a Mealy automaton is an ordered quintuple A = (X7, Xo,Q, 7, A), where
X7 is the alphabet of input symbols, X¢ is the alphabet of output symbols ( |X;| < oo,
| Xo| < o), @ is the set of internal states, 7: X; x Q@ — @ and A: X; x Q@ — X are
its transition and output functions respectively. Further we are interested in the automata
whose input and output alphabets coincide and are equal to X, | X| = n. An automaton A
over the alphabet X is called finite, if |Q| < oo.

It is convenient to describe finite automata by the Moore diagrams. The Moore diagram
of an automaton A is an edge-labeled directed graph D4 with the set of vertices ). Vertices
gi and g; of the graph D4 are connected by the oriented edge in direction from ¢; to g;, if
there exists # € X such thatthe equality 7 (2, ¢;) = ¢; holds. Every edge is marked by the
label x|y, where y = A («, ¢;). The modification of the Moore diagram used on fig. 1 consists
in the fact that the edges of the graph D4 are marked by input symbol =, and every vertex
g is labeled by the transformation o, of the alphabet X that corresponds to the output
function at state ¢:

o — 1 T2 Ce Ty
T )\(x17Q) )\(x27Q) )\(l’n,Q) ‘
The functions 7 and A can be extended naturally to mappings of the set X* x () into the

sets @ and X* (X* denotes the set of all (finite) words over the alphabet X') by the following
equalities:

T (A, q) =q, m(wz,q) =7 (z,7(w,q)),
AN, q) = A, Awr,q) = A(w,q) Az, 7 (w,q)),
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where A € X~ is the empty word, ¢ € @), w € X*, 2 € X. This allows us to introduce the
transformation f4,: X* — X* determined by the automaton A at the state ¢ € () in the
following way:

fag (T1za . mn) = 1Yz - - Yns (5)

where y; = A(x;, 7 (x122...2,-1,¢q)). The Mealy automaton A with the set of states ) =
{90,G1,- -, @m-1} determines the set of transformations P4 = {qul s S,y ,qum} on X*.
Automata Ay and A, are called equivalent, if Py, = Pa,.

Lemma 1. [16] Fach class of equivalent (finite) Mealy automata over the alphabet X con-
tains a unique up to isomorphism reduced or minimal (by the number of states) Mealy
automaton.

The minimal automaton can be found by using standard algorithm of minimization (see,
for example, [16]).

There are many various operations for Mealy automata (see, for example, [17]). One of
the most important operations is the multiplication of automata; it corresponds to superpo-
sition of the automatic transformations. Let Ay = (X, Qq,m1, A1) and Ay = (X, Q2, 72, A2)
be two arbitrary Mealy automata. The automaton A = (X, ()1 x @2, 7, A) whose transition
and output functions are defined as

(2, (g1, ) = (mi(z.q1) 12 (M, 01),02)) A2, (q1,02) = A2 (M (2,01) . ¢2)
where @ € X, (q1,q2) € Q1 X @2, is called the product of automata A; and As.

Lemma 2. [18] For any states ¢1 € @1, ¢2 € (J3 of automata Ay, Ay and arbitrary word
u € X* the following equality holds:

f(Al'A2)(q1yq2) (u) - f(Al)q1 <f(A2)q2 (u)> '

As the multiplication of automata is an associative operation, then for any automaton
A and for any natural number n the power A" = A-A-...- A is defined. Usually the
—_—

automaton A™ is not minimal in the class of equivalent to him automata. Let us denote a
result of application of minimization algorithm to A™ by A" It follows from the definition
of the product of automata that the following inequality holds: |Q 4| < |Q4]".

Definition 1. A function of natural argument v4 (n) defined by the equality

Y4 (n) = |QA(") | , nE N7
is called the growth function of a Mealy automaton A.

Let S be a semigroup (group) with a finite set of generators P, so S = (P). A function
vs (n) of natural argument n that equals at the point n to the amount of those elements of
S that can be represented as a product of the length less or equal to n of elements from P is
called the growth function of the semigroup (group) S respect to the system of generators P.

Two nondecreasing functions of natural argument +; and ~, have the same growth
order or are equivalent, if there arenatural numbers C4, Cy, Ny € N such that the following
inequalities hold simultaneously for any n > Ny: v (n) < 42 (Cin) and 3 (n) < 41 (Cqyn).
Let us denote by the symbol ~ the equivalence of functions. The classes of equivalence of
functions are called the growth orders and are denoted by [v] (see, for example, [19]).
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Lemma 3. [19] Let S be an arbitrary finitely generated semigroup, v, and v, its growth
functions respect to two systems of generators. Then v, ~ ;.

