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I/ICCJIC,Z[yIOTCH KOMITAKTHBIE TOIMOJOTIMYECKNE MOJYPEIIETKN C OTKPBITHIMHA I'NTABHBIMU U €a-
JaMH.

In this note we continue investigations of compact topological semilattices with open
principal ideals started in [4]. All topological spaces considered in this paper are Hausdorff.
Under a topological semilattice we understand a topological space S endowed with a contin-
uous associative commutative idempotent operation A : S x S — 5. A subset 7 C X is
called an ideal in X if t Ay € Z for every x € T and y € X. An ideal Z C X is called a
principal ideal it T = a = {x € X : 2 Aa = z} for some a € X. Clearly, each principal ideal
is a closed subsemilattice of X. If every principal ideal is open in X, then we say that X is
a topological semilattice with open principal ideals. The semilattice operation of X induces
a partial order on X: « <y if e Ay = x. A subset C C X is called a chain (resp. antichain)
if for every x,y € C x Ay € {x,y} (resp. x Ny & {z,y}).

Topological semilattices with open principal ideals are tightly connected with so-called
well-founded semilattices, i.e., semilattices whose partial order is well-founded. We recall
that a partially ordered set (P, <) is defined to be well-founded if every subset of P has
a minimal element, equivalently, if P contains no infinite decreasing sequences, see [6, §14.1].

In fact, for a linearly ordered compact topological semilattice S the following condi-
tions are equivalent: (1) S is a topological semilattice with open principal ideals, (2) S is
a well-founded semilattice, and (3) S is topologically isomorphic to some non-limit ordinal
a endowed with the interval topology and the semilattice min-operation. Note that the
implication (1)=-(2) still holds for any compact topological semilattice, while the converse
implication fails in general: the one-point compactification oD = {*} U D of any infinite
discrete space D endowed with the continuous semilattice operation

A x, ife=y
T =
Y *, ife#y
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is a well-founded compact topological semilattice which is not a topological semilattice with
open principal ideals.

We recall that a topological space X is called scattered if every non-empty subspace of
X has an isolated point. By Iso(X) we denote the set of all isolated points of a topological
space X. The following structural theorem belongs to O. Gutik [4].

Theorem. (Gutik) Let S be a compact topological semilattice with open principal ideals.
Then

(1) S is a scattered space with |Iso(S)| = |9];
(2) Every antichain in Iso(S) is finite;

(3) S is topologically isomorphic to a non-limit ordinal « if and only it S is linearly ordered,
ie,xz Ny € {x,y} for any x,y € S.

In this note we show that an isomorphic copy of a sufficiently large non-limit ordinal «
can be found in any compact topological semilattice with open principal ideals.

Theorem 1. Every infinite compact topological semilattice S with open principal ideals
contains a subsemilattice topologically isomorphic to some non-limit ordinal o with |o| = |5|.

Proof. By the first statement of the Gutik Theorem, Iso(S) is a partially ordered infinite
set. It follows from the Erdds-Dushnik-Miller Partition Theorem [3] (see also [6, p. 233])
that either Iso(.S) contains an infinite antichain or else Iso(\S) contains a chain C' C Iso(S5)
with |C] = |Iso(S)|. By the second statement of the Gutik Theorem, the first case is not
possible, consequently, Iso(.S) contains a chain C of cardinality |C'| = |Iso(S5)|. Then the
closure C' of C'in S is a compact linearly ordered topological semilattice with open principal
ideals, which by the third statement of the Gutik Theorem, is topologically isomorphic to
some non-limit ordinal a with |a| = |C] > |C| = |Iso(S)] = |5]. O

Another result proven in [4] states that the one-point compactification of an uncountable
discrete space is homeomorphic to no topological semilattice with open principal ideals.
We generalize this Gutik’s result proving that the scatteredness index i(5) of a compact
uncountable topological semilattice S with open principal ideals has cardinality |i(.5)| equal
to |S].

