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We consider properties of paratopological groups, in particular, related to cardinal invari-

ants, metrization, and minimality. An example of a regular paratopological group admitting
no weaker Hausdorff group topology is presented.
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PaCCManI/IBaIOTCH CBOIICTBA IapaTOoIIONOI MIeCKX I'PYIII, B 9aCTHOCTH, CBA3aHHBIC C Kap-

MUHAJBHBIME WHBAPDUAHTAME, METPH3AINEN I MUHUMAJBLHOCTRIO. [IpuBognTcs mpumep pery-
JSPHON TAPTOMOMOTUIECKON I'PYIIIEI, He JOmycKawlleh 6ojee crabon xaycaopdOBOU TOIOIO-
Tun.

1. GENERAL PROPERTIES

A group G with topology 7 is called a paratopological group if the multiplication on the
group (G is continuous. In this case the topology 7 is called a paratopology. If the inversion
on the group G is continuous then (G, 1) is a topological group. Hence, all translations and
interior automorphisms of a paratopological group are homeomorphisms.

Proposition 1.1. For a group with topology (G, 7) the following conditions are equivalent:

I. (G, 1) is a paratopological group.
II. The following Pontrjagin conditions [1] are satisfied for basis B = B, at the unit e of Gi.

1.

6.

(VU,VeB)AW eB): W CcUNV.

2. VUeB)IVeB):V:cCU.
3.
4. VU e B)(Vze YAV € B): a7 'Wa CU.

(YU € B)(Vx e U)(FV eB):aV CU.

The paratopological group (' is Hausdorff if and only if
(WUU':U e B} = {e}.

The paratopological group (' is a topological group if and only if
(VU eB)(3VeB):VICU.

III. Let § be a subbase of the topology T and for every points x,y € G and every neigh-
borhood U € S of the point xy there exist neighborhoods V.W € § of the points z,y
respectively such that VW C U.
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For a group G, by P((G) we denote the set of all paratopologies on the group G. For
paratopologies 71,7 € P(G) put ;1 Ay =sup{r € P(G): 7 CnNn}, V7 =inf{r €
p(G) T OT U 7'2}.

Proposition 1.2. Let 71,75 be paratopologies on a group G with bases at the unit By, By
respectively. Then By V By = {Uy N Uy : U; € B;} is a base at the unit of the paratopology
T vV T2.

A paratopological group ¢ with a base at the unit B is a SIN-group (Small Invariant
Neighborhoods), if (VU € B)(3V € B)(Vx € G) : 2~ 'V C U.

Proposition 1.3. Let 71,75 be paratopologies on a group G with bases at the unit By, By
respectively. If 7y is a SIN-paratopology then By A By = {UiU, : U; € B;} is a base at the
unit of the paratopology 7 A 1. Moreover, if 7, is a SIN-paratopology then T A 5 is a
SIN-paratopology.

For 7 € P(G) put 7! ={U~' : U € 7}. Then 7* = 7 A 77! is the finest group topology
weaker than 7 on the group (. which is called the corresponding to T group topology.
Proposition 1.3 implies that if 7 is a Hausdorff SIN-paratopology then 7* is a Hausdorff
SIN-group topology.

Remark. If 7 is a Hausdorff paratopology then 7 is not necessarily a Hausdorff paratopology
(see Section 4).

For a topology 7, by A~ we denote the closure of a set A in the topology 7.

Proposition 1.4. Let 7, and 7 be paratopologies on a group G and 11 a SIN-paratopology
such that 7], 7 are Hausdorff and 7{ V 75 is discrete. Then the topology T A 1y is Hausdorfl.
Moreover, if 1y and 1y are regular then 71 A 7y is regular.

Proof. We show that the topology 7 A 7 is Hausdorfl. Let U; & BTZ‘ and Ul_lUl N U2U2_1 =
{e}. Let € U;U;\{e}. Then = = ujuy, where u; € U;. Then there exist neighborhoods
Wi € Box, W; C U; such that uy € Wi or uy & Wy, Suppose that @ € W, W, then z = wjwy,
where w; € W;. Hence Ul_lUl N U2U2_1 > ul_lwl = quQ_1 = e. Thus u; = w; and uy = wo, a
contradiction. Hence the topology 7 A 7 is Hausdorft.

