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The contravariant functor of the spaces of nonexpanding maps into a given bounded metric
space acts in the category of metric spaces and nonexpanding maps. We consider the problem
of extension of this functor onto the Kleisli categories of some monads.
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KonTpaBapmaHTHBIII (PyHKTOP HPOCTPAHCTB HEPACTATHBAIIMX OTOODAXKEHNN B 3aaH-
HOE OrpaHUYeHHOe METPUYECKOe MPOCTAPHCTBO [MeHCTBYET B KATETOPHH METPUYECKHX MPO-
CTPAHCTB U HEPACTATHBAIONINX 0TOoOpaK)eHnnit. PaccMaTpuBaeTcs 3aqata MPOTOMKEHIA 3TOTO
dyHKTOpa Ha KaTeropun Kaelicain HEKOTOPHIX MOHA .

1. INTRODUCTION

Every monad in a category generates the category of algebras (the Eilenberg-Moore
category) and the Kleisli category (which is known to be equivalent to the category of free
algebras). General problems of lifting functors to the categories of algebras and extensions
of (covariant) functors to the Kleisli categories were considered in [1], [3], [7], [12]. Different
examples of solution of these problems for monads generated by functors close to being
normal in the category of compact Hausdorfl spaces are collected in the monograph [9].

The Kleisli categories of monads have applications in different areas of mathematics and
computer science. In particular, they appear in a general categorical setting for modeling
program composition (see, e. g. [10], [11]). The problem of extension of functors to the
Kleisli categories was considered in [12] in connection with the problem of interpretation for
abstract programming languages.

In [6] the first-named author considered the general problem of extension of contravariant
functors onto the Kleisli categories of a monad. A criterion of existence of such extension was
obtained and applied to the case of the contravariant functor of continuous functions in the
pointwise convergence topology acting in the category of Tychonov spaces and continuous
maps. The monads under consideration were: the monad generated by the second iteration
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of the functor of continuous functions in the pointwise convergence, the hyperspace monad
and its finite hyperspace submonad [8].

The aim of the present article is to obtain counterparts of these results in the metric
categories. We deal with the category of (compact) metric spaces and nonexpanding maps,
but the analogous results can be obtained also for the category of metric spaces and Lipschitz
maps.

2. MONADS, ALGEBRAS, KLEISLI CATEGORIES

A monad on a category C is a triple T = (T, n, ) consisting of an endofunctor T': C — C
and natural transformations n: 1¢ — T, u: T* — T such that gonT = gwo Ty = 17 and
polu=poul.

A pair (X, ) is called a T-algebra if a: TX — X is a morphism such that « onX = 1x
and aouX = aoTa. A morphism of a T-algebra (X, «) into a T-algebra (X', a') is a
morphism f: X — X’ in C such that foa =o' oTf. The T-algebras and their morphisms
form a category.

The Kleisli category of T is the category Cr defined as follows: |Cr| = |C|, Cr(X,Y) =
C(X,TY), and the composition of morphisms f € Cr(X,Y), g € Cr(Y,Z) is given by the
formulag* f =puZoTgo f.

Define the functor I: C - Cr by IX = X, X € [Cl and [f =nY o f for f € C(X,Y).
A (contravariant) functor F': Ct — Cr is called an extension of a (contravariant) functor
F:C—CiftFI=1F.

The following result is a counterpart of a result of Vinarek [7] concerning extensions of
covariant functors onto the Kleisli categories; see [6] for its proof.

Proposition 2.1. There exists a bijective correspondence between the extensions of a con-
travariant functor F' onto the category Cr and the natural transformations £&: F — TFT
satisfying the conditions: (i) TFno& =nkF; (i) TFuo& = ulT* o TET o €.

Suppose that contravariant functors F, F': C — C have extensions F', F onto the category
Crand &: F — TFT, ¢ F' — TF'T are the natural transformations that correspond, by
Proposition 2.1, to these extensions.

Proposition 2.2. A natural transformation t: F' — F’ is also a natural transformation of

F to F' if and only if TtT 0 € = ¢ ot.

