Maremaruaui Crymgii. T.16, Ne2 Matematychni Studii. V.16, No.2

YIK 517.95

V. M. DMYTRIV

ON A FOURIER PROBLEM FOR COUPLED EVOLUTION SYSTEM
OF EQUATIONS WITH TIME DELAYS

V. M. Dmytriv. On a Fourier problem for coupled evolution system of equations with time
delays, Matematychni Studii, 16 (2001) 141-156.

A problem without initial conditions for coupled systems of parabolic-ordinary equations
with time delays is investigated. Theorems on a priori estimate, uniqueness, and existence of
a solution of such problem are proved. Besides, continuous dependence of the solution on the
data-in of this problem 1is established.

B. M. /Imbitpus. 3adaua Pypve daa pazrnoromnonenmuott 26oa10yuonnott cucmemsl ypasHenut
¢ onozdanuem [/ Maremaruyani Crynii. — 2001. — T.16, Ne2. — C.141-156.

UccrenoBana 3amada 6e3 HaYaJIbHBIX YCIOBHH s cucTeM quddepeHInaIbHBIX ypaBHe-
HUH, COCTOSIINX KaK N3 KBA3WIMHENHBIX MapaboJnvIecKnX, TaK I OOBIKHOBEHHBIX YPaBHEHNH C
omazabiBaHmeM. [lokazaHBI TeOpeMbl 06 AMPUOPHON OIEHKE, e TMHCTBEHHOCTH U CYIeCTBOBA-
HUU pellleHns Takou 3ajgadu. KpoMe Toro, ycraHoBieHa HellepepHIBHAS 3aBICHMOCTD DEIIeHNsA
paccMaTpUBaeMOn 3aadl OT ee UCXOTHBIX TaHHBIX.

Introduction. Development of science and technique provokes to appearance of com-
plicated mathematical models of real nature. To describe them it is not sufficient to use
only the classical theory of differential equations. A lot of physical, biological and ecological
processes are described by coupled systems of equations. Such systems consist of subsys-
tems of different types, for example, subsystems of equations of parabolic type and ordinary
differential equations [1-5]. Some of these processes are described by equations or systems
of equations with time delays. Initial-boundary value problems for coupled systems of equa-
tions with time delays have been treated in articles [1, 2]. In this paper we investigate the
correctness of Fourier Problem (problem without initial conditions) for such systems. Note
that such problem for equations and systems of parabolic type has been considered in [6,7]
and others.

Let us introduce notations and notions we need later. Let D be a domain in the space
RZ:H Denote by C*°/2(D), Co\*+e/2(D), C**1+2/2(D) where a is a number from the
interval [0; 1], the Banach spaces of real-valued functions which together with correspond-
ing derivatives are continuous in D, if & = 0, and Hélder continuous functions in D with
the exponent a, if @ > 0 (see definitions in [8], p.16). The norms in these spaces are

denoted by || - Ha )2 | - Ha 1ta/2 and || - Hia 14a/20
domain then denote by C} CY/2( D), C\" 1+a/2( D) and CZ—IC_Q 1+a/2(D) the spaces of functions

loc

respectively. If D is an unbounded
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defined in D whose restrictions onto the closure of any bounded subdomain D’ of the do-
main D belong to C**/2(D"), C*F/2(DN), and C*ret+e/2(D7)| respectively (o € [0;1]).
Set C'(D) def Co9(D), Croe(D) o Cﬁ)’g(ﬁ). In the case when @) is the conjugation of the do-

main D and a part of its boundary we denote by Ca’a/z(Q) Ca’1+a/2(Q) and 02+a’1+a/2(Q)

loc » Mloc loc
the spaces of functions whose restrictions onto the closure of arbitrary bounded subdomain

D' of the domain D such that D' C @, belong to the spaces C*/2(D"), C*'*2/%(D") and
CHel+a/2(Dh respectively (a € [0;1]).

The boundary 9€) of a domain  C R” belongs to the class C** if it can be covered
by a locally finite family of surfaces such that every of them is given by the equation z; =
B(Z1y ey Tty Tig1y ey Ty) for some i € {1,...,n}, where h € C***(K), K is a domain in a
space of the corresponding variables.

For a set W we denote by [W]™, where m € N, the m-th Cartesian power of W. The
notation w € [W]™ means that w = col (wy, ..., w,,) is the vector-column with components
w; € W, 1 € {l,...,m} (as an exception, we write R™ instead of [R]™). Note that if W is
also a linear space then [W]™ is a linear space with corresponding linear operations.

Set |w| = max |w;|, where w = col (wy, ..., w,) € R™. Let us write u < v for u,v € R™,

1<em

if u; < vy, 1 €{l,...;m}, and an inequality « < v means that u; < v;, 7 € {1,...,m}.

1. Statement of problem and formulation of main results. Let Q = Q x (—oc0, T/,
where 0 < T < 400 and Q be a domain in the space R? with smooth boundary 0f2,
Y =00 x (=00, T].

