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In this paper we consider the multidimensional g-fraction which is a generalization of the
continued g-fraction. We investigate the convergence and also establish estimates of the con-

. . N
vergence rate for such fraction in some domains of the space C .
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B cTaTbe paccMaTpuBaeTca MHOTOMepHadA g- TpoOb, KoTopasd ABAgeTcs 060bIIeHneM Helpe-
peiBHOU g-npobu. MccieayeTces cXOAMMOCTE U TaK¥kKe MOMYIeHBl ONEHKH CKOPOCTH CXOJUMOCTH
o N
I Takol Apo6u B HEKOTOPHIX obiacTax mpocrpancrea C .

1. Introduction. In the analytic theory of continued fractions different form of func-
tional continued fractions are studied [7, 8]. The most studied type is that of g-fractions of
the form

S0 g1z gl — )z g3(1 — g2)= (1)
1 + 1 + 1 + 1 +

where sg > 0,0 < g, < 1, n=1,00, z € C. The fractions of form (1), where z = 1,
limy o0 g (1 — gn—1) = 0, were first investigated by Sleszynski [13]. The question of con-
vergence of g-fractions was considered by Van Vleck [15], Perron [10], Scott and Wall [12],
Wall [16]. In particular, they proved that continued fraction (1) converges to a function
holomorphic in the cut plane ¢ = {z € C: |arg(l 4+ z)| < 7}, moreover the convergence
is uniform on each compact subset of this domain. The estimates of the convergence rate
of g-fractions in their domain was established in papers by Merkes [9], Gragg [6]: if g(2)
denotes a holomorphic function to which the g-fraction (1) converges in the domain G, then
the following estimates hold for the errors of approximation

19(2) = gn(2)] <

n—1

arg z S0 1 1 —+14+2
< 1t } Vitr— . n =700,
R Re<¢1+—z>‘ ) m‘um e

where ¢, (z) is the n-th approximant of continued fraction (1). Different applications of the
g-fractions were considered in papers by Wall [16], Thale [14], Runckel [11] and others. In
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particular, the g-fractions were used for analytic continuation of functions, finding of zeros,
poles and domains of univalence of some analytic and meromorphic functions, solving of the
power moment problem.

2. Definition and notation. The first multidimensional generalization of g-fractions
was considered in [1, 2, 4], where the circular domain of convergence for suggested general-
ization was investigated.

The branched continued fractions (BCF)[1-5] are multidimensional generalizations of
continued fractions. Here we give some information concerning of the theory of BCF; see [2]
for details.

The expression

N
bO+DZb =bo+ Yy ]32'(1) 7 (2)

k=114,=1 i1=1 ai(2)
b; —_—
m+ Z bi2) +
=1 12) T
where i(k) = 11,15, ... , 1) is short writing of multiindex, by, a;(x), bi(xy are complex numbers,

is called a branched continued fraction with N branches of branching.
Fraction (2) is said to converge, if there exists a finite limit of its n-th approximants f,
for n — oo, where

Qﬁf;:bi(s), Q p) T+ D Z (3)

r=p+1i,=1 ZT

, p=1s5—1, i = 1I,N, k = 1,s. Under this notation the following
recurrent relations hold

where s = 1,00

N
s a;
QL)) = by + Y —
ip1=1 Qi(p-l-l)

where s = 1,00, p=1,s—1, 1, =1, N, k=1,5— 1.

Any BCF with f*-th approximants is called the even part of a BCF with f,-th approxi-
mants, if f* = fo,, n=1,00.

Any BCF with f*-th approximants is called the majorant of a BCF with f,-th approxi-
mants, if there exist a natural number ng and a positive constant M, such that the relation
|fo = ful < M| fF* — f2] is valid for all n > ng, m > ng.

A branched continued fraction of the form

N

S0 9i(1)%i, (1—92( 2)%is - 1_92 i(3)%is
T+Z 1 +Z +Z + @)

21:1 i2:1 3:1

.

where 5o > 0, 0 < gy <1, k= 1,00, i, =1,N, p=1,k, 2 = (21,2,...,2N) € CN, is
called a multidimensional g-fraction [2].
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In the present paper we investigate the convergence of the multidimensional g-fraction
(4) in some unbounded domain of the space C" to a holomorphic function ¢(z). We also
establish that BCF (4) converges to a holomorphic function g(z) in some bounded domains,
in particular, circular domain, at least as fast as a geometric series with the denominator ¢,
where 0 < ¢ < 1, ¢ = ¢(K), K is an arbitrary compact subset of the corresponding bounded
domain.

