УДК 512.544

T. D. Lukashova

ON LOCALLY FINITE p-GROUPS WITH NON-DEDEKIND NON-CYCLIC SUBGROUP NORM

T. D. Lukashova. On locally finite p-groups with non-Dedekind non-cyclic subgroup norm, Matematychni Studii, 17 (2002) 18–22.

We study infinite locally finite p-groups whose non-cyclic norm is non-Dedekind. It is proved that such groups are finite extensions of quasicyclic subgroups. A complete description of infinite locally finite p-groups with non-Dedekind non-cyclic norm is given.

Т. Д. Лукашова. О локально конечной р-группе с недедекиндовой нециклической подгрупповой нормой // Математичні Студії. – 2002. – Т.17, №1. – С.18–22.

Изучаются бесконечные локально конечные p-группы, нециклическая норма котрорых не дедекиндова. Доказано, что такие группы являются конечным расширением квазициклических групп. Получено полная характеризация бесконечных локально конечных p-групп с недедекиндовой нециклической нормой.

Suppose G is a group and $\Sigma \neq \emptyset$ is a system of all subgroups of G having some fixed group-theoretic property. The maximal subgroup of the group G normalizing every subgroup of Σ is called the Σ -norm of this group. The Σ -norm of a group is its characteristic subgroup, and it includes the center of the group and coincides with the intersection of the normalizers of all subgroups from Σ .

If the Σ -norm contains at least one subgroup of the system Σ , then all subgroups with such a property are invariant in it. Algebraists of various countries, and, especially S. N. Černikov and his followers were active researchers of such groups. So, if the Σ -norm coincides with the group G, then all the subgroups of Σ are invariant in G. That is why it is natural to consider more general situation when the Σ -norm is a proper subgroup of G.

In the case when the system Σ consists of all subgroups of the group G, the Σ -norm according to [1,2] is called the *norm* of the group and is denoted by N(G). The norm of a group is an Abelian or Hamiltonian subgroup and is included in any other Σ -norm. So the notion of the norm of the group can be generalized by narrowing the system Σ . Among such generalizations there are: the A-norm (i.e. the intersection of the normalizers of all the maximal Abelian subgroups [3]), the subnormal norm (or the Wielandt subgroup), the intersection of the normalizers of all the subnormal subgroups of the group (see [4,5]), etc. see, for example, [6,7].

We continue the research started in [8], where the conception of the non-cyclic group norm had been noted. Following [8] under the non-cyclic group norm N_G of a group G we

2000 Mathematics Subject Classification: 20F29, 20E08, 20B27.

understand the Σ -norm of G for the system Σ of all non-cyclic subgroups of the group. If N_G is non-cyclic, then all its non-cyclic subgroups are invariant in it. Non-Abelian groups with such features were studied in [9–11] and were called \overline{H} -groups (or $\overline{H_p}$ -groups if they are p-groups).

In this paper we investigate infinite locally finite p-groups having non-Dedekind non-cyclic norm. It is proved that such groups are finite extensions of quasicyclic subgroups and their constructive description is obtained.

Lemma 1. Let H be a subgroup of a group G. If N_G is the non-cyclic norm of G, then $N_G \cap H \leq N_H$.

Proof. The proof of Lemma 1 is obvious.

Lemma 2. Let H be an invariant non-cyclic subgroup of the group G and N_G is the non-cyclic norm of this group. Then $\overline{N_G} = N_G/H \leq N(\overline{G}) = N(G/H)$, where $N(\overline{G})$ is the norm of the group $\overline{G} = G/H$.

Proof. Suppose $\overline{M} \leq \overline{G}$. Then the full pre-image M of the group \overline{M} is a non-cyclic subgroup. So $N_G \subseteq N_G(M)$, and therefore $\overline{N_G} \subseteq N_{\overline{G}}(\overline{M})$. From definition of the group norm and arbitrary choice of the subgroup \overline{M} it follows that $\overline{N_G} \leq N(\overline{G})$, as required.

Theorem 1. Any infinite locally finite p-group G having non-Dedekind non-cyclic norm N_G is a finite extension of a quasicyclic subgroup $A \subset G$, and $N_G \subseteq C_G(A)$.

