УДК 517.537.72

P. V. FILEVYCH, S. I. FEDYNYAK

ON BELONGING OF ENTIRE DIRICHLET SERIES TO CONVERGENCE CLASS

P. V. Filevych, S. I. Fedynyak. On belonging of entire Dirichlet series to convergence class, Matematychni Studii, 16 (2001) 57–60.

Let $\Lambda = \{\lambda_n\}_{n=0}^{\infty}$ be a sequence of nonnegative numbers increasing to $+\infty$ and $S(\Lambda)$ be the class of entire Dirichlet series $F(s) = \sum_{n=0}^{\infty} a_n e^{s\lambda_n}$, $s = \sigma + it$. Put $M(\sigma, F) = \max\{|F(s)| : \operatorname{Re} s = \sigma\}$ and let $\mu(\sigma, F) = \max\{|a_n| \exp\{\sigma\lambda_n\} : n \geq 0\}$ be the maximal term of the function $F \in S(\Lambda)$. We prove that in order that $\int_0^{+\infty} e^{-\sigma\rho} \ln \mu(\sigma, F) d\sigma < \infty$ imply $\int_0^{+\infty} e^{-\sigma\rho} \ln M(\sigma, F) d\sigma < \infty$ for every $F \in S(\Lambda)$, it is necessary and sufficient that $\ln n = O(\lambda_n), n \to \infty$.

П. В. Филевич, С. И. Федыняк. О принадлежности целого ряда Дирихле к классу сходимости // Математичні Студії. - 2001. - Т.16, №1. - С.57-60.

Пусть $\Lambda=\{\lambda_n\}_{n=0}^{\infty}$ — возрастающая к $+\infty$ последовательность неотрицательных чисел, а $S(\Lambda)$ — класс целых рядов Дирихле $F(s)=\sum_{n=0}^{\infty}a_ne^{s\lambda_n},\ s=\sigma+it.$ Положим $M(\sigma,F)=\max\{|F(s)|: \operatorname{Re} s=\sigma\}$ и пусть $\mu(\sigma,F)=\max\{|a_n|\exp\{\sigma\lambda_n\}: n\geq 0\}$ — максимальный член функции $F\in S(\Lambda)$. Доказано, что для того, чтобы из неравенства $\int_0^{+\infty}e^{-\sigma\rho}\ln\mu(\sigma,F)d\sigma<\infty$ следовало неравенство $\int_0^{+\infty}e^{-\sigma\rho}\ln M(\sigma,F)d\sigma<\infty$ для любой $F\in S(\Lambda)$, необходимо и достаточно, чтобы $\ln n=O(\lambda_n),\ n\to\infty$.

Let $\Lambda = {\{\lambda_n\}_{n=0}^{\infty}}$ be a sequence of nonnegative numbers increasing to $+\infty$ and $S(\Lambda)$ be the class of entire Dirichlet series

$$F(s) = \sum_{n=0}^{\infty} a_n e^{s\lambda_n}, \qquad s = \sigma + it.$$
 (1)

For $F \in S(\Lambda)$ let $M(\sigma, F) = \max\{|F(s)| : \operatorname{Re} s = \sigma\}$ and let $\mu(\sigma, F) = \max\{|a_n| \exp\{\sigma \lambda_n\} : n \geq 0\}$ be the maximal term of series (1).

As in [1] we say that entire Dirichlet series (1) belongs to convergence class if and only if the condition

$$\int_0^{+\infty} \frac{\ln M(\sigma, F)}{e^{\sigma \rho}} d\sigma < \infty, \tag{2}$$

is valid, where $0 < \rho < +\infty$. According to the Cauchy inequality, $\mu(\sigma, F) \leq M(\sigma, F)$ and therefore (2) implies the inequality

$$\int_{0}^{+\infty} \frac{\ln \mu(\sigma, F)}{e^{\sigma \rho}} d\sigma < \infty. \tag{3}$$

2000 Mathematics Subject Classification: 30B50.

In [2] it is noted that if for series (1) the condition

$$ln n = O(\lambda_n), \qquad n \to \infty,$$
(4)

holds then (3) implies (2).

At the Lviv regional workshop in Mathematical Analysis M. M. Sheremeta formulated a problem to determine a necessary and sufficient condition on the sequence Λ under which for every entire Dirichlet series $F \in S(\Lambda)$ inequalities (2) and (3) are equivalent. It turns out that (4) is just such a condition, i.e. the following theorem is true.

