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We study infinite locally finite p-groups whose non-cyclic norm is non-Dedekind. Tt is
proved that such groups are finite extensions of quasicyclic subgroups. A complete description
of infinite locally finite p-groups with non-Dedekind non-cyclic norm is given.
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nosoti nopmoti [/ Maremaruuni Cryaii. — 2002. — T.17, Nel. — C.18-22.

Nay4atorces GecKoHETHBIE JOKATLHO KOHEUHBIE P-TPYIILI, HEIMUKANIECKas HOPMa KOTPOPBIX
He fgefeKmHgoBa. JlokazaHo, 9T0 Takhe IPYONB ABAAIOTCA KOHEYHBIM PACIIHPEHHEM KBa3h-
nukaAngeckux rpynm. [lomydeno monHas xapakTepusanusd GeCKOHEYHBIX JOKATBHO KOHETHBIX
Pp-TPYII ¢ HeJeAeKITH JOBON HEIUKIMYIECKON HOPMOM.

Suppose (G is a group and ¥ # @ is a system of all subgroups of ¢ having some fixed
group-theoretic property. The maximal subgroup of the group G normalizing every subgroup
of ¥ is called the ¥-norm of this group. The ¥-norm of a group is its characteristic subgroup,
and 1t includes the center of the group and coincides with the intersection of the normalizers
of all subgroups from X.

If the ¥-norm contains at least one subgroup of the system X2, then all subgroups with such
a property are invariant in it. Algebraists of various countries, and, especially S. N. Cernikov
and his followers were active researchers of such groups. So, if the Y-norm coincides with
the group G, then all the subgroups of ¥ are invariant in . That is why it is natural to
consider more general situation when the ¥-norm is a proper subgroup of G.

In the case when the system X consists of all subgroups of the group G, the ¥-norm
according to [1,2] is called the norm of the group and is denoted by N((G). The norm of
a group i1s an Abelian or Hamiltonian subgroup and is included in any other ¥-norm. So
the notion of the norm of the group can be generalized by narrowing the system . Among
such generalizations there are: the A-norm (i.e. the intersection of the normalizers of all
the maximal Abelian subgroups [3]), the subnormal norm (or the Wielandt subgroup), the
intersection of the normalizers of all the subnormal subgroups of the group (see [4,5]), etc.
see, for example, [6,7].

We continue the research started in [8], where the conception of the non-cyclic group
norm had been noted. Following [8] under the non-cyclic group norm Ng of a group G we
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understand the ¥-norm of G for the system ¥ of all non-cyclic subgroups of the group. If
N¢ is non-cyclic, then all its non-cyclic subgroups are invariant in it. Non-Abelian groups
with such features were studied in [9-11] and were called H-groups (or H,-groups if they are
p-groups).

In this paper we investigate infinite locally finite p-groups having non-Dedekind non-
cyclic norm. It is proved that such groups are finite extensions of quasicyclic subgroups and
their constructive description is obtained.

Lemma 1. Let H be a subgroup of a group GG. If N¢ is the non-cyclic norm of (G, then
Ne N H < Ny.

Proof. The proof of Lemma 1 is obvious. O

Lemma 2. Let H be an invariant non-cyclic subgroup of the group G and N is the non-
cyclic norm of this group. Then Ng = Ng/H < N(G) = N(G/H), where N(G) is the norm
of the group G = G/H.

Proof. Suppose M < (. Then the full pre-image M of the group M is a non-cyclic subgroup.
So Ng C Ng(M), and therefore Ng C Ng(M). From definition of the group norm and
arbitrary choice of the subgroup M it follows that Ng < N(G), as required. 0

Theorem 1. Any infinite locally finite p-group GG having non-Dedekind non-cyclic norm N¢
is a finite extension of a quasicyclic subgroup A C G, and Ng C Cg(A).

Proof. Let a p-group G and its non-cyclic norm Ng satisfy the given condition. If G = Ng,
then G is a non-Hamiltonian H,-group and our theorem follows from Theorems 1.2-1.3 [11].
So further we may assume that G # Ng.

Suppose that the group GG does not satisfy the minimal condition for subgroups. Then it
includes an infinite elementary Abelian subgroup A. Since the subgroup N¢ is non-Dedekind,
Theorems 1.2-1.3 [11] imply |A N Ng| < co. Let us consider the group Gy = NgA = Ng A,
where A = Ay X Ay, A1 = Na N A, Ay N N = E. So if |A;] = oo, then A, is non-cyclic and
therefore A, < (4. Hence the group GGy = Ng X Ay is central-by-finite and by Theorem 3
[8] it is a non-Hamiltonian H,-group. It contradicts to the description of such groups (see
[11]). So, G is a group with minimal condition for subgroups, and by [12, Theorem 4.1] G is
a Cernikov group.