Definition 2. The semigroup S4 = <qu1 yeen ,qum> is called the semigroup of automatic
transformations which is defined by the automaton A with the set of internal states () =

{q17q27 s 7qm}

For invertible Mealy automata, i.e. the automata such that the output function A (X, ¢)
for every ¢ € Q determines a permutation over the set X, the transformations fa, (1 <7 <
m) are bijections. In this case let us examine the group of transformations which is defined
by the Mealy automaton. The relation between the automaton growth and the growth of
the transformation semigroup determined by the aforementioned automaton, is given in the
following statement

Lemma 4. [20] The value of v4 (n) is equal to the amount of those elements of the semi-
group S that can be represented as a product of length n of generators { fa, , fa,, s+ » fag,
for any automaton A and for any n € N.

This statement can be used for calculation of the growth function of an automaton as
well as for computation the growth function of transformation semigroup determined by this
automaton.

3. Proors

Before to prove the first part of the theorem formulated in the introduction, we will study
in details the action of the transformations f; and f; on arbitrary words from the set X*.
Lemma 5. Let u € X* be an arbitrary word of length at least 2.
1. The word fi (u) is built from the word u in the following way:

(a) the symbol b is added to the beginning of the word u and the last character of u is
erased;

(b) in all maximal subwords such as a” of the word obtained previously, each second
character a is replaced by the symbol b and the other characters do not change.

2. The word f; (u) is defined on the word u by using the following transformations:

(a) the first character of u is substituted by the word ab and last character of u is
erased;

(b) in all maximal subwords such as a” of the word obtained previously, each second
character a is replaced by the symbol b and the other characters don’t change.

Proof. Direct check. O
For words of length 1 we have:
fila)=0b, fi(b)=0b, fr(a)=0a, [fr(b)=a.
Erample. Let u = aaabbbaa. Then

f1(u) = fi(aaabbbaa) = X (aaabbbaa,q) =
Mas i) A(as02) - Aar i) - A (b, @) - A (b ) - Abyar) - A(a, 1) - A(a, gz) = bababbbe,
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whence we get f; (aaa - bbb - aa) = b- aba - bbb - a. Similarly,

fa (u) = f3 (aaabbbaa) = X (aaabbbaa, qy) =
Ma,q) - Masq) - Ma,qa) - A0, qr) - A(byqr) - A(byqr) - A(a, q1) - A(a, ga) = ababbbba,

that is fy (aaa - bbb - aa) = ab- ab- bbb - a.

Let us denote by X“ the set of all infinite (to the right) words over the alphabet X. It is
obvious that the definition of automatic transformation of word that is given by the equality
(5) can be extended to the set of infinite words. Let us introduce two transformations of the

set X for the describing action of aforementioned transformations f; and f; of this set:

1. the transformation ¢; in all maximal subwords such as a™ of infinite word replaces each
second character a by the symbol b and does not change the other characters;

2. the transformation g, substitutes first character of every word from X“ by the symbol
b and acts on the remaining subword as ¢;.

It is obvious that ¢; # g, and for any infinite word u = zyz923... € X we have:
fi(u)=0-gi(u) =b- g (v12225...), (6)
folu)y=a-g2(u)=ab- g1 (zq23...). (7)

Let v € X* be a word that does not contain a subword aa and ends with the symbol b.

Lemma 6. 1. The transformations ¢; and ¢y are idempotents.

2. For any uw € X“ and for any n € N the following equalities hold:

gr(v-u)=v-gi(u), gy(b-v-u)=b-v-gi(u).

Proof. 1. According to the definition of ¢y, for any word v € X* an image ¢ (u) of the
transformation ¢g; does not contain the subword aa. Therefore

g1 (g1 (w)) = g1 (u), (8)

whence it follows that g7 = ¢, i.e. ¢y is idempotent. It follows from the definition of g, and
(8) that g2 (g2 (u)) = g2 (u), i.e. g2 is also idempotent.

2. It is possible to restrict the action of the transformations ¢; and g, on the set X*. Then
obviously we receive ¢ (v) = v, g (b-v) =b-g; (v) =b-v. For any word u € X¥ ¢ (v-u) =
v - g1 (u), and, therefore, for any n we obtain g7 (v-u) = v- ¢} (u) = v- g (u). Similarly, for
any word u € X¥ at any n we have ¢§ (b-v-u) =gy ' (b-v-gi(v)) =b-v- g (u). O

Lemma 7. Let v € X* be a non-empty word whose first and last character is equal to b,
does not contain the subword aa, andlet w € X* be an arbitrary infinite word. For the
transformations g, and gy the following relations hold:

g2 (g1 (v-w)) =v-gi(u), g1(g2(v-u))=v-gi(u).