Suppose that the paratopologies 7 and 7, are regular. Let U; € B, and (UlUl_l)2 N
(UU7')? = {e}. Tt suffices to show that U,U,"7 ¢ U, 'U,". Suppose that € U U, .
Then z € (UL ULV, 'Vt o Ve B} < ULV ULV 2 Vi € B}, since 7 is a SIN-
paratopology. If = ¢ U,'U,” then there exist two different representations & = ujuy = wyiw,,
where u;, w; € UZ'UZ»_1 Hence (Ul_lUl)2 N (U2U2_1)2 > ul_lwl = u2w2_1 = e. Thus v; = w; and
uy = wsq, a contradiction. Hence the topology 71 A 75 is regular. ]

Question 1.1. Let 7y and 7, be Hausdorff group topologies on a group G such that 7 V 7 is
discrete. Is the topology 7 A 7 Hausdorff?

A subsemigroup S of a group ( is said to be normal if x71Sx C S for every x € G. For
every normal submonoid S of the group GG by 75 we denote the paratopology with the base
{zS:2 € G}. Then 75 =inf{r € P(G): S €7}

Example 1.1. Sorgenfrey arrow. (R,7,) = (R, 7r, A7), where 7 is the standard topology on
R and Ry ={z € R: 2z > 0}.

Example 1.2. Let G = (R% +). Put B ={{(0,0)} U{(z,y) e R?*: (z — 1/n)* + y* < 1/n?}:
n € N}. Then B is a base at the zero of a paratopology on the group G.
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Erample 1.3. The p-arrow. Let p be a natural number. Put (Z,7) = (Z, 74, A 7,), where 7,
has a base at the unit B, = {p"Z : n € N} and Z, = NU{0}.

Fxample 1.4. The set-set topology. Let (X, 7) be a topological space, H(X) be the group
of all homeomorphisms of the space X. Let U,V be families of subsets of the space X. For
Uel,VeVput (UV)={fe HX): f(U)CcV}. Pt SU,V)={U,V):UeclU,V €
V1. I S(U, V) is a subbase for some paratopology T(U,V) on the group H(X) then T'(U,V)
is called a set-set topology.

Proposition 1.5. Let (H(X),T(U, 7)) is a paratopological group. If U is a m-network of
the space (X,7) then for every U € U,V € 7 we have (U,V) C (U, V).

Proof. Let U e U,V € Tand f & (U,_V). Then f~HX\V)NU # @ and therefore there exists
aset W €V such that W C f~1(X\V)NU. Then f € (W, X\V) and (W, X\V)N (U, V) =
. 0

We shall use the following definitions. Let ¢,V be families of subsets of a set X. Let
f: X =Y, g: Z— X bemaps then f(U)={{(U):UeclU}, g"(U)={¢7"(U): U eU}.

Proposition 1.6. If one of the following conditions is satisfied then (H(X),T(U,V)) is
a paratopological group.

1. U=V and f(U) C U for every f € H(X). Moreover, if X is Ti-space and U = T then
the topology T(U,V) is zero dimensional.

2. The space X is normal and U is the family exp X of all closed subsets in (X, 1),V = 7.
The topology T(U,V) is regular.

3. The space X is locally compact and U is the family exp, X of all compact sets in (X, 7),
V = 7. Moreover, if X is either compact or locally connected then (H(X), T (exp. X, 7))
is a topological group [2].

Proof. By Proposition 1.1 it suffices to show that for every maps fi, fo € H(X) and for
every neighborhood (Uy,V2) € S(U,V) of fifs there exist sets Vi € V,Us € U such that
fi € (U, V;) and (Uy, Vi) (Uz, Va) C (Uy, V).

1. Pt Vi = U, = f5' (Vo). LetU =7, f ¢ (U,V) € S(1,7). Let x € U be such that
[(@) ¢ V. Then [ € (X\{ah, X\ {f(e)}) and (U, V) 0 (X\{eh, Y\{f(0)) =2

2. There exists a neighborhood V] of fi(Uy) such that fo(Vy) C Va. Put Uy = V. Let
Uel,Verand fe (U V). There exists a neighborhood W & 7 such that f(U) C W C
W C V. Then Proposition 1.4 implies that f € (U, f(U)) C (U,W) C (U;W) C (U, W) C
(U, V).

3. For every point t € fi(U;) there exists a neighborhood V; of ¢ such that V; is compact
and fo(V;) C V. Thus there exist ty,...,t, € fi(U;) such that Vi = Vi, D fi(U1).
Therefore U, = V7 is compact and f2(Us) C Va. O

Fxample 1.5. Let 7 be the standard topology on R. Consider a set-set topology T'(exp; R, 7)
on H(R) where exp; R is the family of all singletons in R. Then T'(exp; R, 7) = T'(exp, R, 7).

