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We investigate conditions on zeros of an entire function f of zero genus under which f is of

bounded [-index.

H. 5. Ywxkukos, M. H. lllepemera. Oepanuucnnocmsy l-undexca yeavis Pynkyut Hya€6020
poda // Maremaruaui Cryaii. — 2001. — T.16, Ne2. — C.124-130.

UccreaytoTes ycroBusa Ha Hyan meqon pyHKIuN [ HYJeBOrO pojia, TP KOTOPHIX [ ABIsSeTCS
QyHKIMEN oTpaHWYeHHOT O [-NHIeKCa.

1°. Introduction. Let A be the class of positive continuous functions [ on [0, +00) and
@ be the class of functions [ € A such that I(r + O(1/I(r))) = O((r)) (r - +o0). By Q.
we denote the class of nonincreasing functions [ € (). Remark that a nonincreasing function
[ € A belongs to @) provided that rl(r) / +oo as r — 4o00. In fact, if rl(r) nondecreases to
+00, then for any ¢ > 0 we have

: - S — r)= Y r r 00
l<r B l(r)> = r —q/l(r)l(r) - q/(rl(r))l( ) = (1+o(1))i(r), — +o0.

The inequality l(r + q/l(r)) <(r) is trivial. Thus, [ € Q. C Q.

For [ € A an entire function f is said to be of bounded [-index [1], [2, p. 3] if there exists

(n) (k)
N € Z, such that Mgmax M: 0<k< N, foralln € Zy and z € C. For
) K2

[(x) = 1 we obtain the definition [3] of an entire function of bounded index.
Let

i) = ﬁ (1-2). i L <o ()

be an entire function of zero genus. If a;, > 0 and a1 < ap —ax_1 " +00 (2 <k — o0) then
[4] f is an entire function of bounded index. The result is improved in [5], where it is proved
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that if |a1] < Jag| — |ag-1] /* +00 (2 < k — o0) then there exists a decreasing to 0 function
[ € A such that f is a function of bounded [-index.

If a, = n'/?, 0 < p < 1, then [6] f is of bounded Il-index with I(r) = r*=! ~ n(r)
-
(r — 400), where n(r) is the counting function of (a,). The Mittag-Leffler function £,

n(r)

0 < p < 1,is [7] also of bounded [-index with {(r) ~ —= (r — 400). In [8] the following
r

result is announced.

Theorem 1. If zeros a; of function (1) are positive and (1 + n)a, < any1, n > 0, for all
n(r)

n > 1 then there exists a function | € Q). such that [(r) ~
bounded [-index.

for r — oo, and f is of

In virtue of these results in [8] it is formulated the following

Conjecture. Ifa, >0(n > 1) and n/a, \ 0 (n — oo) then there exists a function | € Q.
such that [(r) ~ n(r) (r — +00) and function (1) is of bounded [-index.
r

We prove Theorem 1 and disprove the conjecture.

2°. Preliminary results. We put M;(r) = max{|f(2)| : |z| = r}. It is known [2, p. 71]
that if [ € () and an entire function f is of bounded [-index then

In Ms(r) = O(L(r)), r = 400, L(r)= /07’ [(t)dt. (2)

If ap € C are zeros of an entire function f then we put n(r,zo,1/f) = > 1, and

lar—z0]<r
Go(f) =Ui{z 1 |z —arl < q/Ullax])} for L € A, q € (0, 400).

Lemma 1. [6; 2, p. 27] If [ € @) then an entire function [ is of bounded l-index if and only
if 1) for every ¢ > 0 there exists P(q) > 0 such that |f'(2)/f(2)| < P(q)l(|z|) for all z €
C\ G, (f) and 2) for every ¢ > 0 there exists n*(q) € N such that n(q/l(|z0]), 20,1/ f) < n*(q)
for each z; € C.

