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CORRECTIONS TO THE PAPER “THE NEVANLINNA
CHARACTERISTICS AND MAXIMUM MODULUS
OF GAP POWER SERIES”

The formulation of Lemma 3 in [1] was incorrect. Actually, the authors have proved in
[1] the following

Lemma 3'. If the conditions of Lemma 2 are satisfied, then Yo € [—1;0)\ F4, doEy =0, we

have

(vo(a)) 1
vo(o) Bvo(e))’

where 3(v) is a positive continuous increasing to +oo function such that (3.2) holds with

the function I'1(v) = I'(v)B(v) instead of I'(v). Moreover, Es C Fjy.

Remark 1. In [1, inequality (3.4)] “In”-s were omitted.

1n’y<a + > <lny(o)+ (3.4)

Remark 2. Lemma 3 was used in the proof of Lemma 6 in [1]. Inequality (3.4) turned out
to be sufficient to prove Lemma 6.

Lemma 6. Let conditions (2.1) of Theorem 1 and (3.2) of Lemma 2 hold with I'(t) =
n;(t) &ef n¢(t)B(t), where 3(t) as above. Then

A(r) &f Z lag|r™ =o(1), r—1—=0,r ¢ Fs,
ng>v(r)
where dy Eg = 0, and v(r) is the unique solution of the equation n;(v) = 31n u(r, f).

Proof of Lemma 6. We put 0 = r—1,~v(c) = 31In u(1+0o, f). Thus the conditions of Lemmas
2 and 3 hold. They yield that outside a set Fg such that d; Eg = 0 we have

1n<31nu<r n %f)) < 1n<31n/,L(7“, f)> + m (3.18)

where v(r) is the unique solution of the equation n}(v) = 3lnpu(r, f). Inequality (3.18)
implies for r — 1 — 0, r € Fg,

l/ﬁ(v(f’))}

pl(r +67(r), f) < p(r, f)exp{ = u(r, f)"+0, (3.19)

2000 Mathematics Subject Classification: 30B10, 30D35.

© O. B. Skaskiv, I. E. Chyzhykov, 2001



112 O. B. SKASKIV, I. E. CHYZHYKOV

where 6*(r) = n’(v(r))/v(r). Using (3.19), we obtain as r — 1 —0, r ¢ g,

Alr) = Z lag|r™ < p(r +6(r), f) Z <#;*(r)>nk <
ng>v(r) ng>v(r)
+oo

< ulr, f)1+o<1)<r . g*(r)>u<r) Z(l .\ 5*(7«))—” _

(1 o(1))pu(r, £y eXp{_U(T)ln<1 + 5*£T)> } 5*;) —

= (1+o(1)u(r, )W exp{—(1 + o(1))v(r)d*(r) — In 6*(r)} =
= (L+o(L)u(r, /)W exp{—(1 + o(1))n}(v(r)) +Inov(r)}.

Take into account that Int < %ﬁf(t) = o(n}(t)) as t — 4oo and recall that njc(v) =
3In p(r, f). Thus,

A(r) < (14 o(1))p(r, /)FW exp{—(1 + o(1))n}(v(r))} =
= exp{—(Z +o(1)) In u(r, f)} =o(l), r—1-0,r¢ Es.

Lemma 6 is proved. O

Thus, Theorem 1 remains valid.

REFERENCES

1. Skaskiv O. B., Chyzhykov 1. E. The Nevanlinna characteristics and mazimum modulus of gap power
series, Mat. Studii 13 (2000), no. 2, 125-133.

Lviv National University, Faculty of Mechanics and Mathematics

Recetved 25.02.2001