It is well known that every Tj topological group is completely regular. For paratopological
groups the situation with the separation axioms is worse.

FExample 1.6. Ty & Ti. Put G = (R,4) and 7 = {& 4+ [0;00) : 2 € R},
Fxample 1.7. Ty & Ty. Put G = (R, 4) and 7 = {z + [y;00) : x,y € R}
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Fzxample 1.8. Ty # T3 Put GG = R? Define a base B at the unit of the group G putting
B={{(0,0)}U{(x,y) e R?*: 0 < x,y < 1/n} :n € N}. Also the space of Example 1.2 is

Hausdorff non regular.

Question 1.2. Is every regular paratopological group completely regular?

Proposition 1.7. For every disjoint compact subsets K1, Ky of a Hausdorff paratopological
group G there exists a neighborhood U of the unit such that UK, NUK,; = @.

Proof. For every points @ € K,y € K, there exists a neighborhood V (x,y) of the unit such
that V(z,y)aNV(z,y)y = &. Let U(z,y) be a neighborhood of the unit such that U(z,y)?* C
V(x,y). For every € K; choose a finite family Y(x) such that Ky C (J{U(z,y)y : y €
Y(x)}. Put U(z) = (H{U(z,y) : vy € Y(x)}. There exists a finite family X such that
Ky Cc\ {U(@)z 2 e X} Put U =(\{U(x) : 2 € X}. Then UK1 NUKy, C U J{U(x)x :
reXINUK, C HU(z)*x 2 € X}NURK, = ([ {U(2))2aNUKy : 2 € X} C | J{U(2)*x N
UNU(z,y)y:yeV)}:ae X} C HU(x,y) 2 nU(z,y)’y:z e X,ye V) =2. O

Proposition 1.8. Let G be a paratopological group, K C G be a compact subspace, F' C G
be a closed set and K N F' = @. Then there exists a neighborhood U of the unit such that
UKNF=02.

Proof. For every point © € K there exists a neighborhood V() of the unit such that
V(xz)x N F = @. Let U(x) be a neighborhood of the unit such that U(x)? C V(z). There
exists a finite family X such that K C (H{U(x)x : v € X}, Put U = ({U(x) : @ € X}
Then UK NF CU|H{U(z)z:2 e X}NF Cl{U(x) z:2 e X}INF=0. O

Fxample 1.9. Let GG be the Sorgenfrey arrow, F' = {—1/n : n € N}. Then F' is a closed
subset of G but U NU + F # @ for every neighborhood U of the zero.

A subgroup of a paratopological group (' is a subgroup of (¢ endowed with the induced
from G topology. Clearly, any subgroup of a paratopological group is again a paratopological

group.
Proposition 1.9. Every open subgroup of a paratopological group is closed.

Proposition 1.10. The center of a Hausdorfl paratopological group is a closed normal
subgroup.

Proposition 1.11. The component of the unit of a paratopological group is a closed normal
subgroup.

Proof. Let C' be the component of the unit of a paratopological group ;. Since a connected
component is closed in every topological space, C' is closed. Let x € C. Then z7'C C C,
because 7' is a connected set containing the unit of the group G. Then | J{z7'C : x €
C} = C7'C C C hence C'is a group. The subgroup C' is normal, because for every x € ¢
a set 7'Cx is a connected set containing the unit of the group G. O

Remark. The closure of a subgroup of a paratopological group in general is not a paratopo-
logical group [3].

Let H be a subgroup of a paratopological group ((Z, 7). Define a topology 7 on the space
of left cosets G/ H of the group G in the following way. A set U is open in G/ H if and only
if #71(U) is open in G, where 7: G — G/ H is the natural projection, 7(z) = x H.
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Proposition 1.12. The map = is continuous and open, the space (G /H,T) is homogeneous.
Moreover, if the subgroup H is normal then the multiplication xHyH = xyH in G/H is
continuous and (G//H,T) is a paratopological group.

Proof. The continuity of the map 7 is obvious. If U C G is an open set then 7~ '7(U) = UH
and hence 7(U) is open. The space G/ H is homogeneous, because the translations {,: * H —
ax H are homeomorphisms.

