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For a non-negative function ¢ € C?[1,+o0) we define v;(r) = (Czljfﬁ%)j, J €{1,2}. Suppose
that ¥2(r) = +oo and 2(2r) ~ 2(r) (r — +00). Then there exist an entire function g(z) of
zero order with the following properties: a) n(r,0,g) ~ ¢1(r), In M (r, g) ~ ¥(r) (r = 4+o0); b)
InM(r,g) —Inp(r,g) > (1 + 0(1))%1/}2(7“) (r = 400), where M (r, g) = max{|g(2)| : |z| = r},
p(r,g) = min{|g(z)| : |z| = r}, n(r,0,g) is the zero counting functions of g.

M. 5. Ynkukon. O munumyme modyan yeaotd Gynryuu nyaesozo poda [/ Maremaruuani Cry aii.

—2002. - T.17, Ne1. — C.41-46.

Nas meorpunarensroil dynknun v € C?[1,+00) onpegeanm t;(r) = %, Jj e {1,2}.
Mpeanonoxum, 410 Pa(r) — 400 and ¥a(2r) ~ ¢¥a(r) (r — 4o0). Torga cymecTByeT Ie-
rasg GyHKOuA g(z) HyJIeBOO MOpAAKa co cleayiomnMn cBoicTBamu: a) n(r,0,g) ~ ¢1(r),
InM(r,g9) ~ ¢¥(r) (r = +o0); b) InM(r,g) — Inu(r,g) > (1 + 0(1))”2—21/)2(7“) (r = +00),
rie M(r,g) = max{lg()| : |2] = r}, pu(rg) = min{|g(z)| : [2] = r}, n(r,0,g) — camaomas
PYHKINA HyJIeH g.

1. Introduction and result. Let f be an entire function, M (r, f) = max{|f(2)|: |z| = r},
(e ) = mind [£(2)] £ 2] = ). v > 0, B
The well-known cos mp-theorem (see e.g. [1, Chap.6]) implies that if p[f] = lim

r—+0oo
=0, then In u(r,, f) ~ In M(r,, f) on a sequence r, — 400 (n — +0o0). However, the last
relation can be improved.

Let u(z) be a subharmonic in C function. We denote A(r,u) = inf{u(z) : |z| = r},
B(r,u) = max{u(z): |z| = r}, r > 0. Let U* be the class of twice continuously differentiable
functions ¢: [1,4+00) — Ry such that ¢(2r) ~ ¥a(r), ¥1(r) T +oo as r T 400, here
Y;(r) = (Cgfﬁ(:))], J € {1,2}. It is clear that ¢1(r) ~ 1(2r) and (r) ~ (2r) as r — 4oo for
P e U*,

In [2, Th.1] the author has proved the following theorem.

Theorem A. Let u(z) be a subharmonic function in C. If there exists ¢» € W* such that
lim B(r,u)/¢(r) <1, then Ve > 0 the inequality

r—+0oo

Inln M(r,f)

Inr

A(ryu) > B(ryu) — (1 + 5)%2;/)2(7“) (1)
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holds outside a set E. of values r satisfying

1 1
lim / dipi(t) < . 2
rStoo 1(7) Een[1,r] 1) l+e¢ @)

Remark 1. In [2] the existence of a function 1 from a slightly wider class W is required.
In 1962 P. Barry proved [3] that inequality (1) holds on a sequence of values r, — +o0
(n = +o00) provided that B(r,u) < (r) (r > ro) with a function ¢ satisfying all conditions
of the definition of the class U* except ¥1(r) T 400 (r — +o0). P. Fenton proved [4]
Theorem A in the case when it is possible to choose ¥ (r) = o(Inr)Pt' p> 1,0 < o < 4o0.
Putting u(z) = In|f(z)|, where f(z) is an entire function of zero lower order satisfying

lim M) < with Y € U*, from Theorem A we obtain

r—+0oo w(r’)

(Ve>0): Inp(r, f) >InM(r, f) — (1 + 5)%2¢2(r), ré k., (3)

where FE. satisfies (2).

However, it turned out that inequality (3) could be improved when ¥(r) = O(In®r)
(r — 4o00).

In the case ¥ (r) = o(log™ r)? (r > 0) A. A. Gol’dberg [5] and P. Fenton [6, 7] showed
that

+ oo

) L= gy
I > o) = ([T 2=) -
rertoo M(r, ) = 1(o) nl:[l 1+ g2t
where ¢ = e~ 37, C1(0) = 1, for every entire function [7] such that lim W =0 < 40
r—+0oo
(for every meromorphic function [5] such that lim N(r,0,00, f)In™*r < ¢ < 40o0), here

r—+0oo

N(r,0,00, f) = N(r,0, f)+ N(r,o0, f) is Nevanlinna’s counting function of zeros and poles.
Moreover, in 1982 P. Barry [8] established a sharp on a sequences lower estimate of
w(r, £)/M(r, f) for entire functions f satisfying In M (r, f) = O(In"*' ), r — +00,0 < p < 1.
Those estimates are different from those that can be obtained from (1).
Nevertheless, in this paper it will be proved that inequality (3) is unimprovable in the
class of entire functions that grow faster that In®r in some sense.