Lemma 2. Let [ € (). and a sequence (ay,) satisfy the following conditions:

a) (lan|) = O(U[antal)), 1 = o00;

2
b) |an+1| - |an| > ¢ for some o > 0 and all n Z 17
[(|any1])
)8 e = Ol
C = an , n — o0;
k=1 |an| |Clk|
= 1

d T = OUllaxn])), 1 — oo

) k=n+2 |Clk| — |an| ( (| |))

Then function (1) is of bounded [-index.
Proof of Lemma 2. Since | € Q., choosing ¢1 € (0,qo) to satisfy {(r — qo/l(r)) < Z—?l(r) we

thain n<1(|qz—10|)7207 %) < 1 for arbitrary zo. Indeed, if |z9| — l(Fz—lol) < a; < |zl + l(Fz—lol) for

j=mn,n+1 and some n € N, then

2qo 2q1

2q1
> ;
[(|20])

[(|20l)

Z an—l—l — Ay Z
(0l — p)
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a contradiction. Further, we can cover each closed disk of radius ¢/I(|zo]), by a finite number
m(q1, q) of closed disks of radius ¢1/1(|z0]). Therefore, n(q/l(|z0]),z0,1/f) < 2m(q1,q), i. e.
condition 2) of Lemma 1 holds.

It is sufficient to show that condition 1) of Lemma 1 holds with ¢ < ¢o. Denote

An = {2 Izl = lanll < q/Ullan)), |z = anl = q/U(an])}, n =1,

B, ={z: |a.| + q/l(lan|) < 2] < Jana| = q/U(lana )}, n =1
From (1) it follows that

f'(2)

oo el

(3)

f(2)

Condition b) and nonincrease of [ imply that ||ax| — |an|| > 2¢o/l(|a,|), & # n. Thus, for
z € A, we have

n—1

+Z <
2| — Iakl Iz—anl Iakl ||

k=1 k=n+1

n—1
1 Wanl) |
<
_;Ianl—lakl—Q/Z(lanl) q Z | lar] = IanI—Q/l(lanl)

I <|an|
<92 2 2
S22 el T " Z Tl —Tanl |an|

From conditions | € ) and z € A, it follows that {(]a,|) = O(I(]z])) (n — oo). Therefore,
in view of conditions ¢) and d) for z € A,, we have

1)/ f(2)] = O(U(lz]),  n — oo (4)

If z € B, then using conditions c), d), a) and [ € Q). we obtain

n—1

Z 1 1
+ + + <
(2) |~ = |zl - |ak| 2| = lan|  [anga| — |2] |an+2|—| | Z | kl E |
n—1
i eal) . Ulansa ) !
< + +2 + <
2 ol —Jasl— o/l T g ” Z @l = Tamar] + a7(Jarer]
—1
(|an|) |an+1
_I_
Z anl—lakl q q Z | k| — |an+1|

(_(Ianl)) O(l(lant1])) = OU([ant1)) = ( (1)), n = oo (5)

From (3)—(5) it follows that there exists a number Pi(¢) > 0 such that |f'(z)/f(2)| <
< Pi(g)l(]z]) for all z € C\ Gy(7) and |z| > Ry = |a1] — ¢/l(Jaz|). On the other hand, if
|z| < Ry, z & Gy(m), then |f'(2)|/(|f(2)|l(]z])) < Pa(q), where P(q) is a positive constant.
Therefore, there exists a positive constant P(q) such that inequality | f'(2)/f(2)| < P(¢)l(]z])
holds for all z € C\ G, (7), thus condition 1) of Lemma 1 holds. By Lemma 1, f is of bounded

[-index. Lemma 2 is proved. O
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3°%. Proof of Theorem 1. From condition a,1; > (1 + n)a, it follows that a,41/a, >

> 14 1/n forn > 1/n,i. e. nfa, L 0as 1/n < n — oco. We put ny(r) = r/a; for
0<r<a andni(r)=n+ T g an <1 < apyr. Then function nq(r) is continuous,
Upy1 — Gy

n(r) < ni(r) < n(r)+ 1, no(r)/r ~ n(r)/r and ni(r)/r L 0 as rg < r — oo, because for

ny(r 1 a .
a, <1 < dapy1,n > 1/n, we have 1(r) = — | ——— —n) < 0. Hence, if we put
r r?2 \apt1 — ay

I(r) = ni(r)/r, r > ro, then {(r) | 0 and I(r) ~ n(r)/r as ro < r — oo. It is easy to show
also that [ € ().
Let z € C\ G,(f) and a, < |z| < ayq1 for some n € N. The condition an41 > (1 4+ n)ay,
implies that
n—1
1 - n—1 - n(|z]) <1—|—77l
|2 —ar T [zl —an T [(L=1/(140) T n

(), 2= oo, (6)

and

= 1  — 1
< — <
2 S 2, T 1

k=n+2

(1+n)"” e
Smi@‘im;(lﬂ) = —— =o(l(|z]), »— oo, (7)

If la, — 2| = q/l(|z]) and |any — 2 = ¢/I(|2]), then 1/]z — an| + /|2 — anpa] < Z1(|2]).