Now let H be a normal subgroup of the group G. If U is a neighborhood of the point

¢ = ab then ¢ = ab for some representatives a,b,c from the classes @,b,¢ respectively.
For a neighborhood U/ = n=(U) 3 ¢ there exist nelghborhoods Vi(a) and Vg(b) such that
Vila)Va(b) C U. Thus m(Vi(a))m(Va(b)) C U and G/ H is a paratopological group. O

Proposition 1.13. If H is compact then the map m is closed. If the space (G, 7) is Hausdorff
then the space (G/H,7) is Hausdorff. If the space (G, T) is regular then the space (G/H,T)

is regular.

Proof. Let F' be a closed subset of the group G. Let & € G/H\w(F'). Consider an arbitrary
point x € #~4(%). Then xH N F = &. By Proposition 8 there exists on open neighborhood
U of the unit such that UsH N F = @. Then & € n(Ux) and 7(Uz) N w(F) = & thus the
map 7 is closed.

Let G be Hausdorff and #,,%, € G/H. Consider arbitrary points x; € 77'(2;). Then
x1H N xoH = @. By Proposition 1.7 there exists on open neighborhood U of the unit such
that Uy H NUxyH = @. Then &; € m(Ux;) and 7(Uzq) N w(Uxz) = @ thus the space G/H
is Hausdorft.

Let GG be regular, I be a closed subset of G/H and & € G/H\F'. Consider an arbitrary
point * € 77*(&). Then = & 7~ (N) Proposition 8 and regulamty of G imply that there
exists on open neighborhood U of the unit such that UrNa~'(F) = @. Then & € n(Ux)
and 7(Uz) N ' = @, thus the space G/H is regular. O

Corollary 1.1. Let H be a compact subgroup of a paratopological group G, F' be a closed
subset of GG. Then F'H is a closed subset of (5.

Proof. Let 7 : G — G/H be the standard projection. Then FFH = 7~ '7(F) is a closed
subset of G. 0

The product of a family of paratopological groups {G, : o € A} is the product [[ G,

endowed with the Tychonov product topology. The box product of a family of paratopological
groups {G, : o € A} is the product [[ G, endowed with the box product topology. It is
easy to see that both the product and the box product of a family of paratopological groups
is again a paratopological group.
Example 1.11. Let G = (Q,7,|Q)?, where (R, 7) is the Sorgenfrey arrow. Let () be an
arbitrary dense proper subgroup of Q. Then H = {(x,—z) : v € @} is a closed subgroup
of Gi. Let m: G — G//H be the standard projection. If € Q\Q then the points m(x, —x)
and 7(0,0) have no disjoint neighborhoods in the quotient topology of G/ H.

Let K ={(0,0)} U{(1/n,0):n € N}. Then K is a compact subset of G but H + K is

not closed.

Proposition 1.14. Let G, Gy be paratopological groups, f: G; — (G5 be a homeomor-
phism. Then f is continuous (open) if and only if f is continuous (open) at the unit of the
group (.
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Theorem on continuous epimorphism. Let G and H be paratopological groups, ¢: G —
H be a continuous epimorphism, N = kery. Let a map o: G/N — H be defined as
o(xN) = p(x). Then the diagram

G——H
| A
G/N

is commutative and o is a continuous isomorphism. Moreover, if the map ¢ is open then o
is a topological isomorphism.

Proof. The map ¢ is well-defined, because {¢(y)} = ¢(2)p(N) = {p(x)} for every y € aN.
It is clear that o is a bijection. If U is a neighborhood of the unit in H then ¢~ (U) is
a neighborhood of the unit in G and o7~ (U) C U. Hence o is a continuous isomorphism.
Similarly we can show that the map o is open provided the map ¢ is open. O

We shall write Gy ~ (5 if paratopological groups (G; and (G are topologically isomorphic.

Corollary 1.2. Let N and L be normal subgroups of a paratopological group G and L C N.
Then G/N ~ (G/L)/(N/L).

Proof. Consider the commutative diagram:

G N~ GIN

]

G/L =G L) (N/L)

Define a map ¢: G/L — G/N putting ¢(xzL) = xN. The Theorem on continuous
epimorphism implies that ¢ is a continuous open epimorphism with the kernel G/L. Using
once again the Theorem on continuous epimorphism we obtain that G//N ~ (G//L)/(N/L).

0

Theorem on isomorphism. Let G be a paratopological group, H be a subgroup of G and
N be a normal subgroup of G. Then HN is a subgroup of GG, N is a normal subgroup of G
and the map o: H/(H N N) — (NH)/N defined as o(h(H N N)) = hN is a homomorphic

compression.