Assume that G contains a direct product P of two quasicyclic subgroups. Since [P :
P N Ng] = oo we see that PNg/Ng =2 P/P N Ng is a divisible Abelian group. Then by
[12, Theorem 1.16] the group Gy = NgP is central-by-finite, and by Theorem 3 [8], it is
a non-Hamiltonian H,-group. However, that is impossible according to [11]. Thus, G is a
finite extension of the quasicyclic subgroup A.

Now we show that Ng C Cg(A). If |[Ng| = oo, then [11, Theorems 1.2-1.3] implies
A C Z(Ng). Suppose that |Ng| < oo. Since Ng <« G, we obtain [G : Cq(Ng)] < oo and
therefore A C Ci(Ng). So in every case Ng C Cg(A), and this completes the proof. O

Using Theorem 1 and Theorem 3[8], we can easily prove the following results.

Corollary 1. Any infinite locally finite p-group G whose non-cyclic norm Ng is infinite and
non-Dedekind, is a H,-group.

Corollary 2. If the non-cyclic norm Ng of an infinite locally finite p-group G is non-
Dedekind and differs from (G, then N¢ is a finite group.
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Theorem 2. Let (¢ be an infinite locally finite p-group (p # 2) with non-Abelian non-cyclic
norm. Then G is H,-group.

Proof. Assume that G # Ng. Then |[Ng| < oo by Corollary 2. On the other hand, Theorem 1
implies G = AH, where A is a quasicyclic p-group and |H| < oco. Using [12, Corollary 1.13]
we see that A C Z(() and as a consequence A C Ng. Thus |Ng| = oo, a contradiction. The
proposition is proved. O

Corollary 3. Let (¢ be an infinite locally finite p-group (p # 2). If G has a non-invariant
non-cyclic subgroup H, then its non-cyclic norm N¢ i1s Abelian.

Let us recall that the low layer w(() of the group G is the subgroup of GG generated by
all the elements of the prime order of G.
Next we need the following auxiliary result.

Lemma 3. If a locally finite p-group G has the non-Dedekind non-cyclic norm N¢, whose
law layer w(N¢) is a central non-cyclic subgroup of G, then w(Ng) = w(G).

Proof. Suppose that this is not true and there exists an involution z, not belonging to
w(Ng) = (a1) x{az). Then (z) = (&, a1)N(x,as) = Gy = () Ng. It follows x € Z(G1) C Ng,
and |w(Ng, )| = 8 which contradicts to [11, Lemma 1.2]. O

Theorem 3. The non-cyclic norm N¢ of an infinite locally finite 2-group (i is non-Dedekind
if and only if GG is a group of one of the following types:

1) G = (A x (b))X\c), where A is a quasicyclic 2-group, |b| = |¢| = 2,[A, (¢)] = 1,[b,¢] =
a; € A, |a1| = 2; Ng = G;

2) G = A x H, where A is a quasicyclic 2-group, H = (hy,hy), |hi| = |he| = 4, hi* =
hay? = [h1, ha); No = G

3) G = (A x (b))ANc)A(d), A is a quasicyclic 2-group, |b| = |¢| = |d| = 2, [A,(¢)] =
dtad = a™! for each element a € A,[b,c] = [d,b] = [d,c] = a; € A,|a1| = 2; Ng =
({a) x (0))A{c),a € A, |a] = 4;

1) G = (Ax H){d), A is a quasicyclic 2-group, d* = a; € A, |a;| =2, d " ad = a™* for each
element a € A, H = (hy, ha), |hi]| = |ha| = 4, hi* = hy? = [h1, ha]; Na = (ha2)Mahy),
a € A, la| =4.

—_

Y

Proof. Necessity. Let GG be a group under consideration and Ng its non-cyclic norm. If
|Ng| = oo then it follows from Corollary 1 and the description of the H,-groups (see [11])
that G = Ng and G is a group of type 1) or 2) of the Theorem.

Suppose |Ng| < 0o. Then by Theorem 1 we get that G is a finite extension of a quasicyclic
2-group A and, moreover, N C C' = Cg(A). Since A ¢ Z(G),[G : C] =2 and G = C{(d),
where d* € C'. So the element d induces a nontrivial automorphism of the order 2 on A and
d~lad = a™! for each element a € A

By Lemma 1 and Corollary 2, the inclusion Ng C € implies that No = €' and C is a
non-Hamiltonian Hy-group. Using the description of such groups [11, Theorems 1.2-1.3] we
conclude that €' is a group of the following types:

1) G = (Ax(b))X(e), Ais a quasicyclic 2- group, |b| = |¢| = 2, [A, (¢)] =1, [b,¢] = a1 € A,

lay| = 2;

2) G = AxH, Ais aquasicyclic 2- group, H = (hy, ha), |hi| = |h2| = 4, k3 = k3 = [hy, ha.
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Further we examine separately each of the above two types.
Let GG be a group of type 1). Since Ng is non-Dedekind and Ng C C, we get that

subgroup B = (b, c) lies in C. Put G = G/A. Clearly, G = Ng(d), where No = B, d*> € B
and |d| < 4. By Lemma 2, in consideration of [ : Ng] = 2 we obtain that in G each
subgroup is normal, if it does not belong to Ng. This means that G is an Abelian group
and consequently G C A.

