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Let A = {A\,}22, be a sequence of nonnegative numbers increasing to 4+oo and S(A)
be the class of entire Dirichlet series F(s) = Y.°7 ane™, s = o + it. Put M(o,F) =

max{|F(s)| : Res = o} and let p(o, F) = max{|a,|exp{ocA,} : n > 0} be the maximal
term of the function F' € S(A). We prove that in order that f0+°° e 7P Inp(o, Fldo < oo

imply f0+oo e In M (o, F)do < oo for every F € S(A), it is necessary and sufficient that
Inn = 0O(A,), n — oo.

IM. B. ®uaesuyw, C. U. Penpraak. O npunadaedcnocmu yeaozo pada Jupurae x kaaccy crodu-
mocmu // Maremaruuni Cryaii. — 2001. — T.16, Nel. — C.57-60.

IMycte A = {\, }52, — BoapacTamomas K +00 MOCAeJOBATETLHOCTL HEOTPUIATENLHEIX TH-
cea, a S(A) — kaacc neawix pagos Mupuxae F(s) = S0 ame’?n s = o +it. Toaoxum
M(o, F) = max{|F(s)] : Res = o} u nycre p(o, F) = max{|ap|exp{cA,} : n > 0} —
MaKCHMAaabHBIH qieH Qyukmnn F € S(A). JoxasaHo, 9T0 Jid TOTO, 9TOGH M3 HEPABEHCTBA
f0+oo e Inp(o, F)do < oo creoBalo HEPABEHCTBO f0+oo e 7P In Mo, F)do < oo mas moboi
F € S(A), mHeobxogumo u gocraTowro, 9Tobk Inn = O(A,), n — oo.

Let A = {X,}52, be a sequence of nonnegative numbers increasing to +oo and S(A) be
the class of entire Dirichlet series

o0

F(s) = ZaneM", s = o+ it. (1)

n=0

For F' € S(A) let M(o, F') = max{|F(s)|: Res = o} and let p(o, F') = max{|a,|exp{c,} :
n > 0} be the maximal term of series (1).
As in [1] we say that entire Dirichlet series (1) belongs to convergence class if and only

+ oo
/0 In Mo, ') M(e, F)da < 00, (2)

eor

if the condition

is valid, where 0 < p < 400. According to the Cauchy inequality, u(o, F') < M(o, F') and
therefore (2) implies the inequality

/0"‘00 Mda < 00. (3)

eor
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In [2] it is noted that if for series (1) the condition
Inn =0O(A,), n — oo, (4)

holds then (3) implies (2).

At the Lviv regional workshop in Mathematical Analysis M. M. Sheremeta formulated a
problem to determine a necessary and sufficient condition on the sequence A under which
for every entire Dirichlet series F' € S(A) inequalities (2) and (3) are equivalent. It turns
out that (4) is just such a condition, i.e. the following theorem is true.

Theorem. Let p € (0;4+00). In order that for every Dirichlet series F' € S(A) inequality (3)
implies inequality (2) it is necessary and sufficient that the sequence A satisfies condition (4).

Proof. 1t is sufficient to prove that if condition (4) is not valid then there exists Dirichlet
series F' € S(A) such that (3) holds and (2) fails.
Using Lemma 1 from [3] it is easy to show that from every increasing to 400 sequence

of nonnegative numbers A = {)\,}°%, such that Iim (Inn/)\,) = +oco, we may choose a
n— 0o

subsequence A* = {1 }72, for which hm (ln k/X;) = 400 and

In &
li = 0.
T (5)

Therefore we may find increasing to +oo sequences {k,}°>2, and {l,}°2, of positive integers
and positive numbers respectively such that for every p > 0 the relations Ink, = lp)\zp;

def

Moy > 205, mp = [kpaa /2] (6)
def _ *
0<s,=p"" ln(lp-l—l)‘ka) T +oo; (7)
D (8)
=0 p=0

hold.
We put a} =1,

Let also
ay = ay exp{—s,(AL — AL )} if k€ [mpkyr1) and p>0. (10)

If the value a} for some k > 0 is not defined yet, then we put af = 0. We remark that a} <1
for all & > 0.

Let us consider the Dirichlet series

o'e] [oe) p 1—1
F(s) = ZGZGMZ = Z( Mo 4 i a;e s ) (11)

k=0 p=0 k=mp
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From (9) and (7) it follows that

Infaj | —Infaj}

N -\

pr1 kp

p+1| = 3, T +oo, p — 00. (12)

From (12) and (10) we easily obtain the inequality aj < exp{—2s,(A; — Ay }if k € [my; kpi]
and p > 0, and therefore according to (6)

1 1
i zew{m (- 50, ) ew{-gan} belmibal pzo )

Using (13), (7) and (5) for all k € [my; kpt1] and p > 0 we have

Ink - In k,q1 - 2pIn(2m, 4 2) - 2pIn(2m, + 2)
Thnar S 2 S Nl N (k)

= o(1), P — 00,

hence Ink = o(In |a}|), k — oo. In view of the latter inequality the abscissa of absolute

convergence of the series (11) can be found [4] by the formula o, = lim 7+ In |al—*| From (13)
k—oo " F k

we obtain o, = +o00 and thus F* € S(A*).
Further we remark that (12) implies the equalities

*
oL

w(o B = a7, i 0 € Pgizgn) and p >0, (14)

and also p(sg,, 1) = |aj [exp{s,A} } if p > 0. Therefore from (13) for all p > 0 we have:
pt1 | F* 1 [reh
/ Mda = ——/ Inu(o, F*)de ™" =

eor
LAY L [P do
_|_L — <
P P e’
P

P P
»p

In w(o, F*)

per

*

<1n/“b(%p7F*) )\kp+1 < %p)‘};p 1 .
T peh presvr = perrt ptlp g

Hence and from (8) we conclude that for F' = F* (3) holds.
On the other hand, (11), (10) and (12) give:

Fpy1-1 Fpy1-1
* * e\ E x  pAY *
Mo, F7) 2 0 et = 37 ap &7 = (kpp = my)ulo, F7) 2 kpsrs p 2 o
k=mp k=mp
Thus In M (5¢,, F*) > Ink,41 = lyt1A},,, = €77, p 2 po, and therefore for I = F"* relation

(2) does not hold.

In order to complete the proof of the theorem it is enough to put a,, = af if A, = A} € A*
and a, = 0 if A\, ¢ A* and consider Dirichlet series (4) with coefficients defined in such a
way. This series belongs to S(A) and (3) is valid for it, while (2) is not valid. O
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