Consider Fourier Problem for coupled system of equations with time delays:

n

. 2,,. n .
Pw(x,t) = M — Z ai7kl(x,t)w + Zai,k(%t) Oui(w, 1) + a;(@, t)u(x, 1) —
k=1

Jxp0x Ox
Pt k0T k

A

—filx, tyw(x, t),w(x,t)) = fi(x, 1), (x,1) € Q, ie{l,..., M}, (1)

Giw(x,t) = % + ci(x, vj(a,t) — g;(x, t,w(x, t), w(x, b)) =
=gi(z,t), (a,t)e@, jedl,.. L}, (2)
ui(x,t) = hi(x,t), (x,t) € X, i e{l,....,M}. (3)

Here M, L are arbitrary natural numbers; w(x,t) = col(u(x, ), v(x,t)), u(x,t) = col(uy(x, 1),
ot (2,1)),0(x, 1) = col(vi(w, 1), svp(, 1), (2,1) € Qi 7 = (Tiy ooy AL Targs s TaLAL),
> 0,0 € {1, M+ L};  wi(x,t) = col(ur(z,t),v:(x, 1)), us(x,t) = col(us(x,t —
1)y s uns(, t — Tar)), v (2, 1) = col(vi(z,t — Targr)s oy vn(, t — Tarer)), (z,1) € Q; for all
1 €4{l,..., M} and 5 € {1,...,L} fi(z,t,&,n) and g;(,t,{,n) are the functions which are

defined for (z,1) € Q and (z,1) € Q, respectively, and (£,7) € R2M+D),

Definition 1. A vector-function w = col(u,v), where u = col(uy,..., up) € [02’1(62) N

loc

Cloc(@)]M,v = col(vy,...,v) € [Co’l(@)]L, is called a solution of Problem (1)—(3) if it

loc

satisfies the equations of system (1),(2) and boundary condition (3).

We impose the following main conditions on the data-in:

(A1) the functions a; g, @ik, a; are continuous in @), and the function ¢; is continuous in @,

te{l,.. .M}, je{l,.. L}, {k 1} C{l,....,n}
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(A2) forany i € {1,... M} a0 = a5, {k,l} C{1,...,n}, moreover, for arbitrary points
(x,t) € @ and for all £ = (&4, ...,&,) € R” the following inequality holds

n

Z ai (@, )&k 2 pi(t) Z &,

k=1

where g, is a non-negative on (—oo, 7] function;

(A3) for any ¢ € {1,..., M} and j € {1,..., L} the functions fi(z,t,&,n), (x,t,&,n) € Q X
R2M+L) and g;(x,t,€,n), (x,1,6,n) € Q x R¥XMHE) are continuous by all their vari-
ables, non-decreasing by £, n and fulfill Lipschitz condition by these variables, more pre-
cisely, there exist non-negative and bounded on @ functions [(Z»J;(l', 1), L{k(:p, 1), (x,t) €
Q, K5.(x,1), L3, (2,1), (z,1) € Q, such that for any i € {1,.... M}, j € {1,...,L}

[fil, 1, € + Beqwyn) — filz, ,5, )| < Kz, 4)8],
|fila, 1, &+ Bewy) — fillz, 1, & n)] < Ly (x, 1)|5],
|95 (. 1, £+ Bewysn n) — g](xvt 57 )|<[&]gk(x,t)|ﬁ|7
|gi(x, & m + Bewy) — gi(x, 1, &) < L3 (2, )|,

for arbitrary {&,n} C R*M+E) 3 c R k€ {1,...,M + L} (here eqry = col (05...50;1;0;

..;0) is a column vector with k-th component 1 and other components 0, k € {1,...,

M + L});
(A4)
inf (a;(x,t) — ff(2,t)) 2 a0>0, €{l,..,M},
(z,1)eQ
inf_(¢j(x,t) —gi(x,t)) 2 bo >0, je{l,..,L},
(z,1)eQ

where ag, by are constants,

M—I—L

Frle, ) & Z[Kf(:z; )+ Li(x, )], (x,0)€Q, i€{l,.., M},

g ) E Y [Kh (e t) + L(x. )], (2,1) €Q, je{l,..L}

(A5) f = col(fi, ey far) € [Cioel @Y, § = cOl(@ty s i) € [Croe(@)]”, b = cOl(hy,eees har) €
[Croe( )Y

For the convenience of formulating and proving the results, without loss of generality let us
make the additional assumption

(AO) fi(x,t,0,0) =0, (z,t)€Q, i € {1,... M};¢;(,2,0,0) =0, (2,t) €Q, j€{l,....L}.
If ©Q is an unbounded domain then we additionally assume

(A6) there exists a constant m* > 0 such that a; gr(z,¢) < m*(|z]* + 1), Jaip(x, )] < m*x
X(lz|+ 1), (z,t) € Qi e {l,.... M}, g e{l,.... L}, {k,{} C{1,...,n}.
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In the sequel we assume that conditions (A0)—(A5) (and (A6) in the case of unbounded
domain ) hold.

The main results of the present paper concern the well-posedness of Problem (1)—(3).
Before formulating them we introduce some notations and notions.

Let Pw(x,t) L ol (Prw(x,t), ..., Pyw(x,t)), (x,t) € Q, Gu(x,t) L ol (Grw(z,t), ...,
Grw(z,t)), (z,t) € Q. Then Problem (1)=(3) can be briefly written

Pw(x,t) = f(:z;,t), (2,1) € Q, Guw(z,t) = g(x,t), (x,t) € Q; u(z,t) = h(x, 1), (z,t) €Y,

where w = col (1, 0) € Wioe(@) = [CEHQ) N Cioe( @)1 x [CHQ)]E.
q def M+L L def M+L L def d
t fo = t = 1), 7 = ,
TR S i P9 T i g Bl T g e e

let vy = min{vy, 5}, where 1y and vy are respectively the solutions of equations
ag—v— (e =1)fo=0 and by—v— (™ —1)g = 0.
Because the functions

ow)=ay—v—("™=1)fo and Y(v)=by—v— ("™ —1)g

are continuous and decreasing by variable v, ©(0) = ag > 0, p(ag) = —(e™™ — 1) < 0,
¥(0) = by, ¥(by) = —(e*™ — 1) <0, every of these equations has one positive solution.

Let H be one of the sets ), Q or ¥; m be an arbitrary natural number; v be an arbitrary
real number. Denote F,(D;m) = {q € [ClOC(H)]m : there exists a constant C' = C(q) > 0
such that |¢(z,t)| < Ce ™, (x,t) € H}.

