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It is shown that from the stability of factor-rings on Jacobson’s radical or from the stability
of localization of the associative rings on maximal ideals of their centers the stability of the
rings follows. It is also proved that matrices with at least one zero element are stable and from
the stability of all the elements of the general linear group over the associative ring its stability
follows. The most important results of H. Bass, L. Vaserstein, S. H. Khlebutin, A. A. Suslin,
I. 5. Wilson, I. Z. Golubchik about the stability of the associative rings from the unified position
are exposed.
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MMokazano, ¥T0 M3 cTabmiabHOCTH (PAKTOP-KOAbIAa M0 paaukaty [lkexkob6cona mam m3 cra-
OUIBHOCTH JOKAJM3ANNH aCCOMNATHBHOTO KOAbIIA IO BCEM MAaKCUMAJIBLHBIM I feaJaM ero MeHTpa
caeyeT cTabMIbHOCTE CAaMOT 0 KoJblia. [lokazaHo TakiKe, 9TO MATPHIIBI C XOTs ObI O THUM HY.JIe-
BBIM DJIEMEHTOM — CTAbWIbHBL, a U3 CTAOMIBHOCTH BCEX 3IEMEHTOB MOMHON JUHENHOW T'PYIIIBI
Ha [ aCCONMUATHBHBIM KOJBIIOM CAeAYET ero cTabmibHOCTh. C eMHBIX TO3UINN H3I0KEHBl HAl-
6oJiee 3HaYMNMBIE Kaaccudecknme peayabTaThl X. bacca, JI. Bacepmrenna, C. I'. XaeGyTuna,
0. O. Cycauna, . Yuacona, U. 3. Toay6unka mpo cTabMIbHOCTD aCCOMUATHBHBIX KOJE.

Let R be an associative ring with 1, R the group of invertible elements of ring R, r
an arbitrary element R, [ an arbitrary ideal R, A;: R — R/I, X an arbitrary subset R,
X = A;(X), J(R) the Jacobson radical R.

Let GL(n, R) be the general linear group n x n matrices over ring R, g = (g;;) an element
of the group GL(n,R), g7' = (G;;), €;; a standard matrix unit, ¢;;(r) = 1 + re;;, ¢ # 7,
;5 = tij(l)t]‘i(—l)tij(l), dZ(C) =1 + (C — 1)6“', S R*.

We will call the element ¢;;(r), for r # 0 a transvection.

Let Ex be the subgroup of GL(n, R) which is generated by the transvection ¢;;(r), r € X,
1 <i# 35 <n, E(n,R) = FEr, F(n,I) a normal subgroup of F(n, R) generated by FEr,
C'(n,I) the inverse image of the center of the group GL(n, R/I) under the homomorphism
Ar: GL(n,R) — GL(n, R/I), N any subgroup of GL(n, R) which is invariant with respect
to E(n, R) and does not contain transvections.

Let S be a subset of the center of the ring R which is closed under multiplication operation
and Rg the classical division ring of the ring R by S.
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A natural homomorphism A: R — Rg defined by the rule A : r — =2 for any s € 5,
induces the homomorphism A: GL(n, R) — GL(n, Rs).

Let a® = bab™!, [a,b] = aba~'b~!. Then commutatorial formulas hold:
[ab, ] = [b,]"[a.c],  [a,bc] = [a,b][a, ]",
[a=t, b, c]*[c™t, a, b]°[b1, c,a]® = 1 (F. Holl identity),

and also the matrix commutatorial formulas for the group GL(n, R), n > 2:

()t (0)] = {t”“’“’x”’ 7

tie(—d;yx), [ # k, where &;;, 65 are Kroneker’s symbols.
Note, that the commutator of two elements at matrix commutatorial equations commutes
with both of these elements.

Let T be a group generated by the elements ¢;;(I)%), 1 < i # j < n. It is clear
that £y € T. It follows from matrix commutatorial equations that for (s,t) # (j,7) the
inclusions ¢;;(1)**") C Er hold. Thus the result of conjugation E; by transvection or by
the product of two commutative transvections belongs to the group 7. From previous and
matrix commutatorial equations we see that 1" is invariant with respect to transvections.
Consequently, it is proved that T' coincides with the group E(n,I).

Therefore, E(n,I?) belongs to the group, generated by the elements [t;x(1), ()] ()
of the group E;. Thus E(n, I?) C EJ.