3. MONADS IN THE CATEGORY OF METRIC SPACES AND NONEXPANDING MAPS
Denote by NE the category of metric spaces and non-expanding maps and by CNE the
full subcategory of NE whose objects are compact metric spaces.

3.1. Hyperspace monad. For a metric space (X, d) we denote by exp X the space of
nonempty compact subsets of X endowed with the Hausdorff metric:

dy(A,B)=inf{e >0 | AC O.(B), BC O.(A)}.

If a map f: (X,d) — (Y, 0) is nonexpanding, then so is the map exp f: (exp X, dy) —
(exp Y, on). We thus obtain the hyperspace functor exp in NE. The natural transformations
s: lexp — exp, u: exp® — exp are defined as follows: sX(z) = {z}, uX(A) = UA. Tt is
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a folklore (and easy to see) that the maps sX and uX are non-expanding and the triple
H = (exp,s,u) is a monad on NE (the hyperspace monad). Note that exp preserves the
subcategory CNE and we preserve the denotation H for the restriction of the hyperspace
monad onto CNE.

3.2. Inclusion hyperspace monad. A nonempty closed subset A of exp X is called
an inclusion hyperspace if for every A C B € exp X implies B € A. If X € |CNE| then the
set GX of all inclusion hyperspaces is a closed subset of exp? X and is endowed with the
Hausdorfl metric dyy.

If f: (X,d) = (Y,p) is a morphism in CNE, define the map G'f: GX — GY by the
formula

Gf(A)={B cexpY | BD f(A) for some A € A}.
Proposition 3.1. The map Gf: GX — GY is a morphism in CNE.

Proof. Suppose A, B € GX and dun(A,B) < e. Consider A" € G f(A), then there exists
A € A such that A" D f(A). There is B € B such that dy(A, B) < . Obviously, B" =
AU f(B) € Gf(B) and pu(A’, B') < e.

Similarly, for every B” € B there exists A" € A such that pp(A’, B) < . This implies
that QHH(Gf(.A), Gf(B)) < E. O

A corollary of this proposition is that G is an endofunctor in CNE (the inclusion hyper-
space functor).

The natural transformation n: 1 — G is defined by the formula nX(z) = {A € exp X |
x € A}. It is easy to see that nX is an isometric embedding for every X € |CNE|. Besides,
define the natural transformation p: G* — G by the formula pX () = U{nA | A € 2A}.
It was proved in [13] that the maps X are morphisms of CNE. It is essentially due to
T. Radul [15] that the triple G = (G, n, 1) is @ monad on the category CNE (the inclusion
hyperspace monad).

3.3. Probability measure monad For a compact Hausdorff space X denote by PX the
space of all probability measures on X endowed with the weak*-topology. It is well-known
that P is a covariant functor on the category of compact Hausdorff spaces and continuous
maps. If (X, d) is a compact metric space, then the weaks-topology on PX is generated by
the Uspenskij metric,

dy(p, p2) = inf{A(d) | A € P(X x X), Ppri(A) =, Ppra(A) = pa}

(here pr; denotes the projection of X x X onto the i-th factor). There exists a natural
transformation n: Ing — P; for every @ € X the probability measure nX () is the Dirac
measure &, 0,(¢) = @(x), ¢ € C(X).

By P, we denote the subfunctor of probability measures with finite supports of P. The
space P, X consists of the probability measures of the form "  «;d,,, where o; > 0,
Do @i =1

Define the natural transformation u: P2 — P, by the following formula

/,LX(zn: @i0pm,) = zn:ozimi, a; > 0, zn:ozi =1, m;eFP,X.
=1 =1 =1
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It is proved in [18] that the maps
77X2 (X,d)—}(PWX,dU), MX: (PzX,dUU)—}(PWX,dU)

are morphisms of NE. The triple (F,,n, ) is a monad in NE. Similarly, the triple (P,n, 1)
is a monad in CNE (here ¢ X is naturally extended onto P2X, X € |CNE]).