Let us recall the definition of the scatteredness index ¢(X) of a scattered topological
space X. Let X(® = X and for an ordinal a define the a-th derivative set X(®) of X
by transfinite induction: X = X\ Iso(X?) if o = 3 + 1 for some ordinal 3; and
X@ = Noca X®) if o is a limit ordinal. Let #(X) be the smallest ordinal o such that

X = @, It is well known that 7(X) is a non-limit ordinal, provided X is a compact
scattered space. If X is a subspace of a scattered topological space Y, then X(®) C V() for
every ordinal . This implies ¢(X) < i(Y). On the other hand, if f: X — Y is a continuous
surjective map between scattered compact spaces, then Y(*) C f(X(@)) for every ordinal o,
see [1, VLI.8.1]. This implies ¢(Y) < i(X) if Y is a continuous image of a compact scattered
space X.

It is well known (and can be proven by transfinite induction) that |i(«a)| = || for every
uncountable ordinal . This observation and Theorem 1 imply

Corollary. IfS isan uncountable compact topological semilattice with open principal ideals,
then S is a compact scattered space with [i(S)| = |5].



ON STRUCTURE OF TOPOLOGICAL (SEMI)LATTICES 51

Thus no uncountable compact scattered space X with |¢(X)| < |X| supports a structure
of a topological semilattice with open principal ideals. This concerns also the one-point
compactification oD of an uncountable discrete space D, for which i(aD) = 2. There exists
also a compact scattered space X such that |¢(X)| = | X| but nonetheless X is homeomorphic
to no topological semilattice with open principal ideals. Just take X = a(w; UR;) be the one-
point compactification of the disjoint topological sum of the ordinal space w; and a discrete
space of cardinality R;. Clearly, [¢((X)| = 8y = |X|. The following theorem generalizing
Corollary shows that this space is homeomorphic to no topological semilattice with open
principal ideals.

Theorem 2. If K is a compact subset of a topological semilattice S with open principal
ideals, then K is a scattered compactum. Moreover, |i( K)| = | K|, provided K is uncountable
and the semilattice S satisfies one of the following conditions:

(1) S is compact;
(2) S is a scattered space;
(3) S is a well-founded semilattice.

The proof of this theorem requires some preliminary work. We start with the following
lemma which in a simplified form reflects the main idea of the proof of Theorem 2 and will
be used for the proof of the subsequent Theorem 3.

Lemma 1. Suppose (S5, A\) is a topological semilattice and K C S is an uncountable compact
subset having a unique non-isolated point xq. If |K\ T xo| > No, where T 29 = {2z € 5 :
x A xg = 20}, then S contains a subset X C S having neither isolated points nor minirmal
elements.

Proof. Under a supersequence in S we shall understand an uncountable compact subset
C C S with a unique non-isolated point ¢y € C (denoted by lim(C) such that = < ¢
(equivalently, x A ¢g = x) for every x € C.

Observe that the set K A xg = {x Azg: 2 € K} is just a supersequence. Indeed, K A zg,
being a continuous image of A, has at most one non-isolated point. Clearly, * < zq for
every © € K A xg. Let us show that the set K" A z¢ is uncountable. Assuming the converse,
we would write (K A 20) \ {0} = {yn : n € N}. Observe that for every n € N the set
Y,={x € K : 2 Axo=y,} is finite (since it is closed in K and does not contain the limit
point o). Consequently, the set K\ T ag = _, Y, = {x € K : a2 Axg# 20} is countable,
a contradiction with our assumption. Thus K A xg is a supersequence in S.

Let Xo = @ and X; = {x¢}. By induction, for every n € N we shall construct a subset
Xpn+1 D X, of S such that every point @ € X, \ X,,_1 is the limit point lim C(z) of some
supersequence C'(x) C X,41 and every point y € X, 11 \ X, is the limit point lim C(y) of
some supersequence C(y) C S.

Assuming for a moment that such a sequence (X,,) is constructed, we conclude that the
union X = [J'~, X,, C S has neither isolated points nor minimal elements.