Proof. The statement follows from Lemma 6. 0
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Lemma 8. For any natural n > 2 the transformations f1 and f, defined by A (fig. 1) satisfy
the equality:

fh= LA (9)

Proof. At n = 2 for any word u € X* by virtue of equalities (6), (7) and Lemmas 6, 7 we
have:

(f2.41) (w) = f3 (b~ g1 (w)) = fa(ab- g1 (u)) = abb- g1 (u).
Similarly,

(fsz) (U) = fofi (b g1 (U)) = fo (bb ! (U)) = abb - g, (U)a
that is (f2f1) (v) = (f2f}) (u). Since u is an arbitrary word, we have f3f; = fof?.

We shall be convinced now that the relation (9) for n > 2 is a consequence of the relation

fifh=hyt (10)
We have

Lh=hRT7Bh=07 k=L 00h=0 REA=L7 0= = L

and the lemma is proved. O

Proof of the theorem. First, let us prove that the semigroup S4 has the required definition
by generators and determining relations:

SA:<f17f2 ‘ 3= fft >

We can write any element of the semigroup 5S4 as:

_ P1 rd1 £P2 92 Ps £9s
s= N T

where py > 0, ¢, > 0, p;,q; > 1 for other values of indices ¢ and the sum of all degrees is
non-zero. The relation fyf? = f2f; allows us to substitute subwords like fY f{ by subwords
fgff+p—1 for arbitrary p,q > 1. Taking it into account that each semigroup word of length
n > 1 can be resulted like:

S=LN RN T (11)

n symbols

where m > 0 and all p; > 1; besides e = 0, g > 1 when m = 0 and ¢ € {0,1}, p > 0
at m > 1. Such presentation of an element is called canonical. Let us remark that, since
application of the determining relation (10) doesn’t change the length of a semigroup word,
the length of any element always coincides with the length of its canonical presentation.

As easily follows from Lemmas 6 and 7, any element § like (11) acts on any infinite word
u from X* in the following way:

S(u)=f5 10 0 277 (w) = a®bPrab? .o oabf™ - gy (u), (12)
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if p=0;
S(u) = S faf P faf P (u) = @b ab?? L abPmab T - gy (u) (13)

if £ > 0.
For the proof of the theorem it is enough to show that two semigroup elements s; and s,
having various canonical presentations determine different transformations of X“. Let:

si= [0 v e T (14)

and

s = SR Fa A (15)

By contradiction, assume that s; and s; determine the same transformation of X*.
Therefore, the equality s; (u) = s (u) holds for any word w € X, and, in particular, for the
words u; = ab* = abbb ... and us = bab* = babbb.... Thus

g1 (u1) = ab”, g2 (w1) = b, (16)
g1 (ug) = bab™, g2 (ug) = bab™.

Let us consider the possible cases for the canonical presentation (14) and (15).

L. gy = p2 = 0. From (12) and (16) for the word u; we have

a®toPrab™ ... abf™ - ab” = a2 ab® ... ab? - ab”,

whence m =1, e = €9, p; = ¢;, 1 = 1,... ,m, that contradicts to the choice of s; and
S9.

2. p11 > 1 and py = 0 (the case g = 0 and w2 > 1 is considered similarly). From (12),
(13) and (16) for the word u; we get

a® b abP? . abPmabtt Tl bt = a2 ab® | ab™ - ab”.
whence m =1{, ¢y = ey, p; = ¢;, 1 = 1,... ,m. Similarly, for the word wus:

s1 (ug) = s1 (bab™) = a® 6" ab? . .. ab’mabP+1 71 - bab™,

89 (uz) = s3 (bab™) = a® b ab ... ab’™ - bab”,

whence s1 (uz) # s3 (uz), that contradicts to the assumption of the equality of trans-
formations determined by s; and s,.

3. 1 > 1 and py > 1. From (13) and (16) for the word us we have
atbra .. B abttTl - babt = a®2b%a. . bYab"2 T - bab,

whence m = [, 1 = &9, 1y = pt2, p; = qi, t = 1, ... ,m, that contradicts to the choice of
51 and sg.
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The obtained contradiction proves the first part of the theorem.

Let us show that equality (2) holds. We denote by F'(n) for n € N the amount of
sequences of length n from the symbols a and b where two symbols a do not stand together.
A numerical sequence F'(n) is a Fibonacci sequence (see, for example, [21]) with start values
F (1) =2, F(2) =3. Let us add to this sequence the value F'(0) = 1.

We denote by symbol W (n) the amount of different elements of the semigroup S4 of
the length n. It is obvious, that W (1) = 2, W (2) = 4. Let us find the relation between
sequences W (n) and F (n), n > 1.