An associative ring R with 1 is called commutatorial, if
[C(n,I),E(n,R)] = E(n,I)<GL(n, R)

for all ideals I of ring R.

An associative ring R with 1 is called partially-normal, if all N which are invariant
with respect to E(n, R) and do not contain transvections belong to groups of central scalar
matrices of GL(n, R).

An associative ring R with 1 is called normal, if for any subgroup G of the group GL(n, R)
invariant with respect to E(n, R) there exists an ideal Iy of the ring R such that

E(n, ly) C G C C(n, Iy).

It is clear that factor-ring of any normal ring is partially-normal.
An associative ring R which is both commutatorial and normal is called stable.
An associative ring R with 1 is called weak commutatorial if the commutatorial equations

hold:
[C(n,I),E(n,R),...,E(n,R)] = E(n,I),

where [ is an ideal of the ring R. It is clear, that the commutatorial rings are weak commu-
tatorial.

Lemma 1. Let n > 2. Any weak commutatorial ring which has only partially-normal
factor-rings is stable.
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Proof. Let GG be the subgroup of GL(n, R) invariant with respect to E(n, R) and Iy be a
maximal ideal of ring R such that E(n, Iy) C G. If A, E(n,J) C A, (G), where Iy C J, then

E(n,J) C GC(n,ly) and E(n,J)=[F(n,J),E(n,R),....,E(n,R)] C G

that contradicts to the assumption. Therefore Ay, () does not contain transvections. Since
the ring R/Iy is partially-normal, G C C'(n, I). This proves that R is a normal ring.

Let H be a subgroup of GL(n, R) conjugated with E(n, R) and Hy the normal closure
of H with respect to the group F(n, R). Since R is normal, E(n, R) C Hy. Since the groups
H and [E(n, R), H] are contained in the groups [Ho, H]|, we have Hy C [Ho, H] C ... C
[Ho, H,...,H] = H. Therefore Hy = H, F(n, R) and E(n,I) are normal subgroups of group
GL(n, R). The F. Holl identity shows that R is commutatorial and, consequently, a stable
ring. 0

From Lemma 1 it follows that all weak commutatorial normal rings are stable.

It should be noted that from commutatority of the ring R and the inclusion E(n,[l) C
G C C(n,1) it follows that the group G is invariant with respect to E(n, R) and uniquely
determines the ideal [.

Lemma 2. Let R be an associative ring with 1, ¢ € N, gi;a =0, * € R, n > 2. Then
g € C(n,Ann RxR) fori # j and x = 0 for i = j.

Proof. Let g1 = [g,tjx(2)], 1 <k # 5 <n.Then ¢ € N, and the i-th rows of elements at ¢,
and t;,(—x) coincide.

Suppose that ¢ # j. If ¢ # 1, we make a transvection which belongs to N by using
commutator ¢; with transvections. Since N does not contain transvections, ¢y = 1, and
Gk T = Tggs, for all 1 < s # k < n. Analogously [¢7 ", ts(z)] = 1, gsze =0 forall 1 <t # s <
n. Therefore g is commutative with all elements of the group E,. This means that gz = zg
is scalar (not necessarily central) matrix. Furthermore, g commutes with elements of the
group Fpryr. This means that g € C(n, Ann Rz R).

Analogously, if g € N, xg;; =0, i # 7, then g € C(n, Ann Rz R).

In the particular case, g € N, ¢;; = 0, 1 # j, we can choose = 1. Thus g is a central
scalar matrix of the group GL(n, R).

Since g; contains a zero nondiagonal element, so g; = 1 also in the case 1 = j. This proves
that = 0 in the case 1 = j. O

Lemma 3. If R is an associative ring with 1, n > 2, g € N, gnx1 + ... + ¢inx,, = 0 and at
least one of the elements x1, ..., x, is zero. Then g € C(n, Ann R(x1,...,2,)R).

Proof. Let x; =0, g1 = [g,t1j(21)...tn5(x,)]. Then g1 € N, (¢1)i = 1 and ¢y contains a zero
nondiagonal element. By Lemma 2 g; = 1, g € C(n, Ann R{xy, ..., x,) R).