3.4. Monad of hyperspace of compact convex sets of probability measures.
Suppose X is a compact convex subset of a locally convex space. We denote by ccX the
subset exp X consisting of all nonempty compact convex subsets of X. Obviously, cc is
a functor on the category of compact convex subset of a locally convex spaces and affine
maps. Actually, the probability measure functor P can be considered as a functor into the
category of compact convex subset of a locally convex spaces and affine maps and therefore
the composition ccP is defined. If (X, d) is a compact metric space, we endow ccPX with
the metric dyg induced by the Hausdorff metric on the hyperspace of (PX, dy).

We define the natural transformation n: leng — ccP by the formula nX () = {4.}.

O. Nykyforchyn [14] defined a natural transformation of (ccP)? to ccP as follows. Suppose
X is a compact convex subspace of a locally convex space and M € PccX is of the form

M =>"" «;0p,, then let

eX (M) = {Zaixi | 21 € By,... 2, € Bn}.
=1

[t is proved in [14] that X extends continuously over PccX. Now let B € ccPccP X, denote
X (B) = Upres pPX(M) € ccPX.

Proposition 3.2. The triple (ccP,n, i) is a monad on the category CNE.
Proof. We need only to prove that the map
pX: (ccPecPX, dugun) — (ccPX, dun)

(we use a self-explaining denotation for metrics) is a morphism in CNE for every (X, d).
Let A,B € ccPccPX and dynun(A,B) < e. It is sufficient to prove that for every M =
Yo 004 € Aand every m € o PX(M) there is n € pX(B) with du(m,n) < e.

There exists N = 22‘21 B;0B, € B such that duypu(M, N) < e. Then there exist v;; > 0,
1 <ie<s,1 <y <t such that

S i s t
ZZVU =1 and ZZ%]‘dUH(Ai,Bj) <e.

=1 j7=1 =1 j7=1

Now, if m = >>7_ a; € ¢PX(M), where ¢; € A;, 1 < i < s, find b;; € B; such that
du(ai,by;) < dua(Ai, Bj), 1 <1 <s, 1 <5<t
Since > 7_, (’m/ > ’m) bij € B;, for every 7 =1,...,t, we see that

=1 j=1 7=1 =1
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Show that du(m,n) < . Let ¢;; € P(X x X) be such that Ppri(¢;;) = a;, Ppra(ci;) = bij,
and Cij(d) = dU(ai,bZ’]‘). Then

s €
ZZZZ%]‘CZ']‘EP(XXX), Pprl(l):m,

=1 j=1
Ppra(l) = n, and

s t

Ud) =) vei(d) <D0 qudun(As, By) <,

=1 j7=1 =1 j7=1

and therefore dy(m,n) < e.

4. MONAD GENERATED BY THE FUNCTOR F7

Let K be a fixed metric space. If necessary, we denote the metric on K by p. For
every X € |NE| denote by Fx X the set of bounded nonexpanding maps from X to K (a
map f: X — K is bounded if its image f(X) is a bounded subset of K) The set FxX is
endowed with the sup-metric for which we preserve the denotation p. For any morphism

f € NE(X1, X3) define the map f. = Fx X2 — FxX; by the formula

o) =@of, v € kX,
The proof of the following proposition is obvious.
Proposition 4.1. The map f. is nonexpanding.

We obtain the contravariant functor Fi: NE — NE by putting Fx f = f. on morphisms.

Let X € NE. For every € X denote by ev,: Fx X — K the evaluation map which acts
by the formula: ev,(¢) = ¢(x). Obviously, ev,: FxX — K is a nonexpanding map, i. e.
ev, € FEX.

Proposition 4.2. The map x + ev,: X — F?X is an isometric embedding.

Proof. For x,y € X € |[NE| we have

o(eve,evy) = sup{o(ev.(p),evy(¢)) | ¢ € FrX} =
= sup{o(p(2),¢(y)) | v € FxX} < d(z,y).

O

We denote the map = +— ev, by nX. It is easy to see that n = (7X)xeng is a natural
transformation from the identity functor l1xg to the functor F%.