Theorem 1. (A priori estimate of the solution) Let for some v < 1y fe E(Q; M),
g € E(Q;L) and h € E,(X;M). Then the solution w of Problem (1)-(3) from the class
E,(Q; M + L) satisfies the following estimate

lw(x,t)| < max{ sup |h(y,s)e”|, sup M, sup M}-e_”tEMoe_”t
(

y,5)ES (y,5)€Q S‘Q(V) (y,5)€Q ¢(V
(4)
for all (z,t) € Q.

Theorem 2. (Uniqueness of the solution) The solution of Problem (1)-(3) from the class
E,(Q; M), where v < vy, is unique.

Let o € (0;1]. We denote by S the space of functions f(x,t,&,n), (x,1,&,1) € Q x
R2M+L) which fulfill the condition: for an arbitrary compact B C R2M+L) there exists
a constant K = K(B) > 0 such that the inequality

Pt &) = f(aa b &) S K [ley = 2] + |6 = 1] 7?]
holds for any (x1,t1), (x2,12) € Q and (&,n) € B.

Theorem 3. (Existence of the solution) Assume that for some o € (0;1] and v < 14 the
tollowing conditions hold:
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(B1) {aiw,aip, ai,c;} C Ca’a/z(@), Oa; i/ 0xs € C(@),/,Li(t) > po = const > 0, t €
(—oorT], i € {1, MY, j € {1 L}, thLs) C 11,om):
(l’vT) (l’vT) a : :
B2) {fi"7, g7y c S, i e{l,.,M}, je{l,...L}, where

def v, (vit,m v v, T def v v,t,T v
FE et 6on) E fila,t, €00 gt yert s g e o) E gy (e t, €00 i)t

(z,t,&,m) € Q x REMHAL) - ¢0t) = vt n(itm) = col(n e =) L pppype™EmmaL)):;
(B3) 90 € (2o

(B4) COI( 1/7,‘f‘7 ) [Coz a/Z(Q)]M-I-L yth c [C2+a 1+a/2(Q)]
Then there exists a solution w = col(u,v) of Problem (l) (3) and it belongs to the

space EU(Q,M—I- L)n <[02+a 1+a/2(Q)]M v [Coz 1+a/2(Q)]L>.

loc loc

M

Let I, be a space of vector-functions col (f,f], h) such that for an arbitrary v we have
col (e”tf, e, e’th) € [C2(Q)MHE x [CFFetta/2(Q)M. Assume that conditions (B1)-
(B3) hold. Then for any vector-functions col (f g,h) € 11, where v < 1y, there exists
a unique solution w of Problem (1)-(3) from the class £,(Q; M + L). In short, we write this
as w = RS, (f,g, h).

Theorem 4. (Continuous dependence of solution on data-in) Let conditions (B1)-(B3) of
Theorem 3 be fulfilled. Then for an arbitrary value & > 0 there exists 6 > 0 such that for
arbitrary {col (f1 g', 1Y), col (f2 g%, h*)} C 11, satisfying the conditions

sup | [N (@, ) = PPla,t)|e <8, sup_[g'(w,0) = §*(x, )] <6,
(z,1)eQ (=,t)€Q

sup |h'(x,t) — h*(z,t)|e”" < 4,
(z,t)eX
the following inequality holds

sup |w'(z,t) — w?(z,t)]e”" < ¢,
(z,1)eQ

A

where w' = RS, (f, ', h"), 1 € {1,2}.

2. Auxiliary statements.
Remark 1. Let & = col (€], ..., 1) € RMTE pl = col (g}, ..., i) € RMTE, 1 e {1,2}.
Set 5172 = COl(f%v' 75137511+17"'7§]1\4+L)7 77(113 = COI(U%"'7771377711+17"'777]1\4+L)7 k € {177M —I_
1} 512 = £, §M+L = £2, 77(15 = nl, 77(1]’\3+L) = n?. It is clear that for an arbitrary

ie{l,...., M}
fi(xataflanl)_fi(xatafzanz) = fi(:zj,t,fl,nl)—fi(:p,t,52,771)—|—f2»(:1;,t,52,771)—fi(:1;,t,§2,772) =

M+L

= Z [(fz(xvtaf(lgf_l)anl) - fz(xvtvf(lljvnl)) + (fz(l’,t,fz,n(llf_l)) - fl(xvtvfzvn(llj)] =
k=1

= [ @i, 1, €€ 0" — ) + il t, 20" n”) (g — mp)].
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where

def fz(xvtvf(llf_l)vnl) - fl(xvtvf(lljvnl)

Oz, 1,6, ") 7 S I St
& — &
Oip(,t,61, 62 0") S0, if & =&, and
fi x,t,fQ, 172_ _fl x,t,fQ, 2
\I}ik(xvtvfzvnlvnz) = ( n(k 11)) 2 ( n(k))v if 7711 7£ 77137
My — N
Uiz, t, &0t n?) Lo, if pl=nt ke{l,..M+L}.
Similarly, for arbitrary j € {1, ..., L} we have
M+L
g, 6" ) = gi( 1, E€07) = Y (Sl 4, € € ") (6 — )+ M, £, 60" 0 (k= ),
k=1
where L . -
defgj(xvtvfl;_ 777)_gj(x7t7£];777) .
Sl 1,62t L L W2 i g #E,
& — &
Sinle €20 E0, il ¢l=¢, and
g](x7t7£277711;2_ )—g]‘(x,t,§17771];2) .
A]k(x7t7§277717772) = ( 7711) _ 772 ®) ) if 7711 7£ 77137
& &