Similarly, if n > 2, g € N, z1¢1; + .. + ©,9,; = 0 and at least one of the elements z;, .., 2,
is zero, then g € C(n, Ann R < xy,...,x, > R). O

In a particular case, n > 2, ¢ € N and some element ¢;; has an inverse, then one of the
elements x1,.., 2, could be chosen 1. Then g is the central scalar matrix of the GL(n, R)

group.
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Let u = (uy...u,)" be the column, v = (vy...v,) the row. We assume that U is a matrix
n X n with the first column w and the rest zeros, and V' the matrix n x n with the first row
v and the rest zeros. If v; = 0, then

(a0 (0 B B
U_<a 0), V—(O 0>f0rt—1and

s (a0 s (B0 _Jawm, 1<t<n,
U_<a 0)’ V_<0 0>f0r5_{1, t=n.

If in this case VU =0, then fa = 0,

10 1 3 1 ap
. 1 « 10 1 0
e =[(0) (D (0 1) err<isn

Note that in the above received decomposition of the element 1 + UV it follows the
decomposition of the element 1 + (Ur)V = 1+ U(rV), r € R. For this purpose, in the
decomposition of the element 1 4+ UV it is sufficient to multiply for r each element U or V
from the right or respectively the left side.

Therefore, if it is possible to decompose 1 + UV over the ring R;, then 1 + UsRV can
be decomposed over R, where s is the product of denominators of the elements U/ and V.

Let A be a matrix. We will denote by A a such matrix that all the elements A — A belong
to I. We assume that U/ is a matrix with the first column @ and the rest zeros, and V is a
matrix with the first column © and the rest zeroes.

Since t;;(cr) € t;;(cr)E(n,cl), where r € R and ¢ is an element of the centre of R, the
following holds.

Lemma 4. If VU = Y/Q = 0 and there exists a number 1 < t < n such that vy = v; = 0,
then 1 + UcV € (1 + UcV)E(n,cl).

Proof. Tt is obvious that ¢ = 1. If 1 < < n, then, as in the previous example, 1 + U*cV?* €
(14 U*cV*)E(n,cl). Conjugation by the element s™! proves Lemma 4. O

Let g € GL(n,R), U = gei;, V = e;;g7*. Tt is clear, that VU = §;;. We assume, that
i1 #3, VU =0.
Let V(k) be the matrix n x n with the i-th row <:1;1k:1;kk (g_l)jk l’nk)> and the rest

zeroes, where yj, ..., x5 are elements of R, 1 < k < n. Put W(k) = apV — V(k). It is
obvious that W(k), = W(k);, = 0.

Lemma 5. Let V(K)U =0, 2 = 0 for some 1 <1 < n, cis an element of the centre of
a ring R. Then

1) t;j({exy)? C E(n,cl), for g € GL(n, R);

2) [C tij(Rexgr)] C E(n,el), for g=aC, C € C(n, 1), ap; =0 or (oz_l)jk =0 and x4 €1
for all1 <t # k <n.



STABILITY STRUCTURE OF LINEAR GROUP OVER RINGS 17

Proof. If xy, = 0, then Lemma 5 is obvious. Hence, we may assume that [ # k. If we choose

N N

V(k) =0, W(k), =0, V(k)ffvr = W(k)f]vr =0, then by Lemma 4,

tij(rcxkk)g =1 + UTCJ}ka ==

—— e

= (L+ UrcV(k)(1 4 UreW (k) € (14 Ure(V (k) + W(k))) E(n, ¢l).

Consider consequences of this inclusion:
1) If r € I, then we can choose Ur = 0. Then t;;(rcxy,)? € E(n,cl).

2) If r € R, then we can choose Ur = aCyrey, V(k) = xp (C_l)jj (oz_l)jk i, W(k) =
€ij Tk (C_l)jj a™t = V(k). Then t;;(rcag)? € t;;(Cyureapy, (C_l)jj)aE(n, el).

According to Theorem 4 « normalizes the group F(n,cl). Then [C,t;;(rcag)] C E(n,el).
It is obvious that « can be either a diagonal matrix or transvection.

Lemma 6. Let V(E)U = 0, 2, = 0 foral <[ < n,g € N, n > 2. Then g €
C(n,Ann Ray R) for all 1 <t <n.

Proof. According to Lemma 3 we have g € C(n,Ann R(x1, ..., 2pGiky ooy Tnk) R).  Then
g1 = [tij(xkk), 9] € N, (1) = 5. By Lemma 3 g is a central scalar matrix of the group
GL(n,R), g € C(n,Ann Rxg: R) . O

We say that an element g of the group GL(n, R) satisfies the condition of the left (R, ¢, j)-
stability, if exist V/(1),..,V(n) such that R =g (@11, ..., Tyn).