3. The convergence of the multidimensional g-fraction. We consider a BCF of
the form

NZ 7T() NZ 7'('()
2(1 72 (2
ZT N ZT_|_

., (5)
N
1—|—ZZZ n=1 1—|—ZZZ 2=l 1—|—ZZ¢

N
where all m) > 0, 2 = (21,22,... ,2N) € CN and ZZZ # —1, which is called a multidi-
=1
mensional 7-fraction, by analogy with the one-dimensional case [7].
By means of the properties of multidimensional linear fractional transformations, the

following statement is proved in [3].

Proposition 1. The even part of a multidimensional m-fraction (5) is the multidimensional

g-fraction (4), where so = 7o, giry = # k=T00,i,=1,N,p=1,k, z€C".
Ti(k)

Corollary 1. The even part of a branched continued fraction

N N
Z |Zzl| Ti(1) Z |222| Ti(2) (6)
Nooo+ =1+ Noo+ =1+ N4
1—Z|Zi| 1_Z|Zi| 1—Z|Zi|
=1 =1 =1
N

where all m;;) > 0, Z |zi| # 1, is the BCF of the form

=1

N N
50 Zgi(1)|zi1| Z g1 — giw) |70 Z gim) (1 — gi)) 72| (7)
1_i:1 1 _i:1 1 _i:1 1 -
where so = 7o, gir) = #(;)() kE=1,00,1,=1,N, p=1k zeCV

In the following lemma we find the majorant of multidimensional g-fraction (4) in the
domain

Q:{ZE(CN: Z|ZZ|<1} (8)

Lemma 1. The majorant of multidimensional g-fraction (4) in the domain (8) is BCF (7).
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Proof. By analogy to (3), we introduce the notation Q ) Q ,s=0,00,n=0,s,1, =1, N,
p=1,n,i(0) =0, go = 0, for the fractions (4) and (7) respectlvely.
By mathematical induction we verify Validity of inequalities
Q > Gi(n), (9)

where s = 0,00, n=10,s, i, = I, N, p=1,n, @(0) =0, go = 0.
Indeed, relations (9) are obvious for n = s. Let inequalities (9) hold for n = p+ 1, where
p+ 1 < s. Then for n = p we obtain

0t i gipsn) (1= 9| o i g0 (L= gio)lipl _ 500
i(p)| = ' ‘ Q(s) i(p)
tpp1=1 Q p_|_1 ipy1=1 i(p+1)

By virtue of estimates (9), Q(() +1) > 0. Therefore, replacing g;p41) by Q
(9) are obtained for n = p.

It follows from inequalities (9) that Q 7E 0 and Q ) >0 for all indices. Let g,(2), gn(2)

be the n-th approximants of BCFs (4) and (7) respectlvely Applying the well-known formula
for the difference of two approximants of BCF, see [2], for fraction (4) we obtain

N SOngr gzr 1)|er

|gn(2)_gm(z)|§ Z S
il,’ig,...,imzl (n—l) (m—l)
H ‘Qw) H ‘Qim
r=0 r=0

N S0 H gi(r’)(l - gi(r—l))|2ir

< Z - = Gu(2) = Gm(2),
21 22 Zm—l Q n— 1

1o T o

r=0

i(p1) , inequalities

where n > m > 1. From this there follows the statement of lemma. O

The following theorem contains estimates of the convergence rate for multidimensional
g-fraction (4) in the circular domain (8).