Proof. Let a p-group G and its non-cyclic norm N_G satisfy the given condition. If $G = N_G$, then G is a non-Hamiltonian $\overline{H_p}$ -group and our theorem follows from Theorems 1.2–1.3 [11]. So further we may assume that $G \neq N_G$.

Suppose that the group G does not satisfy the minimal condition for subgroups. Then it includes an infinite elementary Abelian subgroup A. Since the subgroup N_G is non-Dedekind, Theorems 1.2-1.3 [11] imply $|A \cap N_G| < \infty$. Let us consider the group $G_1 = N_G A = N_G A_2$, where $A = A_1 \times A_2$, $A_1 = N_G \cap A$, $A_2 \cap N_G = E$. So if $|A_2| = \infty$, then A_2 is non-cyclic and therefore $A_2 \triangleleft G_1$. Hence the group $G_1 = N_G \times A_2$ is central-by-finite and by Theorem 3 [8] it is a non-Hamiltonian $\overline{H_p}$ -group. It contradicts to the description of such groups (see [11]). So, G is a group with minimal condition for subgroups, and by [12, Theorem 4.1] G is a Černikov group.

Assume that G contains a direct product P of two quasicyclic subgroups. Since $[P:P\cap N_G]=\infty$ we see that $PN_G/N_G\cong P/P\cap N_G$ is a divisible Abelian group. Then by [12, Theorem 1.16] the group $G_2=N_GP$ is central-by-finite, and by Theorem 3 [8], it is a non-Hamiltonian $\overline{H_p}$ -group. However, that is impossible according to [11]. Thus, G is a finite extension of the quasicyclic subgroup A.

Now we show that $N_G \subseteq C_G(A)$. If $|N_G| = \infty$, then [11, Theorems 1.2-1.3] implies $A \subseteq Z(N_G)$. Suppose that $|N_G| < \infty$. Since $N_G \triangleleft G$, we obtain $[G: C_G(N_G)] < \infty$ and therefore $A \subseteq C_G(N_G)$. So in every case $N_G \subseteq C_G(A)$, and this completes the proof.

Using Theorem 1 and Theorem 3[8], we can easily prove the following results.

Corollary 1. Any infinite locally finite p-group G whose non-cyclic norm N_G is infinite and non-Dedekind, is a $\overline{H_p}$ -group.

Corollary 2. If the non-cyclic norm N_G of an infinite locally finite p-group G is non-Dedekind and differs from G, then N_G is a finite group.

Theorem 2. Let G be an infinite locally finite p-group $(p \neq 2)$ with non-Abelian non-cyclic norm. Then G is $\overline{H_p}$ -group.

Proof. Assume that $G \neq N_G$. Then $|N_G| < \infty$ by Corollary 2. On the other hand, Theorem 1 implies G = AH, where A is a quasicyclic p-group and $|H| < \infty$. Using [12, Corollary 1.13] we see that $A \subseteq Z(G)$ and as a consequence $A \subseteq N_G$. Thus $|N_G| = \infty$, a contradiction. The proposition is proved.

Corollary 3. Let G be an infinite locally finite p-group $(p \neq 2)$. If G has a non-invariant non-cyclic subgroup H, then its non-cyclic norm N_G is Abelian.

Let us recall that the low layer $\omega(G)$ of the group G is the subgroup of G generated by all the elements of the prime order of G.

Next we need the following auxiliary result.

Lemma 3. If a locally finite p-group G has the non-Dedekind non-cyclic norm N_G , whose law layer $\omega(N_G)$ is a central non-cyclic subgroup of G, then $\omega(N_G) = \omega(G)$.

Proof. Suppose that this is not true and there exists an involution x, not belonging to $\omega(N_G) = \langle a_1 \rangle \times \langle a_2 \rangle$. Then $\langle x \rangle = \langle x, a_1 \rangle \cap \langle x, a_2 \rangle \cong G_1 = \langle x \rangle N_G$. It follows $x \in Z(G_1) \subseteq N_{G_1}$ and $|\omega(N_{G_1})| = 8$ which contradicts to [11, Lemma 1.2].