Theorem. Let $\rho \in (0; +\infty)$. In order that for every Dirichlet series $F \in S(\Lambda)$ inequality (3) implies inequality (2) it is necessary and sufficient that the sequence Λ satisfies condition (4).

Proof. It is sufficient to prove that if condition (4) is not valid then there exists Dirichlet series $F \in S(\Lambda)$ such that (3) holds and (2) fails.

Using Lemma 1 from [3] it is easy to show that from every increasing to $+\infty$ sequence of nonnegative numbers $\Lambda = \{\lambda_n\}_{n=0}^{\infty}$ such that $\overline{\lim}_{n\to\infty} (\ln n/\lambda_n) = +\infty$, we may choose a subsequence $\Lambda^* = \{\lambda_k^*\}_{k=0}^{\infty}$ for which $\overline{\lim}_{k\to\infty} (\ln k/\lambda_k^*) = +\infty$ and

$$\lim_{k \to \infty} \frac{\ln k}{\lambda_k^* \ln \lambda_k^*} = 0. \tag{5}$$

Therefore we may find increasing to $+\infty$ sequences $\{k_p\}_{p=0}^{\infty}$ and $\{l_p\}_{p=0}^{\infty}$ of positive integers and positive numbers respectively such that for every $p \geq 0$ the relations $\ln k_p = l_p \lambda_{k_n}^*$;

$$\lambda_{m_p}^* > 2\lambda_{k_p}^*, \qquad m_p \stackrel{\text{def}}{=} [k_{p+1}/2]; \tag{6}$$

$$0 \le \varkappa_p \stackrel{\text{def}}{=} \rho^{-1} \ln(l_{p+1} \lambda_{k_{p+1}}^*) \uparrow +\infty; \tag{7}$$

$$\sum_{p=0}^{\infty} \frac{1}{l_p} < \infty; \qquad \sum_{p=0}^{\infty} \frac{\varkappa_p \lambda_{k_p}^*}{e^{\varkappa_p \rho}} < \infty \tag{8}$$

hold.

We put $a_{k_0}^* = 1$,

$$a_{k_{p+1}}^* = \left(\prod_{i=0}^p e^{\varkappa_i(\lambda_{k_{i+1}}^* - \lambda_{k_i}^*)}\right)^{-1}, \qquad p \ge 0.$$
 (9)

Let also

$$a_k^* = a_{k_p}^* \exp\{-\varkappa_p(\lambda_k^* - \lambda_{k_p}^*)\}, \quad \text{if} \quad k \in [m_p; k_{p+1}) \quad \text{and} \quad p \ge 0.$$
 (10)

If the value a_k^* for some $k \geq 0$ is not defined yet, then we put $a_k^* = 0$. We remark that $a_k^* \leq 1$ for all $k \geq 0$.

Let us consider the Dirichlet series

$$F^*(s) = \sum_{k=0}^{\infty} a_k^* e^{s\lambda_k^*} = \sum_{p=0}^{\infty} \left(a_{k_p}^* e^{s\lambda_{k_p}^*} + \sum_{k=m_p}^{k_{p+1}-1} a_k^* e^{s\lambda_k^*} \right).$$
 (11)

From (9) and (7) it follows that

$$\frac{\ln|a_{k_p}^*| - \ln|a_{k_{p+1}}^*|}{\lambda_{k_{p+1}}^* - \lambda_{k_p}^*} = \varkappa_p \uparrow + \infty, \qquad p \to \infty.$$
(12)

From (12) and (10) we easily obtain the inequality $a_k^* \leq \exp\{-\varkappa_p(\lambda_k^* - \lambda_{k_p}^*)\}$ if $k \in [m_p; k_{p+1}]$ and $p \geq 0$, and therefore according to (6)

$$a_k^* \le \exp\left\{-\varkappa_p\left(\lambda_k^* - \frac{1}{2}\lambda_{m_p}^*\right)\right\} \le \exp\left\{-\frac{1}{2}\varkappa_p\lambda_k^*\right\}, \qquad k \in [m_p; k_{p+1}], \quad p \ge 0.$$
 (13)