If an element g of the group GL(n, R) satisfies the condition of the left (R, ¢, j)-stability
for such 1 <7 # j < n,and E(n, R) = (1;;(R)), then we will say that it satisfies the condition
of the left R—stability. It is clear that if ¢ satisfies one of the above mentioned conditions
of stability, then Aj(g) satisfies the respective condition of stability for any ideal I of the
ring R.

We say that elements from F(n, R)gE(n, R) with g € GL(n, R), E(n,[)gE(n,I) with
g € C(n, 1), [g, E(n, R)]P™1) with ¢ € N are obtained from ¢ up to transvections. Any
element obtained from ¢ up to transvections will be denoted by g..

It is clear that if g, satisfies the condition of left R-stability, then by Lemmas 5 and 6,
the following inclusions hold:

E(n,1)? C E(n,I) whenever g € GL(n, R), [¢,E(n,R)] C F(n,I) whenever g € C(n,I),

g is the central scalar matrix of the group GL(n, R) whenever g € N.

Analogous inclusions take place, if ¢ is the product of the corresponding elements that
up to transvections, satisfy the conditions of left R-stability.

If all element of the group GL(n, R), n > 2, up to transvections, satisfy the conditions
of left R-stability, then R is a commutatorial and partially-normal ring. In this case the
factor-rings of R is a partially-normal rings. By Lemma 1, R is a stable ring.

Thus, the following holds.

Theorem 1. Let R be an associative ring with 1 , n > 2. The left, up to transvections,
R-stability of the elements of the group GL(n, R) implies in the stability of the ring R.
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It is clear that the condition of the left R-stability in Theorem 1 can be replaced by the
condition of the right R—stability.
If g € C(n,J(R)), then we can choose x;; = 1, x;; = —G;9::95". Then ;G ;g5 +2ii9i =
0. Therefore, g satisfies the condition of the left (R, ¢, j)-stability. From Lemmas 5 and 6
and the definition of left R-stability, the inclusions follow:
1) [C(n. J(R)), E(n,I)] C E(n, I);
2) [C(n, I 0 J(R)), E(n, R)] C E(n,I);
3) NN C(n,J(R)) is the group of central scalar matrices.

Lemma 7. Let R be an associative ring with 1, n > 2. The subgroup G of the group
C(n,JJ(R)) invariant with respect to E(n, R), uniquely determines the ideal Iy C J(R) such
that E(n,ly) C G C C(n,lp).

Proof. Let G be the subgroup of the group C'(n, J(R)) invariant with respect to E(n, R) and
Iy is the maximal ideal of R for which F(n,ly) C G. It is obvious that Iy C J(R). From
2) it can been seen that [C(n, Iy), E(n, R)] C E(n, ly) C G. Therefore, as in Lemma 1, it is
proved that the group Az (G) does not contain transvections.

Since J(R)/Iy C J(R/1y), we see A, (G) C C(n, J(R/Iy)). From 3) it can been seen that
A, (G) is a group of central scalar matrices. It means that G C C(n, lp). O

Lemma 8. Let R be an associative ring with 1, R/J(R) a partially-normal ring n > 2.
Then R is a partially-normal ring.

Proof. If AjryN contains transvection Ajygyli;(r), v & J(R), then N contains h which
belongs to ¢;;(r)Ker Ajpgy. Since hyy € R*, by Lemma 3, h is a central scalar matrix.
In this case r € J(R). The obtained contradiction shows that Ayr)N does not contain
transvections. Therefore N C C(n,JJ(R)). By Lemma 3 N is a group of central scalar
matrices. Hence, R is a partially-normal ring. O

If in Lemma 8 the ring R/J(R) is normal, then all factor-rings R of the ring R are
partially-normal. Thus, the factor-rings £/.J(R) of the normal ring 12/J(R) are partially-
normal. By Lemma 8, the rings R are partially-normal.

Lemma 9. Let R be an associative ring with 1, R/J(R) is a commutatorial ring, n > 2.
Then R is a weak commutatorial ring.

Proof. By the condition
[C(n, 1), B(n, R)] C E(n, [)Ker Agryry C E(n, [)Dy,
where D is a group of diagonal matrices and D; C Ker A;. Then
[C(n, 1), E(n, R), E(n, R)] C [E(n, )Dy, E(n, R)] C E(n, I).