Otherwise, either 1) |a, — z| < ¢/I(]z]) or |a,+1 — 2| < q/l(]#]).
Since [ € (). in case i) we have

(Janl) < 1)1 - ﬁ) = O(l(J]), n — oo,

and using the relation [(|z]) = o(]z]) (z — o0), we get for z € C\ G,(f)

1 L Meb oLy =ouh. :smzgan.  ®

[z —anl lz—annl T g ||

Similarly, in case ii) we obtain I(Ja,+1|) = O(I(|z|)), and consequently, |Z_1an| + |Z_a1n+1| =

O(l(|z])). Thus, for z € C\ G,(f) we have 1/|z — a,| + 1/]|z — ant1| = O((]2])) (2 = o0).
Using (6)—(8), we deduce that for such z

fi(z)) <21 — 1 1 1 ©
< < 4 4 LY = ou())).
0 S 2 —al S = T 2 ez = OusD

|Z - an+1| k=n42

and condition 1) of Lemma 1 is satisfied. Further, a,11 — an > anei(1 — 1/(1 + 1)) >
(H—n)lﬁm’ i.e. condition b) of Lemma 2 holds. Similarly to that in the proof of Lemma 2
we obtain that n(q/l(|z]),z,1/f) < n**(q) for each z € C. Therefore, by Lemma 1 function
(1) is of bounded /-index, and Theorem 1 is proved.

We remark that if [ € @ i l1(r) > cl(r), ¢ = const > 0, then [2, p. 23] the [-index
boundedness implies the [{-index boundedness. Therefore, from Theorem 1 it follows that
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if any1 > (1 + n)a, then for every function | € @ such that n(r)/r = O(l(r)) (r — o),
function (1) is of bounded [-index and of unbounded [-index for every function | € @) such
that I[(r) = o(n(r)/r) (r — o0). In fact, otherwise from (2) we would have In M(r) =
o(N(r)) (r — +o0), where N(r) = [/ n(t)t"'dt. The last relation is impossible, because
n(r) = O(n r) (r — +0o0), and, hence [9], In M¢(r) ~ N(r)(r — 400).

We remark also that if a,41 = O(a,,) (n — 00), {a,} = U;nzl{aﬁk}, m < oo, and aj g1 >
> (1 4+ n)ajy for all B > 1 and 1 < j < m, then by Theorem 1 and the Multiplication
theorem [2, p. 34] the conclusion of Theorem 1 holds.

Using Lemma 2, we prove the following

Theorem 2. Let | € Q). and (ax) be a convex sequence such that [(|a,|) = O(I(|ant1])) as
n — oo, n(r)In n(r) = O(rl(r)) and Eak>r(1/ak) = O(l(r)) as r — +oo. Then function (1)

is of bounded [-index.

Proof. The convexity of a, implies

ty — Qp _ Ay — Ay

> 1<k<n-—1. 9

n—k — n-—-1" =H=n (9)

Therefore, in view of condition nlnn = O(a,l(a,)) (n — o), we have a,41 — a,, >

> (14 o(1))an/n >1Inn/(Kl(a,))(n — o0), K = const > 0, that is condition b) of Lemma
2 holds.

Further, using (9) we obtain

n—1 n—1

SRR N TR (I E N

Inequality (6) also implies the inequality as, > 2a,, (n — 4+00). Therefore,

Z 1 < Z k—1 < 1 k _
rer o <20 ap — a, rer o <2 (ap —ar)(k—n) ~ a, —ay e k—n
1
=0 (” = ”) = 0(l(a,)), n — oo.
an
Finally,
1 1
> p— > a—k:O(l(an)), n — oo.
ap>2an " ap>2an

Hence, conditions ¢) and d) of Lemma 2 hold and function (1) is of bounded [-index. O

Remark. The conclusions of Theorems 1 and 2 are valid also for canonical products (1) with
complex zeros, but in all conditions it is necessary replace to a, by |a,]|.