Theorem 3. The non-cyclic norm N_G of an infinite locally finite 2-group G is non-Dedekind if and only if G is a group of one of the following types:

- 1) $G = (A \times \langle b \rangle) \lambda \langle c \rangle$, where A is a quasicyclic 2-group, |b| = |c| = 2, $[A, \langle c \rangle] = 1$, $[b, c] = a_1 \in A$, $|a_1| = 2$; $N_G = G$;
- 2) $G = A \times H$, where A is a quasicyclic 2-group, $H = \langle h_1, h_2 \rangle$, $|h_1| = |h_2| = 4$, $h_1^2 = h_2^2 = [h_1, h_2]$; $N_G = G$;
- 3) $G = (A \times \langle b \rangle) \lambda \langle c \rangle \lambda \langle d \rangle$, A is a quasicyclic 2-group, |b| = |c| = |d| = 2, $[A, \langle c \rangle] = 1$, $d^{-1}ad = a^{-1}$ for each element $a \in A$, $[b, c] = [d, b] = [d, c] = a_1 \in A$, $|a_1| = 2$; $N_G = (\langle a \rangle \times \langle b \rangle) \lambda \langle c \rangle$, $a \in A$, |a| = 4;
- 4) $G = (A \times H)\langle d \rangle$, A is a quasicyclic 2-group, $d^2 = a_1 \in A$, $|a_1| = 2$, $d^{-1}ad = a^{-1}$ for each element $a \in A$, $H = \langle h_1, h_2 \rangle$, $|h_1| = |h_2| = 4$, $h_1^2 = h_2^2 = [h_1, h_2]$; $N_G = \langle h_2 \rangle \lambda \langle ah_1 \rangle$, $a \in A$, |a| = 4.

Proof. Necessity. Let G be a group under consideration and N_G its non-cyclic norm. If $|N_G| = \infty$ then it follows from Corollary 1 and the description of the $\overline{H_p}$ -groups (see [11]) that $G = N_G$ and G is a group of type 1) or 2) of the Theorem.

Suppose $|N_G| < \infty$. Then by Theorem 1 we get that G is a finite extension of a quasicyclic 2-group A and, moreover, $N_G \subseteq C = C_G(A)$. Since $A \not\subset Z(G)$, [G:C] = 2 and $G = C \langle d \rangle$, where $d^2 \in C$. So the element d induces a nontrivial automorphism of the order 2 on A and $d^{-1}ad = a^{-1}$ for each element $a \in A$

By Lemma 1 and Corollary 2, the inclusion $N_G \subseteq C$ implies that $N_C = C$ and C is a non-Hamiltonian $\overline{H_2}$ -group. Using the description of such groups [11, Theorems 1.2-1.3] we conclude that C is a group of the following types:

- 1) $G = (A \times \langle b \rangle) \lambda \langle c \rangle$, A is a quasicyclic 2- group, |b| = |c| = 2, $[A, \langle c \rangle] = 1$, $[b, c] = a_1 \in A$, $|a_1| = 2$;
 - 2) $G = A \times H$, A is a quasicyclic 2- group, $H = \langle h_1, h_2 \rangle$, $|h_1| = |h_2| = 4$, $h_1^2 = h_2^2 = [h_1, h_2]$.

Further we examine separately each of the above two types.

Let G be a group of type 1). Since N_G is non-Dedekind and $N_G \subseteq C$, we get that subgroup $B = \langle b, c \rangle$ lies in C. Put $\overline{G} = G/A$. Clearly, $\overline{G} \cong \overline{N_G} \langle \overline{d} \rangle$, where $\overline{N_G} = \overline{B}$, $\overline{d^2} \in \overline{B}$ and $|\overline{d}| \leq 4$. By Lemma 2, in consideration of $[\overline{G} : \overline{N_G}] = 2$ we obtain that in \overline{G} each subgroup is normal, if it does not belong to $\overline{N_G}$. This means that \overline{G} is an Abelian group and consequently $G' \subseteq A$.