Inductive Step. Suppose that for some n € N subsets Xo C X; C --- C X,, of § are
constructed so that every point x € X, \ X,,_; is the limit point of some supersequence
C(x) C S. For every € X, \ X,_; we shall find a supersequence C’(x) C C'(x) such that
every point y € C’(x) \ {x} is the limit point of some supersequence of S and shall take
Xog1 = XnUUIeXn\Xn_1 C'(x). Clearly, the so-defined set X, ;; will satisfy our requirements.
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Now we show how to construct the supersequence C’(x) C C(x) for every x € X, \ X,_1.
First we find an uncountable antichain A(x) in C'(x). Observe that for every y € C(x)\ {x}
the set C'(x)N | y is finite (since it is closed in C'(x) and does not contain the limit point ).
Then for some n € N the set A(z) ={y € C(x): |C(x)N ] y| = n} is uncountable. Clearly,
A(z) is an antichain in C'(x). We claim that the set C'(x) = {#} U A(x) is a supersequence
satisfying our requirements, i.e., every y € C'(x)\{x} is the limit point of some supersequence
in S. Clearly, C'(x) is a supersequence in S. Now fix any y € C’(x) \ {z} and consider the
compactum y A C(z). We claim that y A C(x) is a supersequence with limy A C(z) = y.
In fact, the only thing we have to verify is the uncountability of y N C'(x). Assuming the
converse, we could write y A C(x) \ {y} = {z, : n € N}. Observe that for every n € N the
set Z, ={z € C(a): 2z ANy = z,} is finite (since it is closed in C(x) and does not contain
the limit point x). Consequently, the set 7 = {xz € C(x): 2 Ay # y} is at most countable.
Since the antichain A(x) C C(x) is uncountable, there is a € A(x)\ (ZU{y}), i.e., a Ny =y,
a contradiction with the fact that A(x) 3 @,y is an antichain. O

Now we adapt the proof of Lemma 1 to the general case. We shall use the so-called
rank function p defined on any well-founded partially ordered set X as follows: p(x) = 0
for a minimal element x of X and p(x) = sup{p(y) + 1 : y < 2} for a non-minimal element
z € X, see [6, p.255]. Thus, p: X — Ord is a monotone map of X onto an initial segment
of ordinals (by Ord we denote the class of all ordinals).

Under a (well-founded) pospace we understand a topological space X endowed with
a (well-founded) partial order < which is closed as a subset of X x X. We say that a
pospace X is a pospace with open lower sets if the set | @ = {y € X : y < x} is open in
X for every © € X. It is easy to see that every compact pospace K with open lower sets
is well-founded, and hence admits a well-defined rank-function p: K' — p(K) C Ord (this
function needs not be continuous). According to [5], every compact pospace with open lower
sets is scattered.

Lemma 2. If K is a compact pospace with open lower sets, then i(p(K)) < i(K).

Proof. Tt suffices to verify that p='(p(K)®) C K for every ordinal a (then
p~ (p(K)ED)) ¢ KEE) = @ and thus p(K)P5) = @ and i(p(K)) < i(K) ).

The inclusion p~'(p(K)™) C K is trivial for a = 0. Assume that it is true for all
ordinals o < 3, where (3 is a fixed ordinal. If 3 is limit, then

P UK =57 (Y o(B)) = (Vo7 (oB)) © () K1) = KO,

a<lf a<lf a<lf

So it rests to verify the case of a non-limit ordinal § = a+ 1. Let © € K be any point
with p(z) € p(K)@+Y). By the definition of p(K )1, there exists a subset A C p(K )
such that p(x) ¢ A and p(x) = sup A. Since p(} ) = {y € Ord : v < p(a)} D A, for every
a € A we may find a point x, €] x such that p(z,) = a. By the inductive assumption,
{Za}aea C p7HA) C p~ Y p(K)™) € K™, Since p(x) ¢ A, we get & ¢ {x,}aea. Thus,
to show that = € K+ it suffices to verify that z is a cluster point of the net {z,}qca.
By the compactness of the lower set | @ C K, the net {x,},c4 has a cluster point in | z,
that is a point x., €| z such that for every neighborhood U C | = of =, and every a € A
there exists b € A with b > a and z;, € U. We claim that ., = . Assuming the converse,
we would get ., < @ and thus p(z.) < p(x). On the other hand, the lower set | ., is
an open neighborhood of x., in K. Consequently, for every a € A there exists b € A such
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that b > a and x, €] 2. This yields 2, < 2o and thus a < b < p(ap) < p(s), e,
p(2e) > sup A = p(x), a contradiction with p(x.) < p(x). O

Lemma 3. If K is an uncountable scattered pospace with open lower sets and |i(K)| < | K],
then K contains an antichain A of cardinality |A| > Ro - |¢(K)].