Theorem 1. The multidimensional g-fraction (4) converges to a function ¢(z) holomorphic
in the domain (8). The following estimates of the truncation error hold in the domain Q:

o(3 ) "

(1 -7y |ZZ»|> (1 N (1 > |ZZ»|)> =Ty il
=1 =1 =1
N N k
s 24 Vi (1 — Z |ZZ|> So (Z |22|>
% H =1 < =1 . k=72 00, (10)

N - N
o) (12X ) 1=
=1 =1
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where gi(z) is the n-th approximant of fraction (4), T, p,, v, are defined in the following

/,L,,>_ <1, (11)

T=sup ¢ 1— (1—|—Z/,Ln/,cn+1...

nEN r=n
_ -1 _
pp =max { gi) (1 = gigp)) s ir = 1,
Vp:min{gi(p)(l_gi(p))_lv i = 17N7 r= 17p}

Proof. According to Lemma 1 and Corollary 1 for £ > 1, m > 1 we obtain
9e(2)| < Grym (2) — Gr(2) = ka-I—Zm(Z) - f2k(2)7

|Gtm (2) —
where §,(z), fn(z) are the n-th approximants of BCFs (7) and (6), respectively. Let us esti-
mate the difference between two approximants fori2m(2) — f2r(2) of the branched continued

fraction (6).
Introduce the notation for the remainders of BCF (6)

N N
(s) _ , o) _ 4 ,
Foy=1=2_lal, Fgy=1-> lal+

=1 =1
4 i\f: |Zip+1| Ti(p4+1) i\f: |Zis—1| Ti(s—1) i\f: |le| (12)

1 + ”'-|-Z,:11 + N -|-Z,:117

L=l
=1

N +
ipt1=1 1 Z B
=1

where s = 0,00, p=0,s—1, i =1, N, k=1,s, ¢(0) =0,
é() -1 é(s) -1 Ti(p) ~ |Zip+1| Ti(s—1) Al |Zzs| 13
(s) — 7 i(p) — + Z 1 b+ N _|_Z 17( )
1pt1=1 1— Z |ZZ| ts=1
=1

N+
1=l
=1

where s = 1,00, p=1,5s—1, 4, =1,N, k=1,s.
Under this notation the following recurrent relations hold

N N
|Zip+1|

(s) _ ,
H =13l 3 el
i:l ip+1:1 Z(p-l—l)
where s = 0,00, p=0,s—1, iz =1, N, k=1,s—1, ¢(0) =0,
A(s) Ti(p)
Gi(p) =1+ 20N
i(p)

where s = 1,00, p=1,s—1, 1, =1, N, k=1,5— 1.
By mathematical induction we verify validity of inequalities

r=1,00,n=0,r—-1,1,

Fi((:z)) > Dy, 2) >0,
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where

— if n<m, D(u,z)=1, if n>m.

For n = r — 1 we obtain Fi((:)_l) =1 = Di7Y(p,2). Suppose that relations (15) hold for
n=p+1, where p+1 <r —1. Then for n = p we obtain

N N
FU) |Z¢p+1|7Ti(za+1) S Hpt1 2.
v ipr1=1 Ti(p+1) T Fi((;)-l—l) fp+1 =+ Dp+2(/~% z) ;

The last expression is positive and equal to D;-&( z). Inequalities (15) are proved.

By analogy, we prove validity of the following inequalities

Fi((r)) Dii(v,z), r=T,00,n=0,r—1,4,=1,N, p=1

where

N
O

D?(V,Z)zl—l—Dljl_;llj, if n<m,D(v,z)=1, if n>m.

Applying the latter inequality, one can show that

éfa) > 14, (D;_l_ll(l/ Z)>_1 >0, r=1loo,n=1r—1,4,=1,N,p=1n.  (16)

From relations (14)—(16) it follows that Fi((;)) > 0, éfa) > 0 for all indices. Applying
the method suggested in the monograph [2] and relations (14), we find a formula for the
difference of two approximants of BCF (6) for £ > 1, m > 1, namely

N
~ ~ T r=
Jargam(2) — far(z) = F(k-(l)—m) Z 1 k-1

Zip

Ti(p)
)_|_F(k+m)> PR Ak

Y

(») i(p—1)"i(p)

where p=1,k—1, i, = 1,N, r =1,p, 1(0) = 0. Using relations (14)—(16), for an arbitrary
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multiindex i(p — 1) we obtain

" )z,
MPZ G(Z;:)
Lip—1) < L i(fv) <
(tp + D7 (1, 2) - |+Z =
=1 zp_l

Mpz 2]
S = =1 < .
ot (St (1 S (4 )

Applying the latter inequality, we obtain

f2k+2m(2) - fzk(z)

kg k-1 )
<t (S ) T I = >-<w>
?)

p:l p+1 p=1 Vp
Lt —— 1= |2l
D ( =1

pt1
By equivalent transformations we reduce the fraction D{°(y, z) to the form

N

0o %’(Qr—l _1)Z|Zz|
4D e (18)
r=1

where g0 = 0, ¢, = (1 + p.)™', r = 1,00. Applying the equivalent transformations and

Theorem 11.1 [16], we can prove the following inequalities

k—1 Vpt1 _ _
Dp-l—l(VZ)S 2+Vp+1;|22 k_3,oo,p—1,k—2.

