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In the paper we consider free objects I(X), IC(X), TA(X), and SL(X) in the category
of topological inverse semigroups and its subcategories of topological inverse Clifford, inverse
Abelian semigroups, and topological semilattices, respectively. We prove that these objects ex-
ist and are algebraically free over functionally Hausdorff spaces, they are (local) k,-spaces if and
only if X is a (local) k.-space. We investigate also the question of preservation of embeddings
by these free constructions.
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B cTaTbe paccmaTpuBaioTca cBo6OIHBIE O6HEKTH B KATETOPUN TOTOJOTUHIECKAX WHBEPC-
HBIX MOJAYTPYIII U €€ MTOAKATEr OPUAX TOMOJOT NHIECKNX NHBEPCHBIX KANMGMOPJOBHIX, NHBEPCHBIX
abeseBLIX MOJYTPYNN W TOMOJOTUHUECKNX TOAypemneToK. [loKasbiBaeTcda, ITO TU CBOOOTHLIE
0OBEKTHl CYHMICCTBYIOT U ABIAIOTCA ajarebpamvecku cBOOGOMHBIMU M/ JM060r0 PYHKINOHAIB-
HO xaycgopdopa npoctpancTBa X. OHN ABIAOTCA (JOKATBHBIMMI) ky-TTPOCTPAHCTBAMH, €CJIH
TaKOBBIM eCTh HmpocTpaHCcTBO X. WM3ydaeTca Takxke BOMPOC COXPAHEHUsA BJIOKEHUH >TUMMI
CcBOGOTHBIMI KOHCTPYKITUAMMA.

INTRODUCTION

The paper is devoted to free topological inverse semigroups. For better understanding
the obtained results, we briefly describe the situation in the related realm of free topological
groups. The conception of a free topological group F(X) over a topological space X was
introduced by A. A. Markov in [36], [37]. He proved that for any Tychonoff space X a free
topological group F(X) exists and is unique, algebraically free and completely regular, see
also [39], [32], [27]. In [27] M. Graev described the topology of a free topological group F'(X)
over a compact space X and proved that in this case, topologically, F'(X) is a k,-space. A
description of the topology of a free topological group over an arbitrary Tychonoff space
was given only in the 1980-s in [41], [48], [46]. Another important question concerning free
topological groups was as follows: under which conditions a free topological group F(Y') of
a subspace Y C X is a subgroup in F(X)? It turned out that the answer to this question
was not trivial, see [42], [48], [49], [47].

In this paper we consider free objects I(X), IC(X), [A(X), SL(X) in the category of

topological inverse semigroups and its subcategories of topological inverse Clifford, inverse
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Abelian semigroups, and topological semilattices, respectively. We prove that for a function-
ally Hausdorff space X the free topological inverse semigroups [(X), IC(X), TA(X), SL(X)
exist, are algebraically free and functionally Hausdorff (see Theorems 1 and 2). Unlike to the
situation with free topological groups it is not clear whether the semigroups I(X), 1C(X),
TA(X), SL(X) are Tychonoff for Tychonoff spaces X. It is so, whenever X is a regular
local k,-space. Moreover, in this case the semigroups [(X), IC(X), [A(X), SL(X) are
local k,-spaces too, see Theorem 6. Local k, -spaces are particular cases of k-spaces. For
which spaces X the semigroups I(X), IC(X), TA(X), SL(X) are k-spaces? It turns out
(see Theorem 7) that for metrizable X this takes place if and only if the space X is locally
compact, cf. [4].

Next, we consider the question of when for a subspace X of a functionally Hausdorff
space Y the induced homomorphisms [(X) — [(YV), [C(X) — IC(Y), TA(X) — [TA(Y),
and SL(X) — SL(Y) are topological embedding. In Theorem 4 we give some sufficient
conditions on the spaces X, Y which guarantee that these homomorphisms are topological
embeddings. Moreover, in Theorem 5 we prove that for a metrizable space Y the mentioned
homomorphisms are topological embeddings if and only if X is open in its closure in Y.

The conceptions of M- and A-equivalences of topological spaces were introduced by
Graev [27] and afterwards were investigated by many authors in various situations, see
[1], [2], [43], [40], [5]. In the case of free semigroups I(X), IC(X), TA(X), SL(X) their
isomorphic classification coincides with the topological classification of the spaces X (see
Theorem 10). That is not true for topological classification of these semigroups, e.g. for any
finite-dimensional non-degenerate Peano continua X, Y their free topological semilattices
SL(X)and SL(Y) are homeomorphic (see [50] for the corresponding result on free topological
groups).

Finally, applying the obtained results, we prove Theorem 12 which can be considered as
a counterpart of a known theorem of Franklin [25]. We pose also some open questions con-
cerning the considered theory of free objects in the categories of topological inverse (Clifford,
Abelian) semigroups and topological (Lawson) semilattices.

We follow the terminology of [20], [23], [44], [30], [15].

By N, @, R, C we denote the sets of natural, rational, real, and complex numbers,
respectively. As usual, A or cly(A) denotes the closure of a subset A in a topological
space X while Int(A) stands for the interior of A in X. Under a neighborhood of a point x of
a topological space X we understand any subset /' C X whose interior contains the point x.

All maps considered in this paper are continuous. A topological space X is defined to
be functionally Hausdorff if for any two distinct points x, 2’ of X there is a continuous
map f: X — [0,1] such that f(x) # f(a’). It is well known that a topological space X is
functionally Hausdorff if and only if it admits a continuous bijective map onto a Tychonoff
space.