Proof. By Lemma 2, i(p(K)) < i(K) and consequently, [p(K)] < Ng - [i(p(K))] < N -
li(K)| < |K|. Observe that for every ordinal o, p~'() is an antichain in K. Assuming that
lp7Ha)| < Rg - [i(K)| for every a, we would get

K= U o7 @)] < ()] R Ji(B)] < R - [i(H)] < K],

a€p(K)
a contradiction. O

Lemma 4. Suppose (S, N\) is a topological semilattice with open principal ideals and K C S
is an uncountable scattered subset with |i(K)| < |K|. Then S contains a subset X having
neither isolated points nor minimal elements.

Proof. Let C be the set of all uncountable scattered compact subsets C' of S such that
li(C')] < |C]. By our assumption, this set is not empty. Let 7 = min{|C]| : C € C}
and A = min{i(C') : C € C and |C| = 7}. Clearly, A is a non-limit ordinal. Let finally,
m =min{|COV|:CcC, |C]=r, i(C)=2AL

Claim A. m = 1.

Proof. Let C € C be a compactum with |C| = 7, i(C) = A, and |[C*Y| = m. Assuming
that m > 1, we could write C*~Y = AU B, where A, B are disjoint finite subsets of C'. Since
the space C' is zero-dimensional (being hereditarily disconnected, see [2, 1.4.5]), we can find
disjoint closed-and-open sets U,V C C such that U UV = C and A C U, B C V. Clearly,
i(A) =1i(B) = i(K) =X and max{|U|,|V|} = |K| = 7. Without loss of generality, |U| = .
It is easy to see that U € C and [UMY| < m, a contradiction with the minimality of m. [

Let K={C cC:|C|=r,i(C)=2A |[C* Y| =1}. For a compactum C € K by limC

we denote the unique point of C=1,

Claim B. If C € K and U is a neighborhood of lim C' in C, then |C'\ U| < Xg - |A[.

Proof. Assuming the converse, we would find an uncountable closed subset I C C with
Al < [F| <7 and limC ¢ F. Observe that ¢(F') < A—1. Consequently, F' € C and |F| =7,
i(F) < A, a contradiction with the choice of the ordinal A. O

Generalizing the definition of a supersequence from Lemma 1, under a supersequence in
a topological semilattice S we shall understand any compactum €' € K such that limC' is
the greatest element of (', i.e., x < limC for any = € C.

Claim C. If C' € K, then C ANlim C' is a supersequence in S.

Proof. Since C' A lim C' is a continuous image of the scattered compactum C', it is scattered
too, moreover, i(C AlimC') < i(C) = A, see Lemma 8.1 of [1, Ch.VI]. Next, we verify that
|C Alim C| > Rg - [A]. Observe that

C={limC}lu(C\limC)u ] O

ze€CAlim C
rz#lm C
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where C, = {y € C : y AlimC = 2} for @ € C AlimC. The sets C\ | limC and C,,
z € (CANlimC)\{lim C}, are closed in C and do not contain the point lim C'. By Claim B,
these sets have cardinality < Ng - |A]. Assuming that |C A limC| < Rg - |A| we would get
|IC < Rg - |A| <7 =]C], a contradiction.

Because i(C A limC) < Rg - |A| < |C AlimC|, we conclude C' A limC € C. Since
|CATmC| < |C|] = 7 and {(C AlimC) < o(C) = A, by the choice of 7 and A we get
|C ANlimC| = 7 and «(C AlimC') = A. Moreover, according to Lemma 8.1 of [1, Ch.VI],
(C ANlim C) ™) € ¢ Alim C for every ordinal a. Consequently,

(C Alim YD ¢ ¢ Alim C = {lim C'}

and thus (C A limC)*=1 consists of the unique point limC = lim(C A limC). Then,
CAlimC € K and lim C' = lim(C Alim (') is the greatest element of C Alim C, i.e, C Alim C
is a supersequence. O

Claim D. IfC € K and A is an antichain in C with |A| > No-|A|, then C'Aa is a supersequence
in S for every a € A with a <limC.