With the proofs of Theorems 11.1-11.3 [16] it implies that continued fraction (18) con-
verges unconditionally and its sequence of approximants is a monotonically decreasing. The

value of fraction (18) is not less than 1 — TZ |zi| . Therefore, passing to the limit in in-
=1
equalities (17) as m — oo and by computations, we obtain estimates (10). O

Theorem 2. The multidimensional g-fraction (4) converges to a function g(z) holomorphic
in the domain

D= |J (Q.nPr). (19)
a€(—n/2,m/2)
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where

WE

N
Qo= {Z cCN. |2,| < 4cos® o — ZTZ <|2n| — Re (Zne—zm>>} )

n=1 n=1

WE

P, = {Z eCN: <|2n| — Re (Zne_md» < 2cos? a} , (20)

n=1

T defined by (11). The following estimates of the truncation error hold in the domain
Qo[ P, for every a, —m/2 < a < 7/2,

16
l9(2) — gi(2)] < LR — %

n=1

~ R
(4 cos’a — 2T Z (]2s| — Re (Zne—zm>>>

where gi(z) is the n-th approximant of BCF (4).

Proof. Let o be an arbitrary number in the interval (—m/2,7/2). Let us estimate the mod-

ulus of the difference of approximants |fort2m(2) — far(z)| for BCF (5) and & > 1, m > 1.
By analogy to (12) and (13), we introduce the notation FZ.((Z)), GE(S:Q), s = 0,00, n =
0,s, i, = I,N, k=1,s, i(0) = 0, for the remainders of BCF (5). Under this notation the

following recurrent relations hold for multidimensional m-fraction (5)

N N N
() _ , () _ ZZP+1
CEREES A TIIRS WD op 2
=1 =1 1=1 (p-l—l)
where s =0,00, p=0,s—1, 4, =1,N, k=1 (0) =0,
() _ () _ Ti(p)

where s = 1,00, p=1,5s—1, 4, =1,N, k=1,s.
Using relations (22) and (23), by mathematical induction we show that the following
inequalities are valid

Re <Fi((2)e_m> Dii(qw)cosa >0, r=T,00, n=0,r—1,4,=1N, p=Tn, (24)

where

-1
D?(q,w)=1+qnw<1+ D il qr L ) ,if n<m, DMgw)=1+guw

r=n+1
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Re (2,¢7%) — |z, for
D (g, w)=1 if n>m = —.
wlgw) =1, : Z 2COS2 I s

123

For n = r—1 relations (24) are obvious. By induction hypothesis, (24) hold for n = p+1,
where p 4+ 1 < r — 1, and we prove (24) for n = p. Indeed, relations (22) and (23) readily

imply

(r) oo - Fipy1 € e s i(p+1)%ipt1 € e
Figye™ = 1+ZZZ _ZW_ +Z () >€_m'
)

i(p+1) tpr1=1 < Ti(p4+1) + F(p-l—l

ipt1=1
In the proof of Lemma 4.41 [7] it was shown that for > ¢ > 0 and v < 4u +4

u 4+ v Vu2 4oz —uy

min Re =
—o0o<LY< o0 T _I_ Zy 2$
Using relation (25), where
u = Re <7Ti(p+1)2ip+1€_2i0f> , v=Im (Wi(p+1)2¢p+1e‘2m> 7

xz = Re <<7Ti(p-|—1) + Fi((;)-l—l)) e—z’a) ., y=Im <<7Ti(p+1) + Fi((;)-l—l)) e—z@) 7

and the induction hypothesis, we obtain

Re <F,((r))€—m> > cosa — i Ti(p+1) ( z¢p+1‘ Re <le+1 2m>> §

Hp+1W0 r—1
> 1+ — cosa = DI 7(g,w) cosa > 0.
( Hp+1 =+ Dp-l—%(Q7 w)) r

Inequalities (24) are proved.