Since each element from S4 decomposed to a product of length n of generators f; and f,
can be represented like (11) and action of this element on w-word is set by (12) or (13), we
can set the correspondence between each semigroup element and some sequence of length n
from a and b, where two symbols a do not stand together. A sequence like

a*brab™ ... ab’™a,

n

where last character is the symbol @, corresponds to one semigroup element 3§, for which
p=1,

S= LA Ry
the unique semigroup element s = fJ* corresponds to the sequence b"; and all other sequences

a®brab™ ... ab’™ab",

n

where 1 > 0, have in correspondence two semigroup elements:

. +1
s1= 0 R R

and

Sy = [T L i ST o ST

The amount of sequences of length n ended with the symbol «a, is equal to F'(n — 2),
because we need to add the word ba to a sequence of length n — 2. The amount of sequences
of length n that contain the character a but not on the last place, is equal to F'(n — 1) — 1,
because we can add the symbol b to all the sequences of length n — 1 excepting 6"~!. Thus,

Wmn)=2(Fn-1)—-1)+Fn-2)+1=2Fn—1)+Fn—-2)—1=F(n+1)—1

From here F'(n+1)=W (n)+1,and,as F(n+1)=F(n)+ F(n—1), equality (2) holds,
and the theorem is completely proved. O

The proof of the corollary requires

Lemma 9. The amount of different semigroup elements of length n > 1 in the semigroup

(o (57) seoen () )

Sa equals to

W(n) =

Sl
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Proof. AsW(n)=F(n+1)—1,n>1, and

=3 (1-V5)  VE43[14V5)
g
then
Vi3 (1=v5\" VB3 145\
o (Y ()
1 -5\ 145\
:ﬁ<<\f—2>< 5 >+<\/5+2>< > ))—1,
as was to be shown. O

Proof of the conclusion.
1) Let us consider the subset F'.S4 of the semigroup S4 consisting from the following
elements:

= (L) 72 () 2 (fh) i (17)

where p; > 0,7 =1,... ,m. Since not every element of S4 can be presented as (17), we see
that F'S 4 is a subsemigroup and F'S4 # S4. Besides, any element of the semigroup F'54 can
be decomposed in a product of the transformation f; and f;f;. From the proved theoremit
follows that such decomposition is unique, that is the semigroup F'S4 is free. Thus

FSy = (f1,(N1))-

2) The length of any element always coincides with length of its canonical presentation
(11), because the application of determining relation (10) does not change the length of a
semigroup word. Using Lemma 4 we get that the value of the growth function v4 (n) of an
automaton coincides with the amount of those elements of the semigroup 5S4 that can be
represented like a product of minimal possible length n of the generators f; and f;, that is
with the number W (n). Then it follows from Lemma 9 that equality (3) holds.

3) By definition, the growth function vs, (n) of the semigroup S4 is equal to

Y54 (n) = W ().

It follows immediately from Lemma 9 that

wwzg % Wl@C‘ﬂyW@+zC+ﬂ ) -

.(1\/5),<12ﬁ>nl+¢5+2_<1+\/5>.

2 =5 V5

2

- % ((5\/5— 1) (1 —

as was to be shown. O

S
SN——
3
-+
=
S
-+
-
SN—
SN
—
o | T
S
SN——
N
|
=
-+
=
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4. FINAL REMARKS

It is convenient to introduce a relation of equivalence on the set of automata so that
equivalent automata would have the same semigroup. It is enough to investigate repre-
sentative automata from the classes of equivalence for constructing semigroups and finding
growth functions. Such relation of equivalence is introduced when the automata considered
equivalent differ in numeration of states and/or by permutation of alphabet symbols. The
set of 32 automata that determine non-free semigroups of exponential growth order divides
into 8 classes of equivalence.

It is obvious that equivalent automata determine the same transformation semigroup of
the set of words over the base alphabet, and, consequently, have the same growth function.
On the other hand, non-equivalent automata also may determine the same semigroup. We
came to the conclusion that there are only seven pairwise nonisomorphic semigroups deter-
mined by abovementioned 32 automata. These semigroups have the following representations
by generators and determining relations:

Si=Sa=(fuh | fo-ft=1}h),
Ss={fuh | h-f-h=FHh),
Ss={fuh | B-h="F),

Si={( fufo | B/ fa=fo- ST o 20,
Ss=(fufo | hi-h-h=0-ff-B=R1F),
So=(fifo | fo-fi-fo=1t Fho- =111,

57:<f1,f2 ‘ forfi-fa= 13 >

The semigroups Sy, Sa, 53, S4 have the same growth function defined by formula (4). It
follows from the fact that the amount W (n) of elements of each of these semigroups that
can be represented as a product of minimal possible length n of the generators f; and f,
satisfies the recurrent relation (2). The number W (n) of semigroups Ss, Ss, S7 satisfies
some recurrent relations that are slightly different from (2). Therefore, the construction of
the growth function formulas for these semigroups is quite analogous. All semigroups .5;,
1 =1,...,7, include free two-generated semigroups.
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