Proof. Fix any a € A with ¢ < limC. Applying Lemma 8.1 of [1, Ch.VI] we conclude that
i(C'ANa) <i(C) (since C'A a is a continuous image of ().

Next, we show that |C' A a] > Rg - |A|. Assume the converse: |C'Aa| < Rg-|A|. For every
r€e€CANhalet Cp, ={y € C:yNa==z}. Evidently, C, is a closed subset of ' not containing
the point im C' if # # a. Consequently, |C,| < Vg -|A| for any @ € (C' Aa)\{a} and thus the
cardinality of the set B = |, ¢(cpup (o) O does not exceed Ro - [A]. Since [A] > Ro - [A] = |B],
we may find a point «’ € A\ (BU{a}). Note that ¢’ Aa = a, a contradiction with the choice
of A as an antichain.

Thus 7 > |C Aal > No- |A| > |i(C Aa)| and C Aa € C. By the choice of 7 and A,
|C'ANal =7 and i((C A a) = A Analogously as in the proof of the previous claim we may
show that (C' A @)=Y consists of the unique point a = lim C' A @ which implies that C' A a
is a supersequence. O

Finally, we are able to finish the proof of Lemma 4. Without loss of generality, K € K.
Let Xo = @ and X; = {lim K'}. By Claim C, lim K is the limit point of the supersequence
K ANlim K.

By induction, for every n € N we shall construct a subset X,,1; D X, of S such that
every point @ € X, \ X,_; is a cluster point of some subset A(x) C X,11 N (] «\{x}) and
every point y € X,41 \ X, is the limit point lim C'(y) of some supersequence C(y) € S.

Assuming for a moment that such a sequence (X,,) is constructed, we conclude that the
union X = |J'~, X,, C S has neither isolated points nor minimal elements.

Inductive Step. Suppose for somen € Nsubsets Xog C Xy C --- C X, of S are constructed
so that every point @ € X, \ X,_1 is the limit point of some supersequence C'(x) C 5.
By Lemma 3, the supersequence C(x) contains an antichain A(x) of cardinality |A(x)| >
R - |¢(C(x))] = No - |A|. Since each closed subset of C'(x) not containing the limit point
x = lim C(2) has cardinality < Rg-|A| (see Claim B), the closure of A(z) in C'(x) contains the
point z. Let X,,1; = X, U UxeXn\Xn_l A(z) and notice that the so-defined set X, ;1 satisfies
our requirements. Indeed, every point @ € X, 41 \ X, is the limit point of a supersequence
C(x) A a, where x € X, is such that « € A(x) C C(x), see Claim D. O
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Proof of Theorem 2. Suppose K is a compact subset of a topological semilattice S with open
principal ideals. Then K endowed with the induced partial order is a compact pospace with
open lower sets. We show that K is a scattered compactum (cf. [5]). Let A be any subset
of K. Observe that the upper set T A = {z € K : dJa € A with a < 2} is a closed subset
in K as the complement to the open set UxeK\TA 1 x. Consequently, T A, being a compact
pospace has a minimal element a. Clearly, a € A. Since AN | a = {a}, the point « is isolated
in A. Thus every subset of K has an isolated point and K is a scattered space.

If K is uncountable and |i(K')| < |K|, then by Lemma 4, S contains a subset X having
neither isolated point nor minimal elements. Consequently S is neither scattered space
nor a well-founded semilattice. Also S can not be compact since otherwise, it would be a
scattered space according to the Gutik Theorem [4]. O

Remark that unlike to Lemma 4, in Lemma 1 there is no requirement on S to have open
principal ideals. This fact allows us to apply Lemma 1 to prove that the scattered topological
lattices contain no uncountable compacta with finite scatteredness index.

We recall that a topological lattice is a topological space I endowed with two continuous
semilattice operations A,V : L x L — L connected by the distributivity laws: « A (y V z) =
(xAy)V(eAz)and eV (yAz)=(zVy) A(zVz).