Ajk(xvtvgzvnlvnz) d:ef 0, if 77]1 = 77;3, ke {1, 7]\4—|— L}

Remark 2. In view of definitions of the functions f7 and g7 and condition (A3), it follows

that for any {51,52,7717772} C RM+E
M+L

kz_:l [(I)Z»k(x7t7§17§27771) + q’ik(fatanaﬁlaﬁz)] < fi*(xvt)v (l’,t) S Qv 1 € {17 "'7M}7
M+L

Z [Sjk(xvtvglvfzvnl) + Ajk($7t7§277717772)] < g;(l’,t), (l’,t) € @7 .] S {17 7L}

k=1

Let tg be an arbitrary number from the interval (—oo,T), Q° = Q x ({0, 1], Qo = Q x
{to} =2 QN {t =to}, X0 = IO x (to, T]. Set for any k € {1,.... M+ L} DY = Q x (to — 7,11,
G9 = Q x (tg — 7, to), if 72 > 0, and G = Qy, if 7, = 0. We denote by W?° the space of
functions w = col(u,v) € <[0120’C1(Q0) N C(@)]MX [Co’l(@]L> N [ClOC(D?) X Cloc(D9) X - - -
< Ce Dy,

We next establish some properties of functions from the space W°.

Lemma 1. Let Q be a bounded domain and vector-functions {w = col (u, ), & = col (4,?)}
C WP satisfy the following inequalities

Piw(z,t) < Pi(x,t), (z,t) € Q% Gz, t) < Gi(x,t), (x,t)€ QO, (5)
a(x,t) < ulx,t), (z,t) € ¥°, (6)

di(x,t) < ti(z,t), (v,t)€G), i€{l,... M},
vj(x,t) < vj(x,t), (x,1)€ G?W_I_j, Je{l,...,L}. (7)

Then w(z,t) < w(x,t) for all (z,t) € QO.
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Proof. Let us assume the converse. Then in view of (7) there exists t* € (fo, T'], the maximum
value of the variable ¢, such that w(z,t) < w(z,t) for all (z,t) € QO N {(x,t) : to <t < t*},
and z* € Q such that @, (2", t*) = @,(z*,t*) for some p € {1,..., M} or ¥,(z*, ") = v,(z*, 1*)
for some s € {1,..., L}.

If @, (x*,t*) = G,(z*,t*), then (z*,t*) ¢ X° because of inequality (6). The difference
U, — 1, in Q9N {(x,1): 1o <t < 1"} takes its maximum value at the point (z*,¢*) € Q° and
this value equals zero. Thus, using condition (A2) we have

a( _uﬂ /at‘ o %) 20, a( /axm‘ *t*: ) me{lv"'vn}v

Z amkl(x*,t*)QQ(N — uu)/axkaxl‘ . %) <0.

k=1

From this and condition (A38) we obtain

0 & 0*(a, — 1,)
Pw(a*, %) — P (2™, 1") = —(a, — ) —t—r
(™, 1) (2", 1) at(u“ %) kzl:_lau k(2" D220, (ﬁﬁ)—l—
- * g% a(aﬂ - u#) * kN[~ ~
—|— a ) Fa, (27,0 ) (u, —u —
— ke ) O (2% 2%) ul ), u) (2% 2%)
(fu(l‘ £ w(a”, 1), we (27, 17)) — fu( AT (2T ), (27, 17))) =
2 Jula™, 17, (27, 17), o (27, 17)) — fu(a” ( 1), wr (27, 17))) 2 0,
but this contradicts (5). If o5(a*,t*) = 05(a*,t*) then it can be similarly proved that
G(x*,1%) = Gew(a*, %), which also contradicts (5). O

Lemma 2. Assume that all conditions of Lemma 1 hold, but inequalities (5)~(7) are non-
strict. Then w(x,t) < w(x,t) tor all (x,1) € QY.

Proof. Let O(w) = col(e™™!,...,e""™m+1) for an arbitrary w = col(wy, ..., wpryz) € RHMHE),
Consider an auxiliary vector-function @*(z,t) = w(x,t) + Ae'0(0), X > 0. Using Remarks 1
and 2 and conditions (A3), (A4) we obtain

( t) = Pa(x,t) + el + )\etai(:p, ) —
—[filx, t, (=, t) + )\etG(O), T(:Jc,t) + Ae'0(7)) — fi(x,t,0(x,t), 0 (2, 1))] =
= Pab(x,t) + Ae' + Aela;(z,t) — [q)ik(x,t, Wz, t) + Ne'0(0), (1), W, (x,t) + Xe'0(T)) +

+ W (2, t, 0(, t) W (1) + Ae'O(7), 0, (2, 1))e Tk])\et >
() 4 A+ A ) — (1)) > P ),

0
(2,t) < aM(x,t), (2,t) € X9 w(x,t) < aM(a,t), (2,t) € G2 @ € {1,.... M}, v;(x,t) <

(z,t) € Q° i € {1,..,M}. Similar arguments yield Gu*(z,t) > G(z,t), (z,t) € Q.
Since Pw(z,t) < Pw(x,t), and Pi(x,t) < Pui(z,t), we have Pi(z,t) < Pz, t) for
(z,t) € Q° Similarly Gw(x,t) < Guit(z,t), (z,t) € QO Using this and the fact that

(x t) € Gyyyis J €4{1,.., L}, in view of Lemma 1 we obtain w(z,1) < Wz, 1), if
(z,t) € QO A > 0. Since lim @ (x,t) = w(x,t), we have w(z,t) < w(z,t), (z,1) € QO . O

A—0
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A~

Lemma 3. Let Q be an unbounded domain and vector-functions {w = col(w,?), w =
col (4,0)} C WP satisfy inequalities

Pi(e,t) < Pio(,t), (2,0) € Q°, Gi(x,t) < Giz,t), (a.t)€ Q. (8)
ﬂ(x,t) < ﬁ(l’,t), (l’,t) S 207 (9)

Uiz, 1) < di(x,t), (z.t)e G, ied{l,.., M},
0j(x,t) < b, 1), (v,t)e Gy, jef{l,..,L} (10)

Then w(x,t) < (x,t) for all (z,t) € Q.