It means that R is a weak commutatorial ring. In fact we can prove that R is a commutatorial
ring. 0

From Lemmas 8 and 9, and also Lemma 1 it follows

Theorem 2. Let R be an associative ring with 1, R/J(R) a stable ring, n > 2. Then R is
a stable ring.
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It is obvious that if Ggri = 0, where 1 < & < n, then ¢ satisfies the condition of the
left (R, 1, j)-stability.

Theorem 3. Let R be an associative ring with 1, g € GL(n, R), n > 2 and at least one
element of g is zero. Then up to transvections g satisfies the condition of left R-stability.

Proof. a) Let ¢g;; = G;; = 0. Then ¢;;Gjs = 0 = Gggi; and ¢5;G;; = 0 = Gj,9;5, where
1 < s < n. In this case the element g satisfies the conditions of the left (R,j,s) and
(R, s, j)-stability, and ¢g~' satisfies the conditions of the left (R,s,i) and (R,,s)-stability.
Because

E(n, R) = {tu(R), 1a(R)| 1 <5 #i <n) = {t(R), 1u(R)| 1 <s#j<n),

g satisfies the conditions of the left R-stability.
b) Let

9; =0, g = Htil(Gﬂ)g-
!
Then (¢1);; = 1. Let

9o = [ [ til=a))an [ [ (G = D)gar).

Then (g2)it = Gk, (92)k; = ins (97 )ik = Oiks (93 ki = Sjx, where 1 <k < n.

For g € C(n,I) the inequality i # j holds, the element g3 = t;;(¢:i)t:;(—Gj)tii(gii) g2
belongs to C'(n, I), and a number exists 1 <t # 4, j < n, such that (g3);; =0 = (g5 )¢ By
a), the element ¢, up to transvections, satisfies the conditions of the left R-stability.

For ¢ € N, from Lemma 2 it follows that ¢ # j and ¢ is a central scalar matrix. O

From Theorem 3 and Lemma 5 it follows that if g is the product of elements of the groups
C'(n, I') which have at least one zero element, then [g, F.p] C FE(n,cl) for all elements ¢ from
the centre of R.

Lemma 10. Let R be an associative ring with 1, n > 2. The group AN does not contain
transvections in the group GL(n, R;).

Proof. 1t is clear that the group AN is invariant with respect to AFE(n, R). If AN contains
a transvection 7, then a transvection ¢ € Fg exists such that At;;(r) = [r,A(t)] € AN
for some r € R and rS # 0. Therefore, there exist h € GL(n, R) and s € S such that
tij(r)h € N, Ah = 1, hs = s. Since s annihilates the nondiagonal element of the matrix
ti;(r)h, by Lemma 2, ¢;;(r)hs is a scalar matrix. Hence rs = 0. The obtained contradiction
shows that AN does not contain transvections in the group GL(n, R;). 0

Let Rs be a partially-normal ring. Then AN is a group of central scalar matrices and for
any element g € N there exists an element s € S such that sg is a scalar matrix.

Lemma 11. Let R be a weak commutatorial ring and Rs be normal rings for all maximal
ideals J of a subring K of the centre R, 1 € K, S = K —J,n > 2. Then R is a normal ring.
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Proof. Let GG be a subgroup of GL(n, R), which is invariant with respect to F(n, R) and Iy
the maximal ideal of R such that E(n, Iy) C GG . From the proof of Lemma 1 it follows that
A, (G) does not contain transvections.

Let g € G and J' = {s € K | A (sg) are scalar matrices }. It is obvious that J' is an
ideal of K and IyN K C J'. If J/ # K, then there exists a maximal ideal J of the ring K
which contains J'. Let S = K —.J and R = Ay, (R). It is easy to see that S = K —.J is not an
empty multiplicatively closed subset of the centre R which does not contain the zero element.
By Lemma 10 the group AAz (G) does not contain transvections in the group GL(n, Rz).
The ring Ry is a factor-ring of a normal ring Rs. That is why Rz is a partially-normal ring
and, by Lemma 10, there exists an element of the set S which belongs to J’. The obtained
contradiction shows that J' = K, 1 € J', A (G) are scalar matrices. Since the group G
is invariant with respect to E(n, R), we see that Ay () are central scalar matrices. It is
proved that ¢ C C'(n, Iy). Consequently, R is a normal ring. O

Lemma 12. Let R be an associative ring with 1, g € GL(n, R), n > 2 and A(g) € E(n, Is).
Then there exists s € S such that [g,t;;(sR)] C E(n,[) for any pair 1 <i# j <n.