Theorem 1. Suppose that ¢ € U* satisfy ¢o(r) — +oo (r — 400). Then there exists an
entire function g(z) of zero order with the following properties:

a) n(r,(),g) ~ ¢1(T)7 In M(T,g) ~ ¢(T) (7“ — —I'OO);
b) o M(r,g) — Inpu(r,g) > (1 + o(1))Z4hs(r) (+ — +o0).

Remark 2. Clearly, the last inequality holds in some neighbourhood of values r, such that
there is a zero of ¢g(z) laying on the circle {z : |z| = r,}. In [2, Th.2] the author constructed

an entire function of zero order f(z) = :2 <1 + f) such that

o
— InPTtty

In M f) ~ N0, f) S,

r — 400,
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p,o € (0,400) and extremal asymptotic equalities between p(r, f) and M(r, f) attain on
the sequence r, = \/z,x,11 for any p > 0.

To prove Theorem 1 we use a recent result of Yu. Lyubarskii and Eu. Malinnikova [9] on
approximation of a subharmonic function by the logarithm of modulus of an entire function.

2. Proof of Theorem 1. Without loss of generality we may assume that ¢ (1) = 0.
Thus ¥y (r) = [/ w2( )dt where 5(?) is slowly varying and positive function on [1,400)
(¢1(t) is an increasmg functlon) Therefore, for any ¢ € (0, 1)

Ta(t) Tdt 1 1
- /67’ t dt = (1 + o(1))¢hs(r) 7 5%/)2( r)ln o T +00.

Hence, t5(r) = o(¢1(r)) (r — +00), and similarly, one can deduce
Pi(r) = o(¥(r)), 1 — Foo. (4)

We define a subharmonic in C function v by the equality

+oo
v(z) = In|1 — z
t
0

Since the Riesz measure of a subharmonic function is unique [10, Th.2], [11, Sec. 3.0], this
representation implies that the Riesz measure p, of the function v is supported on the ray
[1,+00) and o ({¢ + [¢] < 1}) = ().

Clearly,

(1)-

B(r,v) = v(—r) = /;oo 1n<1 + g) dn(t),  Alr,v) = v(r) = /;oo ln‘l - ﬂ din (1)
Therefore,

r+4t

B(r,v) — A(r,v) = /0"‘00 ‘ dipy (¢

_/"'OO r—l—t ;/)2 /"'Ooln‘l—l-T
0 0

-7
Since fo ln‘ L ‘ T — %, for every ¢ > 0 there exists b € (0, 1) such that fbl/b ln‘ L ‘ dr

é — . Using the fact that ¢o(r)slowly varying we get

+oo 1/b
/ m‘lHde/ 1n‘1+_f
1+7

= (ot [ ]

Yalr7) dr.

T

(5)

LQ(N) dt

T

dr > <%2 — 25);/}2(7“), r — +oo.

T

-7

From the last inequality, (5), and arbitrarity of ¢ > 0 we deduce

2

B(r,v) — A(r,v) > <% + 0(1)> Pa(r), r— +oo. (6)
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Define the increasing sequence (r,) by the equalities ¢1(r,) = 2n, n € N, rg = 1. Then, by

the Lagrange theorem 2 = ¢y (rpq1) — ¥1(rn) = ¥1(&)(rpp1 — 1) for some &, € [r, roy1]-
Hence
i+l — T _ Tn4l —Tn _ 2 2 of1),

rn+1 N €n V1(&n)én ¥2(&n)
Thus, ~ Tppr (0 — 400).

In order to use the approx1mat10n result from [9] we need to constructa so called partition
of slow variation for .

Put Qm = {z: 1oy < |2 <y, |arg 2] < w

restriction of the measure on Q,,, actually (™) = M

0 <

n — 4oc.

} m € N, and let p(™ —/,LU‘Q be the

[rm—l 77’m] :

Let us estimate the diameter of (,,. Since ¥y(r,,) — +oo (m — +o0), for any ¢ € Q.
using the definition of @, the asymptotic equality r,, ~ r,_1 (m — +00), and slow
variation of ¥, we have

[ Im¢| = [¢ltg(arg () = (1 4 o(1))rm|arg (| < (14 o(1))
On the other hand,
max{|Re ¢1 — Re G2 : 1, G2 € Qu} = (1 + o(1)) (1 — 1) =

m — +oo.

b2 (rm)’

2 21,
=(1+ 0(1))rmm =1+ 0(1))¢2(Tm)7 m — ~+oo.
Therefore,
(14 o 1)) < diam @ < (14 0(1)2V2—2— = +oc. 0