Proof. Let K be a constant such that |w(z,t)] < K, |w(z,t)] < K, (z,t) € QO. De-
note Qp = QN {z € R" : |[z| < R}, Q% = Qg x (to,T], ¥ = 0% x (to,T], G r =

QR x (to — Th,to), if 7 > 0, andGR—Q—Rx{to},ika—O ke{l,...M+ L}. Let us con-
sider an auxiliary vector-function wRA(:L' t) = col (4PN, t), 08N, 1)) = w(x, t) + ¢ (=, t)
(@, 1) = col (B (1), oo, i3, 1)), 7(2,0) = col (58(2, 1), 05z, 1)), where

2K
Mz, t) = 72 “—(Jx]24+ 1)eM)9(0), R > 1, A > 8m*n (0(0) = col (1,...,1) € RM+E), Using
Remarks 1 and 2 and conditions (A3), (A4), (A6) we obtain

) ) 2K “ “
Pad™ (2, 1) = Pab(a,t) + T€ ATz +1) =2 ai(e ) + 2 anl(e,t)ay] +
k=1 k=1

—|—ai($,t)—(|$|2 + 1)6/\(t_t0) - [fi(xvt ﬁ)(l‘ t) + qR7/\(x7t)7 ﬁ)T(xvt) + Qf7/\(x7t)) -

i
i, 1), )] 2 P, 0) 4 (A= Sm ) faf? 1) 4 (o 1)~

= > (@il b, 1) + ¢, 1), i, 1), e, 1) + g (2, 1) +
) A 2K »
F Wk (2,4 D, 1), r(2,1) 4 @7, ), 10 (0, 1)) e ) Tz (P 4 1)) >
2K
> Pao(z,t) + R—;()\ — 8m n)eM 0 (22 4+ 1) +
x 2K A(t—to) A
Hai(z, t) = fi'(,)) 5 (] " + De™ ™7 > Pib(a, ¢),

2K
(z,t) € Q%, 1 € {1,..., M}. Here ¢®(x,t) = * (|:Jc|2 + 1)ert=%)g( A7), Recall that H(A1) =

col(e ™ ..., e ™™ . e7 VML) Tt can be proved similarly that G (z,t) > Gw(z,1),

(x,t) € @ Thus Pw(z,t) < Pl (z,t), (z,t) € Q% and Gw(z,t) < Gl (z,1),
(z,1) € Q% Since |w(z,t)] < K, (z,1) € Q%, we have a(z,t) < @', 1), (2,1) €
39, It is obvious that @;(z,1) < 47(x,1), (z.t) € GPg, i € {1,..., M}, and vj(x,t) <

ﬁf’/\(l',t), (z,t) € GSypsm> J € {1,..., L}. Using Lemma 2 we obtain w(z,t) < Wit (2, 1),

(x,t) € Q%, for arbitrary R > 1. By letting R — +oo in the last inequality we complete the
proof. O
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Lemma 4. An arbitrary function w = col(u,v) € W satisfies the estimate

lw(x,t)| < max{ sup |u(y,s)[, max sup |ui(y, )|,
(y,s)EXO 1e{l,..., M}(ys)EGO

P G __
max sup ()], sup DOW gy, ORIy e )
FE(L L} (y s, e G0 aeg b

Proof. Let

C=max{ sup_[uly,s), max sup |uily,s),

(y75)620 26{1 ..... M} (y S)EGO
P G
) max sup |Uj(y78)|7 sup M7 sup | w(y75)|}
Je{1,..., L}( )GG(J)\/H-] (y,5)EQO ap (4,5)€Q0 bo

Consider the vector-function @ = col (%, 9), where @ = col (C, ...,() € RM & = col (C, ..., C)
€ RL, (2,t) € Q. Using Remarks 1 and 2 and condition (A4) it can be easily proved that

P 1) = air 1) € — fila b 1), (2, 1)) =
< B filz t,w(x, t), (2, 1)) — filx,t,0, )>
C

C
(a ( ) — fi(x,1), (z,t)€Q° ie{l,.., M}. (12)

By condition (A4), inequality (12), and the choice of C' it follows that

C-
2

Pav(x,t) 2 C - ag = Pw(x,t), (x,t) € Q°, 1e€{l,..,M}. (13)

It can be similarly proved that

Gﬂj)(l‘,t) Z ij(xvt)v (l’,t) S Qov .] S {17 7L} (14)
In view of definition of vector-function w = col (u,v) we have
B ) 2 u(e,t),  (0,t) €3, (15)

e, t) = wile ), (e,0) € G2 i€ {1, M),

ﬁ](xvt) Z U]‘(l’,t), (xvt) S G?\4+]‘7 ] € {17 7L} (16)

By (13)-(16) in view of Lemmas 2 and 3 we obtain w(x,t) > w(x,t), (z,1) € Q0. It can
be similarly proved that w(xz,?) > —w(x,t), (x,t) € Q°. Two last inequalities imply estimate

(11). O
Remark. If Pw(z,t) = 0and Gw(x,t) = 0then sup |w(x,t)|is estimated by sup |u(z,t)],
(2,)€Q0 (,t) €O
max  sup |u;(x,t)] and max su v;(x,t)| and independent of ag and by.
i€l M}, t)é)Go s, 1) JE(L L} (o, t)ECI?)OM_I_J v, 1) P 0 0
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Lemma 5. Let for some v < 1y vector-functions w
E, _;