Suppose C': C — C is a contravariant functor on a category C such that there exists a
natural transformation n: 1 — C? satisfying the property: CnonC = 1¢. Put T'= C?* and
define the natural transformation p: 7% = C* — C* = T by putting ¢ = CnC. It is known
that in this case the triple T = (7,7, ) is a monad on the category C (see, e. g., [6]).
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We apply this to the functor F%. Analogously to the case of the contravariant functor
C, in the category of Tychonov spaces and continuous maps, we obtain

FnX onbFrX(p)(x) = FxknX(evy)(v) =
= ev(p(nX(x)) = nX(2)(p) = evilp) = ¢(2),

forpe FgX,z e X, 1. e. Fgnonlx =1p,.
We obtain the monad F3 = (Fi,n,pn = FynFk) in the category NE. See also [16] and
[17] for related monads.

4.1. Functorial extension operators. Suppose T: NE — NE is a covariant functor
for which there exists a natural transformation n: Ixg — T'. A functorial extension operator
is a natural transformation Ey: I — FgT such that Exon = 1p,.

Now let T" be the functorial part of a monad T = (7,n,x) on NE. We say that Fx is
T-associated it ExT o Fx = Frpoeg.

Proposition 4.3. Let Ex be a T-associated functorial extension operator. Then the natural
transformation &: Frg — TFgT, & = nFToFEk, satisfies conditions (i), (i) of Proposition 2.1.

Proof. (1) Obvious.
(1) We have

TFrpol=TFgpuonFgT o Fg = 77FKT2 o FgpokbEg =
= 77FT2 o kT o B = TET onlFgT o g =
= /,LFT2 ) T77FT2 oTErT onFgT o Fg
=po FT?oTET o,

O

Let T = (T,n,p) be a monad in NE. Suppose that (K, «) is a T-algebra. For X € |[NE|
define the map ¢X: Fx X — TFT X as follows:

EX(p) = kT X(aoTy), ¢ € I X.
The following counterpart of Lemma 1 from [8] holds.

Lemma 4.4. Suppose the map £X is a morphism in |NE| for every X € |NE|. Then ¢ =
(£X)weng) Is a natural transformation satisfying conditions (1) and (i1) from Proposition 2.1.

Proof. Despite the complete similarity to the proof of the mentioned lemma from [8], we

present alternative arguments. Note that Fx = (ExX)xeng, FxX(p) = aoTyp is a T-
associated functorial extension operator and apply Proposition 4.3. 0

Define the map a: FZK — K by the formula: a(¢) = ¢(1x), ¢ € FEK. Obviously, o
is a morphism in NE.

Proposition 4.5. The pair (K, «) is an Fj--algebra.
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Proof. We have
aonk(x)=alevy) =evy(lg) = 1g(a) = .

We are going to prove that co Fira = aouk. Let ® € FitK, then
(00 1) (®) = a(u K (®)) = pK(®)(1xc) = Bev,)
and, on the other hand,

ao Fra(®) = Fra(®)(1x) = (P o Fra)(lx) = ®(aoly) = ®(a) = dlevy,.).

0

Proposition 4.6. The monad F; satisfies the conditions of Lemma 4.4.

Proof. Suppose 1,99 € F X, then

2(EX (1), EX(2)) = sup{o(EX (21)(®), EX (2)(®)) | @ € Fe X} =
- sup{g(evaoF%wl(CI)),evaoF%%)((I)) | & € F;X} =
= sup{o(®(a o Fp1), ®(ao Figs)) | @ € FeX} <
< o(ao Fipr,ao Frpy) <
< o(Fiepr, Firpa) < ol 92),
and thus the map ¢X is a morphism of NE. O

The following theorem is a consequence of Propositions 5.1, 2.1, and Lemma 4.4.

Theorem 4.7. The contravariant functor Fr has an extension onto the Kleisli category of
the monad 3.

Let us compare this result with that for the contravariant functor C), in the category of
Tychonov spaces and continuous maps see [8]. Since, for every ¢ € FE X,

(a0 Fip)(¥) = a(to Fp) = (o Fo)(lx) = »(Fe(lx)) = ¢(p) = evy(),

we see that £ = nF}onFk. This demonstrates the complete analogy between the considered
case and that of functor C),.