Proof. Let ¢ = w|H. Then o(H) = (HN)/N and kerp = {h € H: hN = N} = HN N.
Therefore H N N is a normal subgroup of the group H. It remains to apply to H and ¢ the
Theorem on continuous epimorphism. O

Example 1.12. Let G = (R? +). Let 7, be the topology on the group G from Example 1.2,
T2 has the base at the zero {{(z,y) € R*: 0 < a < 1/n,|y| <z} :n € N}}. Let H = (R,0).
Then 71 C 7, 1|H = n|H and 7 /H = 7o/ H but 7 # 7.

Fxample 1.13. For a paratopological group GG by Aut(() we denote the group of auto-
morphisms of the group . Let H be a subgroup of the group Aut(G) and the map
o: Hx G — G, (h,a) — h(x) is continuous. Then the topological product G x, H with
multiplication (21, hy)(@2, h2) = (x1hi(x2), hihe) for every (zq,h1),(x2,hy) € G X H is a
paratopological group. This group is called the semidirect product of the groups GG and H.
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2. CARDINAL INVARIANTS

A function ¢ defined on the class C of paratopological groups is called a cardinal function
if it assigns to each member G € C an infinite cardinal number ¢(G'). Now we shall list the
cardinal functions to be examined in what follows. Remark that in the below definitions
min*{-} = w-min{-} and sup*{-} = w - sup{-}.

Boundedness: Let A be an ordinal. A paratopological group is left (right) A-bounded if for
every open set U there exists a set A C G such that |A] < A and AU = G (UA=G). A
paratopological group is left (right) totally bounded if for every open set U there exists a
finite set A C G such that AU = G (UA = G). bn(G) = min*{A € Card : (¢ is \-bounded}.

Question 2.1. (1. Guran) Is every left totally (w-)bounded paratopological group a right
totally (w-)bounded?

Cellurarity: ¢(G) = sup™{|U| : U is a disjoint family of open subsets of G'}.

Character: x(G) = min*{|B| : B is a neighborhood base at unit of G'}.

Density: d(G) = min*{|S|: S C G, S = G}.

Network weight: nw(G) = min*{|U| : U is a network for G'}.

Pseudocharacter: ¢ (G) = min™{|U| : U is a family of open sets and (U = {e}}.

Spread: s(G) = sup*{|5|: S C G, S is discrete as a subspase}.

Weakly Lindeléf degree: wl(G') = min*{A € Card : in every open cover V there exists a
subfamily & C V such that & = G and |U] < A}

Weight: w(G) = min™{|U]| : U is an open base for G'}.

Proposition 2.1. (I. Guran) Let G be a paratopological group such that int U™! # & for
every open set U C (. Then bn(G) < wl(G).

Question 2.2. (I. Guran) Let G be a paratopological group and ¢(G) < w (respectively
wl(G) < w). Is G w-bounded?

Proposition 2.2. Let (G be a paratopological group, H be a subgroup of GG. Then ¢(G) <
p(H)p(G/H) where ¢ € {d,}.

Proof. Let ¢ = . Let {e} = HN(U and 7 (e) UZ/Nl, where ¢ and U are families of open sets
of H and G/H respectively and [U| < (H), [U| < »(G/H). Then {e} = (U N7~ (U).
Let ¢ = d. Let D ¢ H, D = H and |D| = d(H). Let D C G, (D) = G/H and
|D| = d(G/H). Consider an arbitrary nonempty open set U C (. There exists a point
z € D such that m(z) € 7(U). Then 27'U N H # & and hence there exists a point y € D
such that y € 7'/ N H. Therefore the set DD is dense in G and |DD| < d(H)d(G/H). O

If U,V are families of subsets of a semigroup then we put UV ={UV :U e U,V € V}.

Proposition 2.3. If M is a monoid with continuous multiplication and open translations

then w(M) = nw(M)x(M).

Proof. Clearly, w(M) > nw(M)x(M). Let B be a base at the unit of the monoid M,
|B| < x(M). Let N be a network of the monoid M, |N| < nw(M). Then BN is a base of
the monoid M and |BN| < nw(M)x(M). O

Example 2.1. Let G = (R, 75) be the Sorgenfrey arrow. Then s(G) = w but s(G?) = 2*.
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3. MEMORIZATION

Let X be a topological space, d: X x X — R, be a function. Consider the following
conditions

MI. (Vz € X) :d(x,z) =0.

M2, (Ve,y e X):d(z,y) =0 < x=y.
M3. (Vo,y € X) :d(z,y) = d(y, ).

M4. (Va,y,z € X) 1 d(x,z) <d(x,y) + d(y, z).