Using (13), (7) and (5) for all $k \in [m_p; k_{p+1}]$ and $p \ge 0$ we have

$$\frac{\ln k}{-\ln a_k^*} \le \frac{\ln k_{p+1}}{\varkappa_p \lambda_k^* / 2} \le \frac{2\rho \ln(2m_p + 2)}{\lambda_k^* \ln(l_{p+1} \lambda_{k_{p+1}}^*)} \le \frac{2\rho \ln(2m_p + 2)}{\lambda_{m_p}^* \ln(l_{p+1} \lambda_{m_p}^*)} = o(1), \qquad p \to \infty,$$

hence $\ln k = o(\ln |a_k^*|)$, $k \to \infty$. In view of the latter inequality the abscissa of absolute convergence of the series (11) can be found [4] by the formula $\sigma_a = \lim_{k \to \infty} \frac{1}{\lambda_k^*} \ln \frac{1}{|a_k^*|}$. From (13) we obtain $\sigma_a = +\infty$ and thus $F^* \in S(\Lambda^*)$.

Further we remark that (12) implies the equalities

$$\mu(\sigma, F^*) = |a_{k_{n+1}}^*| e^{\sigma \lambda_{k_{p+1}}^*}, \quad \text{if} \quad \sigma \in [\varkappa_p; \varkappa_{p+1}) \quad \text{and} \quad p \ge 0,$$
 (14)

and also $\mu(\varkappa_p, F^*) = |a_{k_p}^*| \exp{\{\varkappa_p \lambda_{k_p}^*\}}$ if $p \ge 0$. Therefore from (13) for all $p \ge 0$ we have:

$$\begin{split} \int_{\varkappa_{p}}^{\varkappa_{p+1}} \frac{\ln \mu(\sigma, F^{*})}{e^{\sigma \rho}} d\sigma &= -\frac{1}{\rho} \int_{\varkappa_{p}}^{\varkappa_{p+1}} \ln \mu(\sigma, F^{*}) de^{-\sigma \rho} = \\ &= -\frac{\ln \mu(\sigma, F^{*})}{\rho e^{\sigma \rho}} \bigg|_{\varkappa_{p}}^{\varkappa_{p+1}} + \frac{\lambda_{k_{p+1}}^{*}}{\rho} \int_{\varkappa_{p}}^{\varkappa_{p+1}} \frac{d\sigma}{e^{\sigma \rho}} \leq \\ &\leq \frac{\ln \mu(\varkappa_{p}, F^{*})}{\rho e^{\varkappa_{p} \rho}} + \frac{\lambda_{k_{p+1}}^{*}}{\rho^{2} e^{\varkappa_{p} \rho}} \leq \frac{\varkappa_{p} \lambda_{k_{p}}^{*}}{\rho e^{\varkappa_{p} \rho}} + \frac{1}{\rho^{2} l_{n+1}}. \end{split}$$

Hence and from (8) we conclude that for $F = F^*$ (3) holds.

On the other hand, (11), (10) and (12) give:

$$M(\varkappa_p, F^*) \ge \sum_{k=m_p}^{k_{p+1}-1} a_k^* e^{\varkappa_p \lambda_k^*} = \sum_{k=m_p}^{k_{p+1}-1} a_{k_p}^* e^{\varkappa_p \lambda_{k_p}^*} = (k_{p+1} - m_p) \mu(\varkappa_p, F^*) \ge k_{p+1}, \quad p \ge p_0.$$

Thus $\ln M(\varkappa_p, F^*) \ge \ln k_{p+1} = l_{p+1} \lambda_{k_{p+1}}^* = e^{\rho \varkappa_p}, \ p \ge p_0$, and therefore for $F = F^*$ relation (2) does not hold.

In order to complete the proof of the theorem it is enough to put $a_n = a_k^*$ if $\lambda_n = \lambda_k^* \in \Lambda^*$ and $a_n = 0$ if $\lambda_n \notin \Lambda^*$ and consider Dirichlet series (4) with coefficients defined in such a way. This series belongs to $S(\Lambda)$ and (3) is valid for it, while (2) is not valid.

REFERENCES

- 1. Kamthan P. K. A theorem on step functions. II // Istambul Univ. Fen. Fac. Mecm. A. 28 (1963), 65–69.
- 2. Мулява О. М. Про класи збіжності рядів Діріхле // Укр. матем. ж. **51** (1999), №11, 1485–1494.
- 3. Шеремета М. Н. О поведении максимума модуля целого ряда Дирихле вне исключительного множества // Матем. заметки. **57** (1995), N2, 283–296.
- 4. Мулява О. М. Про абсцису збіжності ряду Діріхле // Матем. студії. 9 (1998), №2, 171–176.

Faculty of Mechanics and Mathematics, Lviv National University

Received 22.03.2001