(25)

From relations (22)—(24) it follows that F 7E 0, G 7E 0 for all indices. Applying
the method suggested in [2] and relations (22), we find a formula for the difference of two

approximants of BCF (5) for £ > 1, m > 1, namely

k
N H 4, Ti(r)

o =
Fovvam(2) = far(2) = F(’“T)Fék) Z k k-1

0

-~
—_

r=1 r=1
We should remark that for x > 0, a; > 0, ay >0
x 1
max = 5.
oo ta)(eta) (Vo + /@)
Taking into account relations (23), (24), (26), for & > 1, m > 1 we obtain

ok
)D]f_l(q, w) <Mk + D:ﬂ”_l(q, w)) cos3 o
k

|f2k+2m(2) - f2k(2)| < Dif+m—1(

11,02 ,0ee i =1 (k—|—m) (k)
' H <7Ti(r) + Fi(r) > H <7Ti(r) + Fi(r))

(26)
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Both the fraction D{®(¢,w) and continued fraction (18) converge unconditionally and
their sequence of approximants is a monotonically decreasing. The value of the continued
fraction D{°(q,w) is not less than 1 + T'w. According to Proposition 1 the even part of a
multidimensional m-fraction (5) is a multidimensional g-fraction (4). Therefore, passing to
the limit in inequality (27) as m — oo and by computations, we obtain estimates (21). By
definition of @),, we conclude that multidimensional g-fraction (4) converges in the domain
Qo N P,. By virtue of arbitrarity of @ BCF (4) converges in (19). O

Remark. Tt follows from Theorems 1 and 2 that the modulus of the difference between
the values of multidimensional g-fraction (4) and its n-th approximants does not exceed ¢",
where 0 < g < 1, ¢ = ¢(K), K is an arbitrary compact subset of bounded domain which
has been considered in the corresponding theorem.

The following theorem is the main result of the paper.

Theorem 3. Multidimensional g-fraction (4) converges to a function holomorphic in the
domain

r=|J P, (28)

a€(—n/2,m/2)

where P, is defined by (20), moreover the convergence is uniform on each compact subset of
this domain.

Proof. Since, according to Proposition 1, BCF (4) is the even part of a multidimensional
m-fraction (5), we write the approximant ¢,(z) in the form

S0
gn(2) = fan(2) = —5-
£
Inequalities (24) imply that the approximants g¢,(z), n = 1,00, of multidimensional

g-fraction (4) form the sequence of functions holomorphic in domain (28).
Let o be an arbitrary number in the interval (—7/2,7/2), P, ¢ be a domain which is
contained in P,

N

P.c = {Z e CN: Z <|Zn| — Re (Zne_zm» < 2C Coszoz} , 0<C<1. (29)

n=1

Applying each inequality |D7(q,w)| > 1 — C'T (see the proofs of Theorems 11.1-11.3 [16])
and inequalities (24), for arbitrary z € P, ¢ and g,(z), n > 1, we obtain

S0

(1 =CT)cosa

|9n(2)] < = M(Foc),

where the constant M (P, ¢) depends only on the domain P, ¢, i. e. the sequence {g,(z)} is
uniformly bounded in the domain of form (29).

Let K be an arbitrary compact subset of domain (28). Cover K by the domain of the
form (29). Pick a finite subcovering {Pawc]};:l of this covering. Let

M(K)=max{M(P,,¢,): j=1,s}.
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Then for arbitrary z € K and g,(z), n > 1, we obtain |g,(z)] < M(K), i. e. the sequence
{gn(z)} is uniformly bounded on each compact subset of domain (28).
According to Theorem 1 fraction (4) converges in the domain

N
A, ={zeCV: Z|Zi|<r<1
=1

Evidently A, C P for each 0 < r < 1, in particular, say Ay, C P. Applying Theorem
2.17 [2], we conclude that the multidimensional g-fraction (4) converges uniformly on each
compact subset of domain (28). O

Remark. The authors do not know whether the obtained results are sharp.
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