If the function d satisfies all the conditions then it is called a metric. If the function d
satisfies all the conditions but M2 then it is called a pseudometric. If the function d satisfies
all the conditions but M3 then it is called a quasimetric. If the function d satisfies all the
conditions but M2 and M3 then it is called a pseudoquasimetric.

Let # € X and ¢ > 0. The set By(xz,¢) = {y € X : d(x,y) < ¢} is called a ball with center
at the point x and radius €. A topological space (X, 7) is pseudoquasimetrizable if there is a
metric on X such that the balls { By(x,¢) : @ € X, e > 0} form a base of the topology 7. The
notions of metrizable, quasimetrizable and pseudometrizable spaces are defined similarly.

Let (G be a group with the unit e. A function d: G x GG — Ry is left (two-side) invariant
if for arbitrary elements x,y, a,b of the group GG we have d(ax,ay) = d(x,y) (d(axb, ayb) =
d(x,y)).

Let d: G x G — R4 be a left invariant function. Define a function f;: G — R, putting
fa(z) = d(e,x). Conversely, every function f: G — R, defines a left invariant function
df : G x G = Ry as dy(z,y) = f(27'y). The function d = d; is two-side invariant if
and only if fy(y~'zy) = fa(x) for every z,y € G. The function d = d; satisfies one of the
conditions M1-M4 if and only if f = f; satisfies the respective condition.

N1. f(e) = 0.

N2. (Vo€ X): fla)=0 < a=e.
N3. (Vo € X): f(z) = f(z7Y).

N4. (Vo,y € X): f(zy) < f(x) + f(y).

If d =dy is a left (two-side) invariant metric then the function f = f; is an (invariant)

norm. The notions of pseudonorm, quasinorm and pseudoquasinorm are defined similarly.
The topology on the group G generated by the pseudoquasinorm d; is denoted by 7 f. The
family {{x € G': f(x) < e} :e> 0} is a base at the unit of the group (G, 7f).

Lemma 3.1. Let {Uy|k € N} be a sequence of neighborhoods of the unit e of a paratopo-
logical group G such that UZ,, C Uy, k € N, and let H = (\{Ui|k € N}. Then there exists

a pseudoquasinorm g on the group G such that
1 g(z)=0 < z € H.
2. g(x) <2782 ifx € Uy
3. g(z) >27% ifz ¢ Uy
4. If (Vo € G)(Vk € N) : UP = Uy, then g is invariant.
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Proof. Put V,_x = Ui,k € N. Define sets V, for every binary rational number r, 0 <
r < 1as follows. If r =270 427 4 ... 427 0 < [} <y < --- < I, then put
Vi=Voey + Voy + -+ Vooi,,. If v > 1 then put V, = GG. Remark that V. C V; for every
binary rational r < s. Indeed if s > 1 then V, C G = V,. Suppose that r,s < 1. Let
r=>r 27 s = E?Zl 27" where 0 < my < mgp < -+ < m,. There exists a unique
number k such that [; = m; for j < k and I, > my. Let W = Vy—i; -+~ V,—, ;. Then

Vo= WVt o+ Vietn © Wty = Vet Voot © WVt -+ Vyotnss C

C W‘/Q_lk . ‘/z—ln—l ‘/Q_Zn—l C - C W‘/z—mk = ‘/2—7"1 . ‘/2_"% C
C Vommy ...\/2_,,lk‘/2_,,lk_l_1 o Ve = Vi
Remark that for every natural [ and r = 271 4+ 27%2 4 ... 4 27 we have

ViVoor CVopgmise. (*)

Indeed if r + 2742 > 1 then embedding (*) is trivial. Suppose that r + 272 1 Il >,
then embedding (*) is obvious. Let [ < [,. Select a number k such that {,_; <! < ;. Let
pp =271 9=l _9=lyr ... 9"l and ry =1 4+ 1r;. Then r < ry < r + 2741 and

‘/r‘/Q—l C ‘/7»2 ‘/2—1 C ‘/7,2_|_2—l C ‘/7,_|_2—l+1_|_2—l C ‘/7,_|_2—l+2.

Define a function ¢: ¢ — Ry putting ¢(x) = inf{r : « € V,} and a function g: G - R
putting g(z) = sup{p(zx) —¢(z) : z € G}. It is easy to see that for every elements x,y € GG
the following conditions hold (a) () =0 <= « € H; (b) g(x) > 0 and g(e) = 0; (c)
9(zy) < g(x) + g(y).

Now we check that the function ¢ satisfies the conditions of the theorem.

