УДК 517.98

O. B. Zagorodnyuk

IDEALS OF ALGEBRAS OF ANALYTIC FUNCTIONS ON BANACH SPACES

A. Zagorodnyuk. *Ideals of algebras of analytic functions on Banach spaces*, Matematychni Studii, **17** (2002) 102–104.

It is proved that if X is not a symmetrically regular Banach space then there exist finite codimensional primary ideals on the algebra of entire functions of bounded type on X, $H_b(X)$ and on the algebra of uniformly continuous bounded functions on the unit ball \mathcal{B} , $H_{uc}^{\infty}(\mathcal{B})$.

А. В. Загороднюк. Идеалы алгебр аналитических функций на банаховых простра нствах. // Математичні Студії. — 2002. — Т.17, №1. — С.102—104.

Доказано, что для не симметрически регулярного банахового пространства X существуют примарные идеалы конечной коразмерности на алгебре $H_b(X)$ целых функций ограниченного типа на X и на алгебре равномерно непрерывных ограниченых функций $H_{uc}^{\infty}\mathcal{B}$ на единичном шаре $\mathcal{B} \in X$.

Let X be a complex Banach space and \mathcal{B} its unit ball. We call $H_{uc}^{\infty}(\mathcal{B})$ the algebra of bounded analytic functions on \mathcal{B} , uniformly continuous on the closure $\overline{\mathcal{B}}$. It is well-known that the algebra $H_{uc}^{\infty}(\mathcal{B})$ endowed with norm $||f|| = \sup_{x \in \mathcal{B}} |f(x)|$ is a Banach algebra. The algebra $H_b(X)$ of entire functions on X that are bounded on the bounded sets can be defined as the projective limit of algebras $H_{uc}^{\infty}(r\mathcal{B})$, where r is a real positive number. The purpose of this paper is investigation of finite dimensional homomorphisms of algebras $H_b(X)$ and $H_{uc}^{\infty}(r\mathcal{B})$, when the space X is not symmetrically regular. For the symmetrically regular algebras the structure of set of complex homomorphisms on $H_b(X)$ was investigated in [1].

For background information on holomorphic functions in infinite dimensions, we refer to [2] or [3].

Given a continuous *n*-linear mapping $B: X \times \cdots \times X \to \mathbb{C}$, B can be extended to a continuous, *n*-linear mapping $\widetilde{B}: X'' \times \cdots \times X'' \to \mathbb{C}$ by

$$\widetilde{B}(x_1'', \dots, x_n'') = \lim_{\alpha_1} \dots \lim_{\alpha_n} B(x_{\alpha_1}, \dots, x_{\alpha_n}), \tag{1}$$

where for each k, (x_{α_k}) is a net in X weak-star converging to x''_k . It is known that $\|\widetilde{B}\| = \|B\|$. It is essential for us that if B is symmetric, it does not necessary follow that \widetilde{B} is symmetric.

A Banach space X is called regular if

$$\widetilde{B}(x_1'',\ldots,x_n'') = \lim_{\alpha_{\sigma(1)}} \ldots \lim_{\alpha_{\sigma(n)}} B(x_{\alpha_1},\ldots,x_{\alpha_n}),$$

2000 Mathematics Subject Classification: 46G20.

for every permutation σ on the set $\{1,\ldots,n\}$ and symmetrically regular if \widetilde{B} is symmetric for every symmetric bilinear map B on $X \times X$.

Let B be a symmetric n-linear form and B its extension to the bidual space. Let us consider an n-linear form A[B] on X'' defined by

$$A[B](z_1,\ldots,z_n) = \frac{1}{n!} \sum_{\sigma \in S_n} (-1)^{\sigma} \widetilde{B}(z_{\sigma(1)},\ldots,z_{\sigma(n)}),$$

where S_n is the group of permutations on the set $\{1, \ldots, n\}$. Let us denote by $\mathcal{L}_a({}^nX)$ the set of continuous antisymmetric n-linear forms on X^n . Thus the map $A \colon B \mapsto A[B]$ is a linear continuous operator from $\mathcal{L}_s({}^nX)$ to $\mathcal{L}_a({}^nX'')$. It is easy to see that this operator is trivial if and only if X is symmetrically regular. For any $G \in \mathcal{L}({}^nX'')$, we shall denote by as(G) the antisymmetrization operator:

$$as(G) = \frac{1}{n!} \sum_{\sigma \in S_n} (-1)^{\sigma} G(z_{\sigma(1)}, \dots, z_{\sigma(n)}).$$

Therefore, $A[B] = as(\widetilde{B})$. Let $D_1 \in \mathcal{L}_a({}^nX'')$ and $D_2 \in \mathcal{L}_a({}^mX'')$. Put $D_1 \wedge D_2 := as(D_1D_2)$. Using the simple induction, it is easy to see that

$$D_1 \wedge D_2 = (-1)^{nm} D_2 \wedge D_1.$$

Let us denote by $\mathcal{L}_a(X'')$ the direct sum of spaces $\mathcal{L}_a(^nX'')$, $n=0,\ldots,\infty$, endowed with the direct sum topology. We shall assume that $\mathcal{L}_a(^0X'')$ is the field \mathbb{C} and $\mathcal{L}_a(^1X'')=X'''$. It is clear that the operation \wedge is associative and well-defined on $\mathcal{L}_a(X'')$.