Suppose now that K is compact, i. e. K € CNE. By the Arzela-Ascoli Theorem, for
every X € |CNE]| the space Fx X is compact.

5. EXTENSION OF THE FUNCTOR Fjy ONTO THE KLEISLI CATEGORIES OF MONADS

Proposition 5.1. Suppose T is a submonad of the following monad on the category CNE:
(a) the hyperspace monad; (b) the probability measure monad; (c) the inclusion hyperspace
monad; (d) the monad of compact convex sets of probability measures. Then T satisfies the
conditions of Lemma 4.4.
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Proof. (a) We have (X (¢) = {aoexpe}, ¢ € FxX. If ©1,p2 € FrX, then

o(EX(91),EX(p2)) = o(a 0 exp iy, a 0 exppy) <
< on(exp ¢1,exp 2) = o(e1, p2).

(b) In this case £EX(¢) = daopyp, ¢ € FX.
If w1,P2 € FKX7 then

o(EX (1), EX(2)) = o(a 0 P, a0 Ppy) <
< oxRr(Py1, Pos) = sup{oxr(Pei(p), Pea(p)) | p € PX} =
= sup{|Po1(p)(f) — Pe(p)(/)] | w € PX, f € NE(K,R)} =
= sup{|p(fow1) —pu(fow)| | pe PX, [ €NEKR)}<
< o(p1,p2)-

The proof of the following result is analogous.

Proposition 5.2. Suppose T is a submonad of the following monad on the category NE:
(a) the hyperspace monad; (b) the monad (P,,n,p). Then T satisfies the conditions of
Lemma 4.4.

The following theorem is a consequence of Propositions 5.1, 2.1, and Lemma 4.4.

Theorem 5.3. Suppose T is one of the following monad from the formulation of Proposi-
tions 5.1 and 5.2. Then there is an extension of the functor Fx onto the category NEr.

Every morphism f: K — L in NE determines a natural transformation f*: Fx — Ff by
the formula f*X(¢) = fo .

Proposition 5.4. Suppose f: (K,a) — (L,d') is a morphism of T-algebras in NE. The
natural transformation f*: Fr — Fy is also a natural transformation of the extensions of
the functors Fx and Fy, onto the Kleisly category of the monads T from Theorem 5.3.

Proof. For arbitrary M, we denote by £y: Fay — T'FiyT the natural transformation defined
by the formula &y (@) = nFyuT X (a0 Ty). Then

TFTX ol X(p)=TfTXonFrTX(aoTyp) =

=nFTX o f"TX(aoTe)=nFTX(foaoTyp)=

=nFTX( oTfoTe)=nlFTX( oT(f(¢)) =
— 6X 0 ['X(5).

O

One could conjecture that all the extensions of the functor Fx onto the Kleisli categories
are of the same algebraic nature, in particular, that the natural transformations correspond-
ing to these extensions by Proposition 2.1 factor through nFrT. We prove this in one special
case.
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Theorem 5.5. Suppose |K| = 2 and the functor Fy has an extension onto the category
H = (exp,s,u). Then the natural transtormation £: Fx — exp Fi exp that corresponds to
this extension by Proposition 2.1 factors through sFy exp.

Proof. Put K = {0,1}. Suppose that there exist X € |NE| and ¢ € FrX such that
|EX (@) > 2. Then there exist A € exp X and fo, fo € Fxexp X such that fo(A) # fi(A).
Since p = Frp(lx) and £X o Frp = exp Fexpy o EK, there exist go, 1 € EK(1x) such
that go(K) # ¢1(K). We assume that ¢;(K) =1,¢1=1,2.

It is easy to see that exp K(g;) = {hio, hir}, where h;;(A) = j if and only if either
gi(A)={s} or g;(A) = K. Then

uFygexp? K oexp&exp K o EK (1x) = {hoo, ho1, h1o, hi1}-

It is easy to verify that

hor({{a}. {a,b}}) = 0, hor ({{b}. {a.b}}) = L.

This contradicts to the fact that all h;; must factor through u K. O
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