Let k£ be a natural number and x € V,_x. Let z be an arbitrary element of the group G'. If
z € V, then condition (*) implies that za € V, ,-x42 hence p(zz) — ¢(2) < 2752 Therefore
g(z) <2752 and condition 2 is satisfied. Condition 3 is satisfied, because for every = € Uy
we have g(z) > ¢(z) — ¢(e) = 27%. Condition 1 is an implication of conditions 2 and 3.

Suppose now that all neighborhoods Uy are invariant. Then ¢(y~'zy) = (x) for every
x,y € (G and thus

Ley) —o(z) 2z € G} = sup{p(yzy ') —p(yzy ™) 1z € G} =

= sup{p(tz) —p(l) : 1 € G} = g(x).

gy~ wy) = sup{p(zy~

O

Proposition 3.1. A paratopological group is quasimetrizable by a left invariant metric if
and only if it is first countable. A paratopological group is quasimetrizable by two-side
invariant metric if and only if it is a first countable SIN-group.

Proof. The necessity is obvious. We prove the sufficiency. Let {V,, : n € N} be a countable
base at the unit of the group GG. By induction we can construct a sequence {Uy} of open
neighborhoods of the unit such that U,?_H cUrnVin.--NV, and if G is a SIN-group then
all neighborhoods Uy, are invariant. Then the sequence {Uy} satisfies the conditions of the
previous proposition and therefore there exists an (invariant) quasinorm ¢ on the group G.
Since

{eGiglx)<2F}Cc Uy C{x G glx) <2777,

the topology of the group (i is generated by the quasinorm g. 0
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Fxample 3.1. Let (G, 7) be a p-arrow. Then the topology of G can be generated by the
quasinorm

0, ifn=20
gn) =<1, ifn<0

p~®, where s is the maximal degree of p dividing n, if n > 0
but the quasinorm ¢ is not continuous on the group (G, 7).

Question 3.1. Is every first countable Tikhonov paratopological group quasimetrizable by
a continuous left invariant quasimetric?

Proposition 3.2. If a paratopological group G is metrizable by a left invariant metric then
(i is a topological group.

Proof. Let d be a norm generating the paratopology of the group G. Then B = {{z € G :
flz) < e}:e>0}isabase of the unit of the group G consisting of symmetric neighborhoods,
hence G is a topological group. O

FExample 3.2. The rational points of the Sorgenfrey arrow is a regular space with countable
base, hence it is a metrizable paratopological group which is not a topological group.

Question 3.2. Is every Moore paratopological group metrizable?

4. MINIMALITY

Proposition 1.3 implies that every Hausdorff SIN-paratopology on a group can be weak-
ened to a Hausdorff group SIN-topology. In [4] I. Guran asks: can every Hausdorff paratopol-
ogy on a group be weakened to a Hausdorft group topology? The following example gives
the negative answer to this question.

Let F' be a free semigroup over a set X. A word w =y;---y, € F, y; € X is reduced if
there is no pair y;yiy1 such that y7' = yi11. A reduced word is eyclic reduced if y;7' # y,.

Lemma 4.1. [5, Theorem 5.5] Let GG be a group generated by an alphabet A = {t,b,c,...}
with a relation " = 1 where r is cyclic reduced and n > 1. Let w,v be words over the
alphabet A and w = v in the group (. Let the word w be reduced and there exists a letter
a € A which is contained in the word w but which is not contained in the word v. Then
there exists a subword s of the word w which also is a subword of the word r*" such
that I(s) > (n — 1){(r")/n, where [(s) and [(r™) denote the lengths of the words s and r"
respectively.

Let GG be a group, A C GG be a set. Then the normal closure of the set A is the smallest
normal subgroup of the group G containing the set A.

Corollary 4.1. Let F* be a free group over {x,y}, N be a normal closure of the element

r? = (zy~ ') Let S C G be a semigroup generated by the elements x any. Then SS™'NN =

{e}.

Proof. Let w € SS™' N N be a nontrivial reduced word. Then Lemma 4.1 implies that w
must contain the subword s of length 3 such that s € S5~ which is impossible. 0
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Example 4.1. Let n be a natural number and F? be a free group over {x,,y,}. Let G be the
direct product of the groups F?2. Let S, C F? be the semigroup generated by the elements
z, and y,. Denote the direct product [] - S, by U,.