— ; 1
1(Q ]\24‘—|— L) N Wiee(Q) be such that Pw' — Pw* € F,(Q;
(u! —u?)| €

= col (u',v!), w?
1 2
E,(X; M). Then

= col (u?,v*)} C

v
)7 Gu' — Guw? € E, (@7 L)?
) = (o, )] <mx{ sup. ful (o) — ¥y, )]
(v:5)€ET
P 1 — P 2 Vs 1 _ 2 Vs
p VP00 = P 000 = Gty (i
(4:5)€Q p(v) (v,5)€Q (v
Proof. Denote f ( )dﬁf Puwk(z,t), (z,t) € Q, §"(x,1) o Guw*(z,t), (v,t) € Q, h*(x,t) def
uk(z,t), (z,t) € B, k € {1,2}. Having set ul 2del 1 u?, vl? def 1 v?, wh? Lot — w?,
by equations (1), (2) and condition (3) for w! and w?, using Remark 1 we obtain
Lo (e, 1) — Foas (e, 1), 0, 1) = 23, 0), (r,0) € Qi € {1, MY,
Fiw™(2,1) = gj(x, 1w (x, 1), 12(51? 1) = ;% (1),
ui (l’,t) = hzl 2($,t>

where L;w"

18)
(x,t) €Q, j€{l,.., L},
(x,0) € X, ie{l,...M},

2(2,1) ¥ Pw 12(:1;t)—|—f(:1;tw (m)
Fiw'?(z,1) defG wh? (2, ) + gj(x, t, w2, 1), w

s t))

(
(19)
(20)
L2 (2, t), (z,0) € Q, 1€ {1 }

(x,1)€Q, j¢€ {1,...,L'7};
filw,t,6m) €Y [l ! (2, 1), w0 (@, 1), wh(z, )6 +
-I-\Ilik(:zﬁ,t,wz(:z;,t),wi(x,t),lzg(x,t))nk}, (z,t,6,m) € Q x REMFL) e f1, . M},
THCNNS >d—ef%[sﬂw,w1<x,t>,w2<x,t>,wi<x,t>>§k+
A (2t wi (e, t) o

Jwh(e, ), wi(z, )], (z,t
FUat) € e t) = fA,t), (2,1)

JEm) € Q x RFMHI e {1
hl,?(

L};
€ Q4" ) = 4 (0, 1) = (2. ), (1) € s
) L Rl (a,1) r,t) € X,
First we consider the case when v = 0 and use an idea from article [6]. Let A be an arbitrary
number for now. Multiply (18), (19) and (20) by ¢, After simple transformations we obtain

— k¥ (x,t), |

PMoY(x,t) = Lo (x,t) — Ma P (x,t) —
— [Nt (), @l (e, 1) = [P, e, (2 t) €Q, ie{l,., M}, (21)
G?ﬁ)l’z(:p,t) = Fo'? (x,t) — )\ﬁ;’z(:p,t) —
~ ~1, _ ~1,2 A e} y
=i (x, 6,0 (@, ), (2, 1) = g7 (2, )™, (1) € Q. je{l,., L}, (22)
0w ) = h (e, ), () €8, i e {1, MY,
where @'?(z,t) = col (a"?(x,t), 01, 1)) L ol (ul?(x, )M vl (2, t)eM), (z,t) € Q, and
M+L
def il ¥
Fat6m) =S ) KL (e, 06 + Ll Om],  (2,1,6n) € Q x RPMH,
k=1
M+L
def ol ¥
Gt 6m) S D[R (e, 06 + Lo (e, Om], (w1
k=1
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where

K (2, 8) € dp(a, b, wl (@, 8), w2, 1), wl(z, 1), (2,1) € Q;

LY (2, t) S Wi, b w? (2, 1), w(e, 1), wd(z, 1)), (2,1) € Q;

Koo, ) & Sjula, w0 (a,1), w0z, 1), wh(z, 1), (2.1) € Q;

L2 (e, 1) = Ay, 1, w0 (e, 1), wl(a, 1), wd(a, )™, (2,1) € Q.

It is easily seen that the coefficients of the differential operators P?, i € {1,..., M}, G?,
J € {1, ..., L}, satisfy the conditions analogous to conditions (A1)—(A3) for the coefficients
of the operators P;, « € {1,..., M}, G;, 7 € {1,...,L}. Let us ensure that if A € (0,14) then
a condition analogous to condition (A4) holds.

In view of condition (A3) and definition 1y we have

M+L ~ ~ M+L
ai(r,t) = A= Y (K, ) + L, )] 2 aia t) = A= Y [Kf(,t) + Lz, )] >
k=1 k=1
M+L
> inf (a;(x,t) — x,t)) — A — su Mk— Lf:zjt
e ) = () = 2= s 3 )2
> a9 — A — ("™ —1)fy >0, @E{l,..., M},
M+L ~ ~ M+L
i) = A= Y [Ko(w )+ Lo, )] = cj(a, ) = X = Y [Ko (1) + Lo (w, )] 2
k=1 k=1
M+L
> inf (¢j(x,t) — g™ (x,1)) — A — sup (™ —1) sup LI (x,t)>
(x,t)eQ< ! ) (z,t)€Q ; (z,t)€Q 7

>byp—A— (™ —1)go >0, je{l,.. L}

Hence it is clear that the condition analogous to condition (A4) is satisfied (with p(X)
and () instead of ag > 0 and by > 0, respectively).