Since $\omega(C) \triangleleft G$ and $[\omega^2(C), G] = 1$, we see that $[\omega(C), G] \subseteq \langle a_1 \rangle$, where $a_1 \in A$, $|a_1| = 2$. So $B \triangleleft G$, $[B, G] \subseteq \langle a_1 \rangle \subseteq Z(G)$ and by Proposition 1.3 [11],

$$G = BC_G(B), B \cap C_G(B) = \langle a_1 \rangle.$$

If $|\overline{d}| = 2$, then $|d| \leq 4$. Suppose |d| = 2. Then $[d, y] \neq 1$ for each noncentral element $y \in B$. Conversely since $\langle d, y \rangle \triangleleft G_1 = \langle d \rangle N_G$, we see that $\langle y \rangle = \langle d, y \rangle \cap N_G \triangleleft G_1$, which is impossible. So $[d, b] = [d, c] = a_1$ and G is a group of type 3) of the Theorem. Assume |d| = 4. It is clearly that $d^2 = a_1$ and if $d \in C_G(B)$, then |dbc| = 2. Replacing element d by dbc we obtain the group of the type 3) of the Theorem. Suppose $d \notin C_G(B)$. Then there exists an involution $x \in B$, such that $[d, x] = a_1$. Consequently, |dx| = 2 and replacing the element d by dx we see that G is the group of type 3) again.

Suppose $|\overline{d}| = 4$. Then $d^2 = a'y$, where $a' \in A$, $y \in B \setminus \langle a_1 \rangle$. Choose an element $x \in B$ with $[x, y] \neq 1$. Then $[x, d] \in A \cap B = \langle a_1 \rangle$ and $[x, d^2] = 1$, which contradicts to $[x, d^2] = [x, y] \neq 1$. Case 1) is considered.

Let C be a group of type 2). Then $Z(G) \supseteq \langle a_1 \rangle \times \langle h^2 \rangle$, where $a_1 \in A$, $|a_1| = 2$, $h \in H$, |h| = 4. Let us examine the factor-group $C/A = \overline{G} \cong \overline{H}\langle \overline{d} \rangle$, $\overline{d^2} \in \overline{H}$. Since N_G is non-Dedekind, we can suppose that $\overline{H} = \overline{N_G}$. By Lemma 2, $\overline{N_G} \leq N(\overline{G})$, so the norm $N(\overline{G})$ is Hamiltonian and by [2] \overline{G} contains no element of order 8. Thus, $|\overline{d}| \leq 4$.

If $|\overline{d}| = 2$ then $\langle \overline{d} \rangle \triangleleft \overline{G}$ and $\overline{G} = \overline{H} \times \overline{d}$. Suppose $|\overline{d}| = 4$. Then $\overline{d^2} = \overline{h^2} \in \overline{H}$ and since $\overline{C'} \subseteq \langle \overline{d} \rangle \cap \overline{H} = \langle \overline{h^2} \rangle$ we obtain, that there exists an element $\overline{h} \in \overline{H}$, $|\overline{h}| = 4$ such that $[\overline{h}, \overline{d}] = 1$. It means that $|\overline{dh}| = 2$ and $\overline{H} \subseteq N_{\overline{G}}(\langle \overline{dh} \rangle)$ by the Lemma 2. So again $\overline{G} = \overline{H} \times \langle \overline{d'} \rangle$, where $\overline{d'} = \overline{dh}$, $|\overline{d'}| = 2$.

It follows from Lemma 3 and $d^2 \in A$ that |d| = 4 and $\langle d \rangle \cap C = \langle a_1 \rangle \in A$. It is also clear that $[H, \langle d \rangle] \subseteq A$ and $[H^2, \langle d \rangle] = 1$. Suppose $K = (\langle a \rangle \times H) \langle d \rangle$, $a \in A$, |a| = 4. Since $[K, \langle d \rangle] \subseteq \langle a^2 \rangle A$, we get $K' = \langle a^2, h^2 \rangle$. By Lemma 3 and Theorem B [13] we conclude that K is a semi-direct product of two quaternion groups. In this case, G is a group of type 4) of the Theorem.

Sufficiency. If G is a group of type 1) or 2) of Theorem, then it is a $\overline{H_p}$ -group and thus, $G = N_G$.