We show that the family B = {U, : n € N} satisfies Pontrjagin conditions 1-4. Con-
dition 1 is satisfied because U, N Uy, D Unax(m,n)-Conditions 2 and 3 are satisfied since U,
are semigroups. Let U, € B and w € (. There exists a number m such that w € [[-, F?.
Then w_lUmaX(mm)Hw = Unax(mn)+1 C Un. Hence condition 4 is satisfied. Therefore B is a
base at the unit of some (not necessarily Hausdorff) paratopology on the group G.

Let F, be a factor group of the group F? by the relation r? = (z,y;')? ¢un: F? = F,
be the canonical homomorphism and N,, = kery,. Let Zs = Z/3Z and v, : F?> — Z3 be a
homomorphism such that ¢, (x,) = 0 and ¢,(y,) = 1. Define a map ¢: G — Zs x [[ F,
as follows. Let w = wy---w, € G where w; € F2. Put ¢(w) = (3 ¥;(w;), [[ i(w;:)). Let
G" = (G) and 7' be the quotient topology on the group G'.

We show that 7' is a Hausdorff topology. Let B' = {¢(U,) : n € N}. Therefore B’
is a base at the unit of the paratopology 7'. Verify condition 5 for the family B’. Let
w € G\kerty. If w € G\ ] N, then there exists a number n such that w € [[_, F?. Then
V(Uns1) NY(wl,y1) = @. Suppose that w € [[ NV,. Let w = wy -+ w,, where w; € F?.
Since (w) # e, we see that > t;(w;) # 0. Therefore there exists a number ¢ such that
¥(w;) # 0. Since w; € N;, Corollary implies that w; € S;S7'. Then (U;) Ny(wl;) = @.
Therefore the topology 7' is Hausdorff.

We show that ¢(U,) is a clopen subset of the group G’ for every n and hence 7/ is a zero-
dimensional topology. Let w € G and ¥ (w) € ¥(U,). Let w = wy - --w,,, where w; € F?.
There exist elements u € U,,41,v € U, such that wuv™' € kere. Let u = wupqy -+ up,v =
v, - - - v, where u;,v; € F?. Then uivi_l € N;for 1 > m + 1. Since uivi_l € SZ'SZ»_I for every
i, Corollary implies that u; = v; for i > m + 1. Therefore w [~ v;' = wuv™! € kery and
D) = $(va -+ vm) € (UL)

The topology 7' cannot be weakened to a Hausdorff group topology on the group G,
because (¢(U, )0 (U,)™1)2 3 ((2,)Y(yn)"")? = (1, €) for every natural n.

A topology on a quasifield is called a ring topology if the multiplication, the addition, and
the subtraction on the quasifield are continuous, that is the additive group of the quasifield
is a topological group and the multiplicative group of the quasifield is a paratopological
group. If the multiplicative group of the quasifield is a paratopological SIN-group then the
topology is called a SIN-topology. A topology on a quasifield is called a quasifield topology if

the additive and multiplicative groups of the quasifield are topological groups. Recall that
the following problem is still open: can every Hausdorff ring topology on a quasifield be
weakened to a Hausdorff quasifield topology?

Proposition 4.1. Every Hausdorff ring SIN-topology on a quasifield can be weakened to
a Hausdorft quasifield SIN-topology.

Proof. Let (K, 7) be such a quasifield. Let K* be the multiplicative group of the quasifield K.
We can expose Pontrjagin conditions for the base B = B, at the unit 1 of K in the following

form.
1. (VU,VeB)(3WeB):WcUNV.
2. VU eB)AVeB):VECU.
3. VU eB)VeelU) 3V eB): a2V CU.
4. (YU e B)3V eB) (Ve e K*): a2 'Va C U,
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5. U U e B} ={1}.
6. (VU eB)(IVeB):V-V+VCU.
7. (VWU eB)(Vee KBV eB):x(V-V)CcU-U.

These conditions show that we can choose a base B consisting of invariant neighborhoods,
that is such that 2U = Uz for every U € B and « € K. Put B’ = {UU~' : U € B}.
Clearly, the family B’ satisfies conditions 1-5 and that U’ = (U’)~! for every neighborhood
U' € B'. Therefore we must show only that the family B’ satisfies conditions 6 and 7.
Let U € B. Select a neighborhood V' € B such that V2 — V? 4+ V3 C U. Then VV~! —
VV=L 4 VV=t c (V2 = V3 4+ V3V C UU, hence condition 6 is satisfied. Let U € B
and z € K. Select a neighborhood V € B such that (V? — V*)nU — U and V*U. Then
(VV = VV (V- VHV2(U - YU WU = UU O
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