Proposition 1. The space $\mathcal{L}_a(X'')$ with operation \wedge is a locally multiplicatively convex algebra.

Proof. Since the direct sum of Banach spaces is a locally convex space, it is enough to check that $||D_1 \wedge D_2|| \le ||D_1|| ||D_2||$.

For any $z_1, \ldots, z_n \in \mathcal{B}(X'')$ we can write

$$|D_1 \wedge D_2(z_1, \dots, z_n)| \le \sup_{\sigma \in S_n} |D_1 D_2(z_{\sigma_1}, \dots, z_{\sigma_n})| \le ||D_1|| ||D_2||.$$

Proposition 2. The map $A \colon B \mapsto as(\widehat{B})$ is a continuous homomorphism from algebra $\mathcal{P}(X)$ to $\mathcal{L}_a(X'')$.

Proof. For arbitrary $B_1 \in \mathcal{L}_s(^nX), B_2 \in \mathcal{L}_s(^mX)$ we have

$$A[B_1B_2] = as(\widehat{B_1B_2}) = as(as(\widehat{B_1})as(\widehat{B_2})) = A[B_1] \wedge A[B_2].$$

Since, $\|\widetilde{B}\| = \|B\|$ and $\|\widetilde{B}\| \ge \|as(\widetilde{B})\|$, the operator A is continuous.

Let us denote by A the image of the operator A.

Corollary 1. The image A of the operator A is a commutative subalgebra in $\mathcal{L}_a(^nX'')$.

Proof. Let h_1, \ldots, h_m be some linearly independent vectors in X and $D \in \mathcal{L}_a(^nX'')$. Put

$$\Phi_{h_1,\dots,h_m}(D) : = \sum_{1 \le i_1 < \dots < i_n \le m} D(t_{i_1} h_{i_1}, \dots, t_{i_n} h_{i_n})$$

if n > 0 and $\Phi_{h_1,...,h_m}(1) = 1$ and extend it by linearity to the space $\mathcal{L}_a(X'')$.

Theorem 1. The map $\Phi_{h_1,...,h_m}$ is a continuous homomorphism from $\mathcal{L}_a(X'')$ into the algebra Ω_n of antisymmetric forms on \mathbb{C}^n .

Proof. Evidently, $\|\Phi_{h_1,...,h_m}(D)\| \le \|D\|$ and $\|\Phi_{h_1,...,h_m}(1)\| = 1$, thus we have $\|\Phi_{h_1,...,h_m}\| = 1$. Also

$$\Phi_{h_1,\dots,h_m}(D_1 \wedge D_2) = \Phi_{h_1,\dots,h_m} as(D_1 D_2) = as \sum_{1 \le i_1 < \dots < i_n \le m} D(t_{i_1} h_{i_1}, \dots, t_{i_n} h_{i_n}) = \Phi_{h_1,\dots,h_m}(D_1) \wedge \Phi_{h_1,\dots,h_m}(D_2).$$

Let us recall that an ideal J is called a $primary\ ideal$ if it contained in a unique maximal ideal. \Box

Theorem 2. If X is not a symmetrically regular Banach space then there exists a finite codimensional primary ideal on $H_b(X)$ and on $H_{uc}^{\infty}(\mathcal{B})$.

Proof. Note first that $\mathcal{P}(X)$ is a dense subspace in $H_b(X)$ and $H_b(X)$ is a dense subspace in $H_{uc}^{\infty}(\mathcal{B})$. So every continuous homomorphism on $\mathcal{P}(X)$ can be extended to a continuous homomorphism on $H_b(X)$ and on $H_{uc}^{\infty}(\mathcal{B})$. Let us prove the theorem for $H_b(X)$, the proof for $H_{uc}^{\infty}(\mathcal{B})$ is similar. Let Ψ_{h_1,\dots,h_m} denote the extension of homomorphism $A \circ \Phi_{h_1,\dots,h_m}$ to $H_b(X)$. Since Ψ_{h_1,\dots,h_m} is a finite-dimensional homomorphism, the zero set $Z := \ker \Psi_{h_1,\dots,h_m}$ is a finite-codimensional ideal in $H_b(X)$. It is clear that Z contained in the zero set of the point evaluation functional δ_0 at the origin. Let I be a maximal ideal containing Z. Since Z is a finite codimensional subspace, $H_b(X) = Z \oplus V_n$, where V_n is a finite dimensional subalgebra. Thus V_n is isomorphic to Ω_n and the restriction of I to V_n is a maximal ideal on V_n . Since every nonconstant form from Ω_n is nilpotent, the point evaluation functional at the origin is a unique complex homomorphism on Ω_n . Thus I coincides with $\ker \delta_0$ on V_n and therefore on X. Hence $\ker \delta_0$ is a unique maximal ideal containing Z.

Note that every finite-codimensional ideal of the algebra of entire functions on \mathbb{C}^n coincides with the intersection of a finite number of maximal ideals.

REFERENCES

- 1. Aron R.M., Galindo P., Garcia D., Maestre M., Regularity and algebras of analytic function in infinite dimensions, Trans. Amer. Math. Soc., 348 (1996), 543-559.
- 2. Dineen S., Complex Analysis on Infinite Dimensional Spaces, Springer Monographs in Mathematic, 1999.
- 3. Mujica J., Complex Analysis in Banach spaces, North-Holland, Amsterdam, 1986.

Institute of Applied Problems of Mechanics and Mathematics