_ Let t. be an arbitrary negative number, Q* = Q x (t.,T], ¥* = 0Q x (L., T],G}, =
QO x (te — 75, L, if 7, > 0, andG*—Qx{t}lka—O ke {l,. M—I—L} Using above

mentioned arguments in the same way as in the proof of Lemma 4 we obtain for (z,t) € Q*:

@3, )] < max{ T sup [ulH(y, )], M max sup ful(y,9)],
(y,S)GE* Ze{l ..... M} (y S)EG*

At 1,2 e £1,2 M 1,2

S max swp o (gl e sup [yl s 15408l
! 7 799()‘) (y,7)EQ* 7 7 ()‘) (y,5)€Q* 7

o

(24)

Since w!, w? € Eo(Q; M + L), we have [w'?(z,t)| < C, for all (z,t) € Q, where C; > 0

is a constant. It leads to the fact that ¢+ . max  sup |ur’(y,s)] — 0 and M+ -
ie{l ..... M} (y S)EG*
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max sup |v;’2(y, s)] = 0 as t. — —oo. Hence letting t. — —oo in (24) we obtain
je{1,....L} (v S)GG?\/I+]
MT—t) )
! (2, )] < max{70 - sup Jul¥(y, 5), < sup [y, ),
(v)Es PN weeo
MI=1) o
osup g% (yss)[)s (@1) € Q. (25)

P(A) (wsree

For every fixed point (x,t) € @) by letting A — +0 in (25) we obtain (17) for v = 0.
Let now v be an arbitrary number, v < vg, v # 0. Multiply (18), (19) and (20) by €.
After simple transformations we obtain (cf. (21)—(23))

Pl (e, t) = (e t)e”, (e,t) € Q, ie{l,...M},
v ~1,2 _ 12 vt ral .
ij (l’,t) - gj (l‘,t)e 9 (l’,t) S Qv J S {17 "'7L}7

(e, t) = b (e t), (zt)€X, ie{l,.., M},
where @w'?(x,t) = col (a'?(x,t), 01 (x, 1)) L ol (ub?(z, t)e" vt (x, t)e’), (x,t) € Q. Tt is
seen that the coefficients of differential operators P/, + € {1,..,M}, G%, 5 € {1,...,L},
satisfy the conditions analogous to conditions (A1)-(A4) for the coefficients of the operators
P,ied{l,. .M}, Gy, 5 e{l,...,L}, (with () > 0 and ¢(r) > 0 instead of ap > 0 and

bo > 0). It is obvious that w'? € Eo(Q; M + L). The proof for v = 0 yields

A1,2 Vs
W' (2, t)] < max{ sup |u'?(y,s)e”®|, sup 2y, s)e”]
(v,5)€X (v,5)€Q p(v)

sup

(v,5)€Q (V)

This leads to (17). O

3. Proofs of main results.

Proof of Theorem 1. Let @ = col (0, ...,0) € R¥*L and w be the solution of Problem (1)~
(3). It is clear that P = 0 and Gw = 0. Using Lemma 5 for vector-functions w and  we
complete the proof. O

Proof of Theorem 2. Assume that there exist two solutions w!' = col (u',v!) and w? =

col (u?,v?) of Problem (1)-(3). This gives u'(x,t) = u?*(x,t), if (z,t) € X, Pw'(x,t) =
Pw?(x,t), if (v,t) € Q, and Guw'(z,t) = Gw*(x,t), if (z,t) € Q. Hence in view of Lemma 5
it follows that w!(x,t) = w(x,t), (z,t) € Q. O

Proof of Theorem 3. First consider the case v = 0. For every £ € N we denote QF =
Qn{(z,t): t >k}, X =3Sn{(x,t) : t > -k}, GF = QA x (=k —7,—k], if >0,
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Gf =0 x {—=k},if =0, 1€ {l,.... M+ L}. Define the vector-function w® = col (uk,vk)

as a solution of problem

Pz, t) = fF(x, 1),  (v,0) e Q"  ie{l,.. M}, (26)

Gut(e,t) = ¢, t),  (x,0)€QF,  je{l,..,L}, (27)

wb (e t) = hE (e t),  (z,0) e, ie{l,.., M}, (28)
ub(z,t) =0, (z,t)e G, ie{l,.., M},

i, ) =0, (x,t) € Gy j€{1,., L} (29)

Here hH(e, 1) = C(1 4+ R)h(e1). i (2.0) € 5. [A(e.0) = fla 0+ k), §(e.0) = e 1)L+
k), if (x,t) € Q, where § is a smooth and monotonic on R function such that ((t) = 0 for
t<1/2, ((t)=1fort >

It follows from the results of papers [1, 2] that for every & € N problem (26)—(29) has a
unique solution w* € [CHeITa/2(QF)M x [Col+e/2(QF)]F, moreover, (based on Lemma 4)
wh(z,t) = 0 for all (z,t) € Qx(—k, —k+1/2). Let us extend u* and v* by zero on Q\Q* and
denote these extensions again by u* and v* (k € N). Tt is obvious that w* = col (u*,v*) €
[CFret+al2(OYM x [Co o 2(Q)]F, wF = RSo(fk,f]k,hk), k € N. Moreover, according to
Theorem 1 we have

jwk(z,t)] < My, (2,8)€Q, keN. (30)

We next show that

Z||u’f||2+al+a/2+z||v’f||a1+a/2\ ) kEN, (31)

where 'y > 0 is a constant independent of k.
We rewrite (26) in the following way

ouk(z, 1) - O*ulf(x,t) _ ouk(z,t)
T — T;l a27ml($, t)m + Tnz::l a27m($, t)W +a (l’ t) (l’ t) (32)

= filw, t, 0" (2, 0), wh (2, 1) + fF(a,t), (z,1) € Q", ie{l,.., M},

and consider the right-hand member to be an absolute term. By the conditions of theorem it
follows from (30) that the right-hand side of (32) is a continuous and bounded on @) function.
In view of Theorem 3.1 of the monograph [8; p. 665] for system (32) we obtain

Z 1uf)1, ), < Cs, (33)

where C5 > 0 is a constant which depends on n, My, ||a;, ml||0Q0, ||aim||0QO, ||a2||00,
sl 00l _nt (1), suplie,En) < () € QL < Mol < Mob 11
1hill5o, 7 € {1,..., M}, {m,l,s} C {1,...,n}, and does not depend on k.

