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It is proved that there is no structure of left (right) cancellative semigroup on [L]-dimen-
sional universal space for the class of compact metrizable spaces of extensional dimension
< [L]. Besides, we show that the homeomorphism group of every locally compact separable
metric space whose every nonempty open subset is universal for the class of compact metric
[L]-dimensional spaces is almost 0-dimensional and, therefore, at most one-dimensional.

A. Hurorumze, A. Kapace, M. 3apuunniii. Tonoso2uueckue noayepynnvt u YHUEEPCAALHBLE
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JokazaHo, 9TO HE CYUIECTBYET CTPYKTYPHI JeBOH (MIPaBOil) MOMYTPYINEL ¢ COKPAIEHUAME
Ha [L]-MepHOM YHUBEPCAJIBHOM MPOCTPAHCTBE M KJIACCA KOMIIAKTHBIX METPU3YEMBIX IIPO-
CTPAHCTB DKCTEHCHOHAABHOI pazMepHocTu < [L]. Kpome Toro, nokaszaHo, 4To rpylmna roMeo-
MOP(}U3IMOB KaxX 0T 0 JOKAJAbHO KOMIIAKTHOI'O cenapabeJbHOI'0 METPUYECKOI0 MIPOCTPAHCTBA,
KaXoe HelycToe OTKPBITOE MOAMHOKECTBO KOTOPOT'O ABAACTCA YHUBEPCAABHBIM /A KJIacca
KOMIAKTHBIX METPU3YEeMBIX MPOCTPAHCTB DKCTEHCHOHAABHOU pasMepHocTu < [L], saBasercs
mouTu (-MepHOU W, cilieOBATENBHO, He 6oJiee YeM OTHOMEPHOM.

1. PRELIMINARIES

Let L be a CW-complex and X a Tychonov space. The Kuratowski notation X 7L means
that, for any continuous map f: A — L defined on a closed subset A of X, there exists
an extension f: X — L onto X. This notation allows us to define the preorder relation <
onto the class of CW-complexes: L < L' iff, for every Tychonov space X, X7L implies X7’
(see [5]).

The preorder relation < naturally generates the equivalence relation ~: L ~ L' iff L < L/
and L' < L. We denote by [L] the equivalence class of L.

The following notion is introduced by A. Dranishnikov (see [5] and [3]). The extension
dimension of a Tychonov space X is less than or equal to [L] (briefly, ext-dim(X) < [L]) if
XT1L.
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We say that a Tychonov space Y is a universal space for the class of compact metric
spaces X with ext-dim(X) < [L] if ¥ contains a topological copy of compact metric space
X with ext-dim(X) < [L]. See [1] and [2] for existence of universal spaces.

If L = 5" then we obtain the usual definition of covering dimension.

As usual, by S™ we denote an n-dimensional sphere. In what follows we will need the
following

Proposition 1.1. Let io = min{i : m;,(L) # 0}. Then ext-dim(S%*) < [L].

For the proof see [4].
It easily follows from Proposition 1.1 that ext-dim(X) > [S°] implies ext-dim(X) > [S!].

2. MAIN THEOREM

Recall that a semigroup S is called a left cancellation semigroup if vy = xz implies y = =
for every z,y,z € S.

Theorem 2.1. Let L be a CW-complex for which [L] > [two-point space]. Let Y be
a universal space for the class of separable metric spaces X with ext-dim(X) < [L]. If
ext-dim(Y) = [L], then there is no structure of left (right) cancellation semigroup on Y
compatible with its topology.

Proof. Suppose the contrary and let ¥ be a left cancellation semigroup. Since Y is uni-
versal, Y contains a copy of the Alexandrov cqmpactiﬁcation oz(]_[;il S%¥), where ig =
min{i: m(L) # 0}. We will assume that o(J[}Z, S}°) C Y. Besides, since ext-dim(Y") > [S],
we see that ig > 0 and hence Y contains an arc J. Let a,b be endpoints of J. There exists jo
such that aS2NbSY = &. By Proposition 1.1, there exists a map f: a5 UbS? — L such that
. 0 Jo . Jo Jo N
flaS¥ is a constant map and f[bS% is not null-homotopic. Extend map f to a map f: Y —
L. Let g: [0,1] = J be a homeomorphism, then the map 50 0,1] — L, f(z,t) = g(t)x,
is a homotopy that contradicts to the fact that f|6S% is not null-homotopic. 0

3. HOMEOMORPHISM GROUP

The homeomorphism group Homeo(X) of a compact space X is endowed with the
compact-open topology.

A separable metrizable space X is called almost 0-dimensional [7] provided there exists
a basis B for X such that for each B € B the set X \ B is a union of clopen sets.

In a metric space (X, d) we denote by B.(x) (respectively B.(x)) the open (respectively
closed) ball of radius ¢ and centered at x € X.

Theorem 3.1. Suppose X is a compact metric space, ext-dim(X) = [L] and every nonemp-
ty open subset of X is universal for the class of compact metric spaces Y with ext-dim(Y') <
[L]. Then the homeomorphism group Homeo(X) is almost 0-dimensional.

Proof. We apply arguments from [7]. Endow Homeo(X) with the sup-metric generated by
a metric d in X. Let f € Homeo(X). It is shown in [7, Lemma 3] that B.(f) = B.(f) for
all but a countable number of . Hence, without loss of generality, we may suppose that

Es(f) = B.(f) and let g ¢ B.(f). Then there exists a nonempty open set U in X such that
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d(f(y),g(y)) > ¢ for every y € U. By the properties of X, there exists an embedding of 5%
into U, where 14 is as in Proposition 1.1. We may suppose that S C /. There exists a map

he [ J{F(S®): /e B.(f)yug(s®) — L

such that the restriction 2|[J{f'(S*) : f' € B.(f)} is a singleton while the restriction
h|g(5%) is not null-homotopic. Extend A to a map h: X — L. The set

W = {g € Homeo(X) : h|g'(S™) is null-homotopic}

is an open and closed subset of Homeo(X) that contains ¢ and does not intersect B.(f).
This follows from the fact that close maps into a CW-complex are homotopic. 0

Corollary 3.2. In the assumptions of Theorem 3.1 the space Homeo(X) is at most one-
dimensional.

Proof. Follows from Theorem 3.1 and the fact that every almost 0-dimensional space is at
most one-dimensional [7, Theorem 2. O

Note that Theorem 3.1 and Corollary 3.2 can be extended onto the case of locally compact
locally connected X.

4. REMARKS AND OPEN PROBLEMS

Note that the case L. = S™ corresponds to the covering dimension. In this case, the
topology of homeomorphism groups of some universal spaces is investigated by many authors
(see the survey [6]). Our Theorem 3.1 corresponds to the result by L. G. Oversteegen and
E. D. Tymchatyn [7].

It is known (see [8] and [7]) that the homeomorphism group of the n-dimensional Menger
compactum M”" (note that M”" satisfies the conditions of Theorem 3.1 with L = S™) is
one-dimensional. This naturally leads to the following question. Let [L] > [S'] and X be as
in Theorem 3.1. Is dim(Homeo( X)) = 17

Since there is no canonical model space that satisfies the conditions of Theorem 3.1 for
arbitrary L, we can modify this question as follows: is there X that satisfies the conditions
of Theorem 3.1 and such that dim(Homeo(X)) = 17

The authors express their gratitude to B. Brechner and E. D. Tymchatyn for remarks
that finally extended the result of the previous version of this note to Theorem 3.1.
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