Proof. Denote R’ = R[x,y] and by [” an ideal of R" which is generated by the ideal [ of the
ring R, where x commutes with the elements of the centre of the ring R and y belongs to the
centre of R'. By Theorem 3, there exists sy € S, such that [g,t;;(soxy)] C E(n,yl’)Ker A
for any pair 1 < ¢ # 5 < n. That is why there exists a polynomial f(y) (f(0) = 0) over
the matrix ring M(n, R[z]) such that s;f(y) = 0 for some s; € S. Let s = sgs;. It is clear
that s annihilates the coefficient of the polynomial f(y). Thus, f(s) = 0 and, consequently,
[g,tij(sx)] C E(n,I"). We have proved that [g,t;;(sR)] C E(n,I). O

Lemma 13. Let Rs be commutatorial rings for all maximal ideals J of a subring K of the
centre R, 1 € K, S =K —J,n > 2. Then R is a weak commutatorial ring.

Proof. Consider any elements g € C'(n,[) and e € E(n, R). Let
J'={se K |][g, et (sR)] C E(n,I)for any pair 1 <i# j <n}.

It is clear that J’ is an ideal of K. If J' # K, then there exists a maximal ideal J of the
ring K which contains J'. Let S = K — J. Since [g is an ideal of commutatorial ring Rg,
we see that A([g,e]) C E(n, Is). According to Lemma 12 there exists an element of the set
S which belongs to J’. We have a contradiction which shows that J' = K, 1 € J', Ris a
weak commutatorial ring. O

From Lemmas 11, 13 and 1 it follows

Theorem 4. Let Rs be stable rings for all maximal ideals J of a subring K of centre R,
leK,S5S=K-—J,n>2. Then R is a stable ring.

It is known [16] that not all associative rings with 1 are stable. For example, an algebra
over the some field with 2n? generators x;;, v;; , | <1,j < n and determining relations which
are expressed in a matrix form (x;;)(y;;) = 1 = (yi;)(x;;) is not a stable ring. However, the
class of stable rings is large enough.

In the next part of the paper we examine the most important results about stable rings.
Stability of fields and skew fields is a consequence of the Jordan-Dickson and Dieudonne
theorems, stability of local rings follows from Klingenberg results.
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1. H. Bass [1]. Let n be a natural number, R" a free n-dimensional R module. A vector
(ri,...,r,) is called unimodular in R™ if there exist elements ty,...,%, from R such that
tiry + ... +t,r, = 1.

Let n > 2. We will say that the ring R satisfies the stable rank n — 1 condition, if
for any unimodular vector (rq,...,7,) € R" there exist sq,..., 5, is R such that the vector
(ro + s271, .oy 7 + 8,71) is unimodular in R™1.

It is known that if R satisfies the stable rank n condition, then the ring R (see [4]) and
its factors (see [2]) satisfy the rank m condition, m > n. Note that the semilocal rings satisfy
the stable rank 1 condition (see [2]).

It turns out that the associative rings with 1 which satisfy the stable rank > 1 stability
condition are stable.

Indeed, for any ¢ € GL(n,R) and n > 2 in R there exist elements ks, ..., k, such that
the vector (gan + k2910 -y Gun + kng1n) is unimodular. Then in ¢, R there exist elements
89y «eey Spy such that g1, + $2(g2n +kag1n) + -+ 90 (Gnn + kngin) = 0. Let g = tay(k2) - tn1(kyn),
e = t1a(s2) + tin(Sn), 1 = €29, g2 = [¢°, tna(1)]%. Then (g1)1n = 0 = (g2)1n, 1 € C(n, [)
if g € C(n,I)and g, € N if ¢ € N. From Theorem 3 it follows that the element ¢ up to
transvection, satisfies the condition of the left R-stability. By Theorem 1 R is a stable ring.

2. L. N. Vaserstein [9]. Let rings Rg satisfy the stable rank > 2 condition, for all maximal
ideals J of the subring K of centre R, 1 € K, S = K — J. According to 1, rings Rg are
stable. By Theorem 4 R is a stable ring.