Theorem 3. Every uncountable compact subset of a scattered topological lattice has infi-
nite index of scatteredness.

Proof. Suppose on the contrary that €' is a compact subspace of a scattered topological
lattice L such that |i(C)| < Rg < |C]. It is easy to prove (by induction on i(C)) that C
contains an uncountable compact subset A" with a unique non-isolated point xg.

It is well known that the partial orders induced by the semilattice operations on a lattice
are compatible in the following sense: # Ay = = if and only if x Vy = y for every x,y € L,
see [7, p.193]. Consider the partial order < on L defined as: @ <y if Ay = = (equivalently,
eVy=y)fora,ye L. Let fag={s €L e <axo}and Tao={x € L:a>uao}.

Then Lemma 1 applied to the topological semilattice (L, A) implies that |K'\ T xq| < Ry,
while applied to the semilattice (L, V) yields |K\ | x| < Rg. Consequently, the set K =
{zo} U(K\ T 20)U(K\ | x0), being a union of at most countable sets, is at most countable,
a contradiction. O

Theorems 2 and 3 suggest the following

Conjecture. If K is an uncountable compact subset of a scattered topological lattice, then
li(K)| = |K|.

Let us remark that the requirement of the openness of principal ideals of the semilat-
tice S in Theorems 1 and 2 is essential and cannot be replaced by the compactness and
well-foundedness of S: as we remarked in the beginning of the paper, the one-point com-
pactification aD) of any discrete space D carries the structure of a well-founded compact
topological semilattice. Unlike to compact topological semilattices with open principal ide-
als, well-founded compact topological semilattices need not be scattered.

FExample. There exists a zero-dimensional metrizable compact well-founded topological semi-
lattice S having no isolated point. Let S =] . N be the set of sequences (both finite and
infinite) of positive integers. For a sequence @ = (x;);<, let [(z) = n be the length of x. A
semilattice operation A on S is defined as follows: for two sequences x,y € S let + Ay = z,
where [(z) = sup{i + 1 : ¢ < min{l(x),l(y)} and =; = y;} and z; = x; for ¢ < [(z). It is
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easy to see that S endowed with the operation A is a well-founded semilattice. Next, we
introduce a metrizable compact topology 7 on 5, compatible with the operation A. This
topology is generated by the base

(,m) ={zfU{y e S:yAe=ux ly)>l(2), yys) = m},

where = runs over all finite sequences in S and m € N. It can be easily shown that 7 is
a metrizable separable topology without isolated points on .S, compatible with the semilattice
operation A.

Nonetheless, the well-foundedness imposes some restrictions on the topology of a topo-
logical semilattice. We recall that a topological space X is called totally disconnected if for
any distinct points x,y € X there exists an open-and-closed subset U C X such that € U
but y ¢ U. It is known that a locally compact topological space is totally disconnected if and
only if it is zero-dimensional [2, 1.4.5]. On the other hand, there exist totally disconnected
strongly infinite-dimensional separable complete-metrizable spaces, see [2, 6.2.4].

Theorem 4. Every well-founded topological semilattice is totally disconnected.

Proof. Assume on the contrary that some points a # b of a well-founded topological semilat-
tice cannot be separated by a closed-and-open subset. Without loss of generality, a A b # b.
To get a contradiction, we shall construct inductively a decreasing sequence (a,)5, in S
such that a, A b # a, for every n.

Let ap = @ and assume that for some n > 0 points ag > a1 > - -+ > a, such that a,Ab # a,
have been constructed. Let U and V' be disjoint open neighborhoods of the points a, and
a, Nb, respectively. Evidently, the set W = {z € S : 2 Aa, € U, xANa,ANb € V}is an open set
in S such that « €t a, C W C S\ {b}. Since the points @ and b cannot be separated by an
open-and-closed set, we conclude that 1 a,, # W and thus there exists a point x € W\ 1 a,,.
Then the point a,4+1 = « Aa, satisfies the conditions a,4+1 < @, and @,4+1 Ab # a,41 (because
anp1 Nb=a Na, Nb €V while a1 ¢ V). O

Question. Is every well-founded topological semilattice zero-dimensional?
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