49, Disproof of the conjecture.

Theorem 3. Given p € (0,1] there exists an entire function f, of zero genus of the form

(1) with the following properties: i) (¥n € N) : a,, > 0; ii) n N 0 as n — +oo; iii) p[f,] =
an

lim Inln My (r)/Inr = p; iv) f, is of unbounded l-index for any | € Q. such that I(r) ~

r—+0oo
n(r)/r as r — +oo, where n(r) is the number of zeros f, in {z : |z| < r}.
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Proof. Let b, = 22" k€ N, and p € (0,1]. Define a nondecreasing function ¢»: N — [1, +00)
by the equality Ine)(n) = >, k72 Then 1 < (n) /exp{n?/6} as n T +oo.
k>0,bk<n
Let ¢, () be an arbitrary differentiable on [1, +00) regularly growing function with the
order 1/p — 1 if p € (0,1) and slowly growing function to +oo if p = 1, i.e. @, (cx) ~
Pl (2) and p,(x) 7 400 as & T +oo. In particular, z@l(x)/p,(x) < Ci(p) for @ > 1

and some positive constant Cy(p). If p = 1 we require, in addition, that f1+oo wdl @ < too.

Put a, = me,(m)(m), m € N. Evidently, f is of form (1), and properties i) and ii)

hold. Further, by the definition of a,,, for every ¢ > 0 we have m'/*=* < a,, < m!'/r*e

(m > mole)), thus plf,) = pln(r)] <

It remains to prove iv). Obviously, @, ~ @mir (m — 400), so for r € [am, Gmy1)

T It _
Einoo In™ n(r)/Inr = p.

n(r) m 1 e~ /6

= ZN(T), r — +o0o. (10)

r o pm)p(m) T g,(n(r)

We modify lN(r) slightly preserving monotonicity to get a continuous function [(r) = lN(r) +
O(1) with {(r) \, 0 and {(r)r /* +o0 as r T 400, [ € Q.. To prove iv) it is enough to show
that condition 1) of Lemma 1 does not hold for [ defined by (10).

Let us estimate the distance between a;, and ap, 41:

apt1 — ap, = (bp £ 1), (br + 1)t (br 4 1) — brep(be )0 (by) >

> buep, (b) ((br + 1) — (b)) = brep, (b) b (bi) (e — 1) ~

e/ Cabrp, (br)

~——p b)) ~ k 11
gz ouelbr) (nlubz "7 (1

for some positive constant Cy. Put zy, = ay, | —cp,(bp+1), where ¢ is a fixed positive number.
According to (10) there exist ky € N and ¢ > 0 such that 2 & {¢ : [¢ — ay,,,| < q/l(ay,,,)}
for k& > k.

By (11) @y ¢ {( ¢ = an, | < q/l(ap,)} for k > Ky, and consequently ) & G,(f) for all
sufficiently large k.

For m < by we have v — a,, < 2 — ap, = (1 + o(1))(ap,+1 — ap, ). Thus, using (11) we
obtain

b

b
3 Lo o ninbe (12)

Tp— QT — Qp, ©,(br)’

m=1

If m such that by + 1 < m < 2by, then ¥(m) = (b + 1), and using the definition of v, the

Lagrange theorem and properties of ¢, we get for some £ € [byi1, m]

W — Qpp1 = mpy(m)p(m) — (b + 1)pp(by + 1)ib(by + 1) =
= Y(bp + 1) (wpp(2)) |, (m — b — 1) <
< 9 (€) + £ () (m — b — 1) < Calp)pp(be + 1)(m — be — 1),



130 [. E. CHYZHYKOV, M. M. SHEREMETA

Hence,

+0o0 20y,
DI EIDY : >
L mebpq2 T Qbitl t Q1 — T

m=by+2 Calp)oo(br +1)(m — b — 1) 4 co,(br + 1)

br—1
1 1 In by
B > C . k= foe. 13

b +1) ; Ca(p) + ¢ 5('0)%(1%) (13)

(12) and (13) imply that

f'(xx) = 1 : 1 1 Cs Inay
‘f(xk)‘:‘;xk—am‘z + Z G = k= too.

1M+
:
.
Bl
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