In a partial case, if R is a finitely generated ring as a module over a subring K with 1
from the centre of the ring R, then Rg is a finitely generated ring as a module over K.
According to Nakayama lemma J(Kg) C J(Rs). Since Rs/J(Rs) is a finitely generated ring
as a module over a field Kg/J(Ks) =2 K/.J, we see that Rg is a semilocal ring, which satisfies
stable rank 1 condition. Then R is a stable ring. It is proved that any associative ring with
1 which is finitely generated as a module over subrings of their centers, is stable (see [9]

or [6]).
3. A. A, Suslin [6], J. S. Wilson [7], I. Z. Golubchik [8]. Let R be a commutative ring
with 1, ¢ € GL(n,R), n > 2. Choose V (k) such that xx = ¢si, ¥ = —Grgri, Where

1 <k # s <mn, and the rest x4, = 0. Changing s and k it is easy to verify that ¢ satisfies
the condition of the left (R, 1, j)-stability. By Theorem 1 R is a stable ring.

Notice that A. A. Suslin has proved that the commutative ring with 1 is commutatorial.
In n > 3 Wilson and in case n > 2 1. Z. Golubchik have proved that any commutative
ring is normal. We notice also the proof of the normality of commutative ring proposed by
Z. 1. Borevich, N. O. Vavilov [11] and V. M. Petechuk [14].

4. L. N. Vaserstein [17], S. H. Khlebutin [12]. An associative ring R is called a it von
Neumann regular ring, if for any @ € R there exists an element a’ such that aa’a = a. Let
¢ = aa’. Then ca = a and ¢* = e.

Let R be a ring with 1 regular in the sense of von Neumann, ¢ € GL(n, R), n > 2,
a = gjj, i = gtip(—d'gpr). Then (g1);x = gjx — ad'gy = (1 — €)gjn,(a1)i; = 9i; = €gjj
Since ¢(1 —¢) = (1 —eJe = 0 and 1 = e+ 1 — ¢, we see that g;' satisfies the condition
of the left (R, 1, j)-stability . For ¢ € C(n,I), the element ¢; € C(n,I). Therefore R is a
commutatorial ring.

If g € N, then, according to Lemma 2, a is not a zero divisor, e = 1, ¢ € R*. By Lemma 3
g is a central scalar matrix. This means that R is a partially-normal ring.

Since the factor-ring of von Neumann regular rings are von Neumann regular rings, they
are partially-normal. By Lemma 1 it follows that R is a stable ring.
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Thus, rings with 1, regular in the sense of von Neumann are stable.

5. S. H. Khlebutin [12]. Let R be an associative ring with 1, ¢ € GL(n, R), n > 2,
a = g;;G;; and there exists a natural number m such that «™ = sa™*!
element of ring R which commutes with a. It is clear that ™ = s™a*™. Let

, Where s is an

e=(as)", b=(1+a+..+a" g, g =g[[ti(~Giib): g2 = qti(xgin),

where @ = —Gj;s™. Then €? = e, ea™ = a™, (q1)jk = gix, (q1);; = a™gjj, (g2)jx =
(1 —e€)g;r, (92);; = ea™g;;, where 1 < k # j < n. It means that the element g;' satisfies the
condition of the left (R, i, j)-stability. It is easy to see that g, € C(n,I)in g € C(n,I). For
g € N, the element a is not a zero divisor, e = 1, @ € R*, g is a central scalar matrix.

Let R be a ring algebraic over the Artinian subring K of its centre. Then the module
K(a) is Artinian and there exists a natural number m such that ¢ 'K (a) = a™ K (a) and
a™ = sa™ %!, where s is an element of R, which commutes with a. According to the above
mentioned, the element ¢g=' up to transvection, satisfies the condition of the left (R,7,j)-
stability. Thus R is a stable ring.

Therefore, the associative rings with 1 algebraic over Artinian subrings of their centers
are stable.

We should mention that stability of associative rings with 1 algebraic over a subring of
their centers, is derived from 5.

Let K be a subring with 1 of the centre of the ring R, J any maximal ideal of K, 1 € K,
S=K-—J,n>21If Ris algebraic over K, then Rg is algebraic over Kg. In this case the
module Kg(a) is finally generated as a module over Kg for any a € Rs. By Nakayama’s
lemma, J(Ks) C J(Ks(a)). Hence J(Kg) C J(Rs). Thus the ring Rs/J(Rs) is algebraic
over the field Kg/J(Ks) = K/J. By Lemmas 5 and Theorem 2 Rg are stable rings. By
Theorem 4, R is a stable ring.

6. I. Z. Golubchik [18]. Let R be an associative ring with 1. An ideal F' of the ring
R is called weak Noetherian, if for any elements y,z € F, m > 1 left and right B modules
> Rzy™ and Y y"z R are finally generated as modules over R.