Let G be a group of type 3) of the Theorem. Prove that its non-cyclic norm coincides with the group $N = (\langle a \rangle \times \langle b \rangle) \lambda \langle c \rangle$, where $a \in A$, |a| = 4. Indeed, since $N_1 = N_G(\langle a_1, d \rangle) = (\langle a \rangle \times \langle b \rangle) \lambda \langle c \rangle \lambda \langle d \rangle$, and $N_2 = N_G(\langle a_1, a'd \rangle) = (\langle a \rangle \times \langle b \rangle) \lambda \langle c \rangle \lambda \langle a'd \rangle$, where a_1, a' nA, $|a_1| = 2$, |a'| > 4, we get $N_G \subseteq N_1 \cap N_2 = N = (\langle a \rangle \times \langle b \rangle) \lambda \langle c \rangle$. Now, taking into account that every non-cyclic subgroup contains the element a_1 and $[G, N_G] \subseteq \langle a_1 \rangle$, we conclude, that N normalize all non-cyclic subgroup. So, $N_G = N$.

Suppose that G is a group of type 4) of the Theorem. It is obvious that $N_G \subseteq N_1 \cap N_2 = N = \langle h_2 \rangle \lambda \langle h_1 a \rangle$, where $N_1 = N_G(\langle h_1 d, h_2 \rangle) = \langle h_1 d, h_2, h_1 a \rangle$ and $N_2 = N_G(H) = A \times H$. In light of $[G, N] \subseteq \omega(G) = \langle h^2 \rangle \times \langle a^2 \rangle$ it is enough to show that the subgroup N normalizes all generalized quaternion groups. It is obvious for subgroups which belong to $C = A \times H$. Suppose Q is a generalized quaternion group containing the element da_i , where $a_i \in A$, $|a_i| = 2^i, j \geq 0$. Since $[\langle d \rangle, N] \subseteq \langle d^2 \rangle$, we get $N \langle d \rangle N_G(Q)$. If Q contains the element $dh_1 a_i$,

then $Q = \langle dh_1 a_i, a_1^m h_2 \rangle$, m = 0, 1. The inclusion $[Q, N] \subseteq \langle h_2 \rangle \subseteq Q$ imply $N \subseteq N_G(Q)$. As we have no other generalized quaternion groups which are not included in C, then N normalizes all non-cyclic subgroups and $N = N_G$. The Theorem is proved.

The author expresses her deep gratitude to Prof. F. M. Liman for supervising.

REFERENCES

- 1. Baer R. Der Kern, eine charakteristische Untergruppe // Comp. Math. 1934. V.1. P.254–283.
- 2. Baer R. Zentrum und Kern von Gruppen mit Elementen Unendlicher Ordnung // Comp. Math. 1935. V.2. P.247–249.
- 3. Kappe W. Die A-Norm einer Gruppe, III // J. Math. 1961. V.5, № 2. P.187-197.
- 4. Wielandt H. Über der Normalisatior der Subnormaken Untergruppen // Mat. Zeitschr. 1958. Bd.69, №5. S.1463–1465.
- 5. Brangl R., Franciosi S., Giovanni F. On the Wielandt subgroup of infinite soluble groups // Glasgo Math. J. − 1990. − V.3, №2. − P.121–125.
- 6. Kappe W. E-Normen Endlicher Gruppen // Arch. Math. 1968. V. 19, №3. P.256-264.
- 7. Лиман Ф.М., Лукашова Т.Д. *Про нескінченні групи із заданими властивостями норми нескінченних підгруп* // Укр. мат. журн. 2001. Т.53, №5. С.625–630.
- 8. Лиман Ф.М. О бесконечных группах, нециклическая норма которых имеет конечный индекс // Укр. мат. журн. 1997. Т.49, №5. С.678–684.
- 9. Лиман Ф.М. Групи з інваріантними нециклічними підгрупами // Доп. АН УССР 1967. №12. С.1073—1075.
- 10. Лиман Ф.М. 2-группы с инвариантными нециклическими подгруппами // Мат. заметки 1968. Т.4, №1. С.75–83.
- 11. Лиман Ф.М. Групи з обмеженнями на нормалізатори різних систем підгруп // Деп. в України 24.11.97, № 577. Ук 97, 293 с.
- 12. Черников С.Н. Группы с заданными свойствами системы подгрупп. М: Наука, 1980.
- 13. Устюжанинов А.Д. Конечные 2-группы с тремя инволюцими // Сиб. мат. журн. 1972. Т.13. С.182–197.

Sumy State Pedagogical University

Received 5.09.2001