Since w(C) aG and [w*((C'), ] = 1, we see that [w(C), G] C {(ay), where a; € A, |a;| = 2.
So B4 G, [B,G] C {a;) C Z((G) and by Proposition 1.3 [11],

G = BCg(B), BNCa(B) = (ay).

If |[d| = 2, then |d| < 4. Suppose |d| = 2. Then [d,y] # 1 for each noncentral element
y € B. Conversely since (d,y) < G4 = (d)Ng, we see that (y) = (d,y) N Ng < Gy, which
is impossible. So [d,b] = [d,¢] = a; and G is a group of type 3) of the Theorem. Assume
|d| = 4. Tt is clearly that d* = ay and if d € Cg(B), then |dbc| = 2. Replacing element d by
dbc we obtain the group of the type 3) of the Theorem. Suppose d ¢ Cu(B). Then there
exists an involution « € B, such that [d,z] = a;. Consequently, |dz| = 2 and replacing the
element d by dx we see that (7 is the group of type 3) again.

Suppose |d| = 4. Then d*> = a'y, where ¢’ € A, y € B\ (a;). Choose an element
v € B with [z,y] # 1. Then [z,d] € AN B = {(a;) and [z,d*] = 1, which contradicts to
[#,d*] = [z,y] # 1. Case 1) is considered.

Let C' be a group of type 2). Then Z(G) 2 (ay) x (h*), where ay € A, |a1| =2, h € H,
|h| = 4. Let us examine the factor-group C'/A = G = H{d), d*> € H. Since Ng is non-
Dedekind, we can suppose that H = Ng. By Lemma 2, No < N(G), so the norm N(G) is
Hamiltonian and by [2] G contains no element of order 8. Thus, |d| < 4.

If |d| = 2 then (d) «G and G = H x d. Suppose |d| = 4. Then d? = h2 € H and
since 7 C (d) N'H = (h?) we obtain, that there exists an element h € H, |h| = 4 such
that [h,d] = 1. It means that |dh| = 2 and H C Ng((dh)) by the Lemma 2. So again
G = H x (d'), where d' = dh, |d'| = 2.

It follows from Lemma 3 and d* € A that |d| = 4 and (d) N C' = (1) € A. It is also
clear that [H,(d)] € A and [H?,(d)] = 1. Suppose K = ({a) x H){d), a € A, |a| = 4. Since
[K,(d)] C (a®)A, we get K' = (a* h?). By Lemma 3 and Theorem B [13] we conclude that
K is a semi-direct product of two quaternion groups. In this case, GG is a group of type 4) of
the Theorem.

Sufficiency. If G is a group of type 1) or 2) of Theorem, then it is a H,-group and thus,
G = Ng.

Let GG be a group of type 3) of the Theorem. Prove that its non-cyclic norm coincides
with the group N = ((a) x (b))A(c), where a € A, |a| = 4. Indeed, since Ny = Ng({a1,d)) =
({a) x (b))M(c)AM{d), and Ny = Ng((a1,a'd)) = ({a) x (b))A(c)A(d’d), where aq,d’
nA, la1] = 2,|d’'| > 4, we get N € NyN Ny = N = ((a) x (b))X(c). Now, taking into account
that every non-cyclic subgroup contains the element a; and [G, Ng] C (a1), we conclude,
that N normalize all non-cyclic subgroup. So, Ng = N.

Suppose that GG is a group of type 4) of the Theorem. It is obvious that No € Ny N Ny =
N = (hy)A(hia), where Ny = Ng((hid, hs)) = (hid, ha, hia) and Ny = Ng(H) = A x H. In
light of [G, N] C w(G) = (h?*) x (a*) it is enough to show that the subgroup N normalizes
all generalized quaternion groups. It is obvious for subgroups which belong to C' = A x H.
Suppose () is a generalized quaternion group containing the element da;, where a; € A,

la;] = 2¢, 7 > 0. Since [(d), N] C (d*), we get N(d)Ng(Q). If Q contains the element dh,a;,
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then @ = (dhia;,a"hy), m = 0,1. The inclusion [@, N] C (hy) C @ imply N C Ng(Q).
As we have no other generalized quaternion groups which are not included in €', then N
normalizes all non-cyclic subgroups and N = Ng. The Theorem is proved. O
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