77Z)2(rm) 77Z)2(rm)7
The partition ((Qm) (™ )>m€N of the measure y has the following properties

i) supp ut™ C va Q) = 2
i) p— 32, "
iii) every point z € C belongs to at most two different @,,s;
iv) for every m € N the set InQ,, = {( =&+ in:(=Inzz € @} is a rectangle with
sides parallel to the coordinate axes, the ratio of the length of the sides lies between

two positive constants independent of m;

v) 20(dist(0, Q) < diam @, = 2b(dist(0,Q,,)) (m — 400), where b(t) = 1/]22—@)

Properties i)-iii) follow immediately from the definitions of r,, and @,,, v) follows from
(7). It remains to prove iv). From the definition of @),, we obtain

. 1
In@,, = {f—l—m tnry,o < E<Inry, |77| < ¢2(rm)}

But, by (7),

'm — rm—l) "'m — Tm-1 2
~ ~ 5
T'm 77Z)2(rm)

and iv) follows. Thus, by Definition 1 [9, Sec. 3] the measure p, admits a partition of slow

variation ((Qm), (M(m))>m€N'
We need one more definition [9, Def. 2, Sec. 3].

Inr,, —Inr,_; :1n<1—|— m — 400,

T'm—1
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Definition. Given a function b(t) > 0 such that b(t;) < b(t,) for £ < & <2and b(t) = o)
(t = +00), we say that a measure p is locally regular with respect to b if it satisfies

/b(IZI) pacle==l<sh o), sec 2>

S

Theorem B. (Theorem 3’ [9]) Let u be a subharmonic function on C, u be its Riesz measure,
and (C) = co. Let p admit a partition of slow variation and u be locally regular with respect
to the corresponding function b. Then there exists an entire function f such that, for each
e >0,

u(z) —In|f(z)|=0(1), =z¢&FE., z— oo,

with E. = {z : dist(z, Zy) < eb(|z])}, where Z; is the zero set of f. In addition, for some
C>0

In|f(2)| <u(z)+C for all z € C.

Remark 3. From the proof of Theorem 3’ it follows that zeros (a,,) of the function f(z) can
be ordered such that

dist(a;, Qn) < Cydiam Q.,,, j €1{2m —1,2m}.

Let us prove that p, is locally regular with respect to b(t) = 2/v(t). For |z| = r and
0 <s<b(r)=o(r) (r— +o0) we have

1 1 2
¢2(( + 0( ))T) g — (1 4 0(1)) S¢2(T)‘

po{C 0= 2l < s)) S o) =l =) = = Ay '

Hence,

/b(|Z|) (¢ ¢ ; z| < s}) ds < (2 + 0(1))6(%);/;2@) =4+4o0(l), r— +4oc.

Consequently, p, satisfy the conditions of Theorem B.
By Theorem B there exists an entire function g(z) such that for every e > 0

o(z) = Inlg(z)| = O(1), =& Fiy 2= ox
where F. is the e-neighbourhood of the zero set of ¢, and
In|g(2)] <v(z)+C, =ze€C, (8)

for some positive constant C'.
Note that according to Remark 3 zeros ¢; of the function g(z) satisfy

dist(¢;, Qm) < Cydiam Q.,, J € {2m — 1,2m}. (9)

Since 1y, ~ rpy1, diam Q= o(ry) (m — +00), for all ( € @, we have ( ~ 1y, (m — +00).
By (9) c2m—1 ~ c2m ~ 7 (M — 400), and consequently arge; — 0 (j — +00).
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Therefore, F. C {z : |z] < R} U{z : |argz| < ¢} for some R. > 0. This implies
B(r,v)=1InM(r,g)+ O(1) (r = +00). In fact, for r > R. we have —r ¢ F., and so
In M(r,g) > Inlg(—r)| = v(—r)+ O(1) = B(r,v)+ O(1).
On the other hand, if In M(r,g) = In |g(re'®)|, then, by (8),
< v(rewr) +C < B(r,v) + C.

In |g(rei€r)

Hence, B(r,v) =In M(r,g) + O(1).
From (8) it follows that In pu(r,g) < A(r,v) 4+ C. Thus, using also (6) we obtain

In M(r,g) —Inp(r,g) > B(r,v)+ O(1) — A(r,v) = (1 + 0(1))%2;/)2(7“), r — +oo.

Hence, assertion b) of Theorem 1 is proved.
Estimates (9) imply that n(r,0,¢g) ~ ¢¥1(r) (r — +0o0). By [11, Sec. 4.2] and (4),

InM(r,g) < r/+oo Wdt = (14 o(1))r /+OO %dt _

—(1+ 0(1))@@ 4y [“ @b;gt)dt) — (14 o(1)) <¢(T) + 0<r/r+oo %dt))

This yields r fr—l_oo Y2 dt ~ (r) (r — +00), and consequently In M(r,g) < (1+0(1))(r)
(r — +00). Since ¢(r) ~ N(r,0,9) < InM(r,g), we obtain In M(r,g) ~ ¢ (r) (r — +o0).

The theorem is proved.
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