Consider a sequence {v¥}. For arbitrary (z1,t), (z2,12) € Q we have

[WF (1) — 08 (ty, w2)| < Jof(Lr, @) — v (ta, 22)| + [0F(ty, 21) — 0] (1, 22). (34)
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We subtract equations (27) for x3 from the same equations for #;. Using Remark 1 this

yields
Az, 1) — v¥(xy,t
o) 0D )b 101) = (1)
M+L
S Sl e, )y e, 1), e, D) (e 1, 1) — o (0, 1)) —
m=M+1
M+L
= Y Nl b (@, 1), wh(ey, ), w0k (2, ) (v, (21,6 = Tn) = 0 (22,1 = 7)) =
m=M+1
= [gj(xlvtvwk(x%t)vwi(x?vt)) - gj(x27t7wk(x%t)vwi(x?vt))] +
M
+ Z Sit(wr, 1w (@, 1), wh (2, 1), wh(wy, ) () (w1, 1) — uf' (22, 1)) +
=1
M
+ 3 Al tywh (o, 0), w0l (4, 1)), w0 (0, 1)) (uf (21,8 = 71) = wf (22,1 — 7)) +
=1
—I-(C]‘(l’l,t)—C]‘(l’g,t))vf(l’l,t)—I-(g]‘(l'l,t)—gj(l'g,t)), .] € {177L} (35)

Analogously to the proof of Lemma 4, using Remark 2, conditions (B1)-(B3), (B5) and
estimate (30), from (35) we obtain

|vf(:1;1,t) — vf(:z;z,tﬂ < Cylay — ao]”, € (—00,T], (36)

where Cy > 0 is a constant independent of k.
Now rewrite equation (27) in the next way

dvk(a,t
WD ot (o, b)) 4 o) -

—c;(x,t)v} Ma,t), (z,t)€Q, je{l,.., L} (37)

From condition (B2) and estimate (30) it follows that the right-hand side of (37) is bounded
uniformly in & € N. This leads to the fact that derivatives avf/at, kEeN je{l,..,L},
on () are uniformly bounded by k. Thus, using Lagrange theorem on finite decrement from

(34), (36), (37) and (B2) we obtain

ZHkaa 1+a/2 057 (38)

where C5 > 0 is a constant independent of k.

Let f*(z,t) % fi(a,t, wh(z, S B, 1), (v,t) € Q, i € {1,..., M}, k € N. By (33), (38)
and (B2), (B3) we have ||fk||aa/2 < Cq, 1 €{l,.... M}, k € N, where Cs > 0 is a constant
independent of k. From this and (32) based on Theorem 10.1 of monograph [8; p. 400] we
obtain

Z ||uk||2+a 14a/2 077 (39)
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where C7 > 0 is a constant independent of k.

By (38) and (39) it follows estimate (31). Thus, using a diagonal process, we conclude
that there exists a subsequence of the sequence w* (we denote it by w* again) such that
for arbitrary m € N we have u? U in C*1H/2(Qm) and vf v in CH2(Qm),
e {lL,.., M}, 5 e{l,.. L}, where 0 < v < a. Set w(x,t) = col (uy(x,t),...,up(x,1),
vi(z, 1), ...,vr(x,1)), (z,t) € Q. It is easy to see that this vector-function w is a solution of
Problem (1)—(3). By (31) we have

This completes the proof of theorem in the case v = 0.
Consider Problem (1)—(3) in the case when v is arbitrary, v < 1o, v # 0. Multiply every
equation of Problem by e”’. This yields

Lib(x, 1) — viig(a, )= fO (@, b, i, ), (1) = fix, 1)e”
(x,t) €@, 1€ {l,..., M},
Fio(a,t) — vij(x, ) =g @, 1 d(a, 1), b (2, 1)) = g, )e”

(x,t) €Q, 5 €{1,...,L},
iz, t) = hi(z,t)e”, (z,t)eX, 1€{l, ..M}, (43)

where L;, 1 € {l,...., M}, F;, 7 € {l,...,L}, are the same as in (18) and (19), w(x,t) =
w(x,t)e”, the functions fZ ( J,Em), 1 €{1,..., M}, and g;y’T)(x,t,f,n),j e{l,...,L}, are
from condition (B2). To ensure that the functions fi(y’T) ie{l,..., M}, g](y’T), jeA{l,..., L},
satisfy conditions (A3) and (A4) with ¢(r) > 0 and ¢ (r) > 0 instead of ag > 0 and by > 0,
respectively, we use similar arguments as in the case of functions from equations (21) and
(22). It is obvious that the functions f(:z;,t)e”t, h(z,t)e”, g(x,t)e” belong to the spaces
Eo(Q; M), Eo(X; M), Eo(Q; L), respectively. It follows from the proof of theorem in the
case v = 0 that there exists solution @ of problem (41)-(43) from the class Fo(Q; M + L).
Thus the vector-function w(wx,t) = w(z,t)e™, (x,t) € Q, belongs to the class £,(Q; M + L)
and is a solution of Problem (1)-(3) which completes the proof of theorem. O

(41)

Proof of Theorem 4. Let e > 0 be an arbitrary number, and vector-functions {col (fl,fjl, hty,
col (f%,4* h*)} C 11, are such that

1 _ ) Vs ~1 a2 Vs
wup (s 8) = Py, s)le e sup 19°(y. 5) = §°(y, s)]e” _ ..
(y,8)€Q 99(1/) (y,5)€Q ¢(V)
sup |h1(y75) - h2(y73)|eys <e,
(y,s)EE

and w' = RS, (f G',h'), 1 € {1,2}. Using Lemma 5 we complete the proof of theorem. [
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