A ring R is called a weak Noetherian (block algebraic), if there exists a series of ideals

0:[0C[1C...C[q+1:R,

and the ideals [;11/I; of the rings R/I; are weak Noetherian (algebraic above their centers)
for ¢ from 0 to gq.

Clearly, the block algebraic rings are weak Noetherian. We should mention that P/-rings
are block algebraic (see [10], [21], [22]).

Let R be a weak Noetherian ring, g € GL(n, R), n > 2 and [ the maximal number, where
L, = 0. At 1 < g+ 1 we select ¢1 € [g,t1(L1+1)], ¥ = (91)11, 2 = (¢1)1n. Then y — 1, z
belong to I111 N g1, R, I;(y — 1) = 0 and there exists a natural number m, where

-1 m

2y —1)" = sp2ly — 1P €I, zy"t = Z rpzyt, Ty sp € R

p=1 p=0

3

If g € N, then ¢y € N. By Lemma 2 y is not a divisor of zero. Since in R there exists
an element r such that ry 4+ roz = 0, then, according to Lemma 3, 0 = rpz = .. = r,,z = z,
g1 and, as a consequence, all the elements [g,?,1([;41)] are central scalar matrices. One can
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conclude from Lemma 3 that [;y1g1, = 0. The received contradiction shows, that [ = ¢ + 1,
gin = 0, and R is a partially-normal ring.

Since the factor-rings of weak Noetherian rings are weak Noetherian too, they are parti-
ally-normal.

Let F' be an ideal R which belongs to some weak Noetherian ideal of the ring R, y and =
are elements of F'. Then there exists a natural number m such that zy”™™ = > rzy?, r, € R
and 1 < p < m.

Let A be any element of R ring centre. We multiply this equality by A™™! and use the
equality Ay = Ay—1+1. Then there exists a polynomial ¢>(A) such that ¢»(X)z+a(1—Ay) =0,
where (0) =1, a € F

Let O\ = [Lyy(—A2),C], gp = Ly(A2)Cy\ = t(A2)Y, g = g1, where C € C(n,F), x €
R. Then gy = Ag— A+ 1, 7" = g0, C\ € Cn, F). fy = 1 — gi, 2 = (97Y) 198,
where 1, 7, k are different numbers, then ¥(\)(gy");1(9: )k + A2a(gy); = 0. By Lemma 5
[ex, tij(RY(N)] C E(n, F). From analogous rightsided conclusions and matrix commutatorial
formulas one can conclude, that for every pair 1 < ¢ # 5 < n there exists a polynomial
¥i;j(A) such that [ey, (R (AN R] C E(n, F'), where ©,;(0) = 1. Let f(A) = [[¢i;(A) for
all pairs 1 <7 # j <n, I = Rf(MR, K(A\) = I*f(1 — X\)I*. According to proved above
len, B1] C E(n, F) and [ei_y, Eny] C E(n, F). By Lemma 5 Eii(_;) C E(n,I*) C Er. Thus,
for e € Ex(y) there following inclusions hold

ed = (egl—x)gx C (eéll—k)tpq(/\l’)E(n7 F) C (67519(1((1—/\)95))7513¢1(A95)E(n7 F) C 67517¢1(95)E(n7 F)

This means that [t,,(—2)g, Ex(n)] C E(n, F). Let I; = Y K(A) for all A from the centre
of R. If I} # R, then because of equality f(0) = 1 the polynomial f(A)?f(1 — X)f(A)? is
non-zero and the elements of the centre of R are its roots in the ring R/Iy. Thus, if the
centre of the ring R contains an infinite field, then I, = R,

[tpq(_x)ng(an)] C E(nvF)v [C(nvF)vE(an)vE(an)] = E(n,F),

R is a weak commutatorial ring. By Lemma 1 R is a stable ring. Thus, the weak Noetherian
rings which contain infinite fields in their centers are stable. The remark to 5 shows that
block algebraic rings are stable (see [19]).

We should note that the statement on the stability of certain rings is more systematically
stated in [2,15]. The remark in [15] on page 122 in Section 3 does not correspond to the
reality.

The Chevalley groups are wide generalization of linear groups (see e.g. [14] and [20]).
The stability of Chevalley groups over a commutative rings is proved in [21-24], and in [25]
a generalization of these results for the groups of Lie type groups over PI-rings is received.

The stability of the group has notable applications (see, e.g.[26]).
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