DEFINITIONS

A topological inverse semigroup is, by definition, a Hausdorff topological space X equip-
ped with a continuous binary associative operation (-): X x X — X such that every element
r € X has a unique inverse element 7! and the map (-)7': X — X assigning to each
x € X its inverse z~! is continuous (let us recall that = is inverse to x if zz™*

v tzaz™' = 27). A topological inverse semigroup X is defined to be a topological inverse

r = x and
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V= 2712 for every

Clifford semigroup (resp. a topological inverse Abelian semigroup) if xa~
x € X (resp. xy = ya for each z,y € X).

The class of topological inverse Clifford semigroups contains both the class of topological
groups and the class of topological semilattices (in semilattices each element coincides with
its inverse). Let us recall that a topological semilattice is, by definition, a topological space
equipped with a continuous reflexive commutative associative binary operation. In the sequel
we shall also need the conception of a Lawson semilattice [34], that is a topological semilattice
admitting a base of the topology consisting of subsemilattices.

Under a homomorphism between topological semigroups X,Y we understand any con-
tinuous map f: X — Y such that f(za') = f(z)f(2') for any z,2’ € X. It is known
that any homomorphism f: X — Y between inverse semigroups preserves the inversion, i.e.
flz™") = (f(x))~" for each x € X. A bijective map f between topological semigroups is
an isomorphism if both f and f~! are homomorphisms.

A free topological inverse semigroup over a topological space X is a pair (/(X),7) consist-
ing of a topological inverse semigroup /(X) and a topological embedding i: X — [(X) such
that for every map f: X — S into a topological inverse semigroup S there exists a unique
homomorphism f: I(X) — S making the diagram

X —>I(X)

fg/

Similarly, a free topological inverse Clifford semigroup (IC(X),17), a free topological in-
verse Abelian semigroup (I A(X), 1), a free topological semigroup (S(X), ), a free topological
semilattice (SL(X),17), and a free Lawson semilattice over a topological space X can be de-

fined.

It follows from the definition that if a free topological inverse semigroup over X exists

commutative.

then it is unique up to isomorphism. The same concerns the other free objects over X. Next,
we shall show that free topological inverse semigroups exist. For this we firstly recall some
information about

FREE LAWSON SEMILATTICES

It is easily observed that any free Lawson semilattice over a topological space X can be
identified with the hyperspace exp,(X) of all finite non-empty subsets of X, equipped with
the Vietoris topology [38]. The continuous semilattice operation on exp (X)) is the union
of subsets. Recall that the Vietoris topology on exp_(X) is generated by the base

(Up,...,Uy)={Ac€exp (X): ACU,U---UU,, ANU;, #@ for all i =1,...,n},

where Uy, ..., U, run over all open subsets of X. Remark that each base set (Uy,...,U,)
is an open subsemilattice in exp_(X). We shall use the following well-known facts about

exp,(X):

1) for every subspace ¥ C X the natural map exp,(Y) — exp,(X) is an embedding;
moreover, if Y is open (closed) in X then so is exp (V) in exp,(X);
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2) the natural map i: X — exp,(X) assigning to each # € X the one-point set {z} €
exp,(X) is a topological embedding;

3) if K is a compact subset of exp_(X), then its union (JKX = [Jzcc F is a compact subset
of X;

4) if the space X is Hausdorff then exp,(X) is Hausdorff too, and the image i(X) of X is
closed in exp,(X);

5) if the space X is Tychonoff or functionally Hausdorff then so is the space exp,(X).

It is also worth having in mind the following simple fact (see [19]): for a topological
space X the topological sum S(X) = @ _, X" is a free topological semigroup over X.
The multiplication “x¥” in S(X) is defined by the rule:

(T1yeees®n) * (Ytye ooy Um) = (T1ye oy Ty Yty v oy Yrn)-

The space X is identified with the closed subset X' of S(X). For any n € N let 5,(X) =
D,_, X* be the set of words of length < n.

THE CONSTRUCTION OF FREE TOPOLOGICAL INVERSE SEMIGROUPS

We shall follow the idea of Kakutani (see [32]). Let X be a topological space. To construct
a free topological inverse semigroup (/(X),¢) of X consider the set F of all possible pairwise
non-isomorphic continuous maps fs: X — 5 of X into topological inverse semigroups such
that the set fs(X) algebraically generates S, that is S coincides with the smallest inverse
subsemigroup in S containing fs(X) (here two maps fi: X — Sy, fo: X — 5, are called
isomorphicif h o fi = f; for some isomorphism h: S; — S3). Remark that the set F is not
empty because it contains the canonical map e: X — exp_(X) of X into the free Lawson
semilattice over X. Now consider the diagonal product

1= Afse}'fsi X — H S

fs€F

of maps belonging to F. It is easy to see that the Tychonoff product Hfsef S is a topological
inverse semigroup. Let [(X) denote the smallest inverse subsemigroup of Hfsef S containing
the set ¢(X). Notice that [(X) = |J,_, [.(X), where [,(X) is the set of all products
i(xy) - -i(ag)™, where k < n, xq1,...,25 € X and g; = +1. We claim that (/(X),¢) is
a free topological inverse semigroup over X. Indeed, since the embedding e: X — exp_(X)
belongs to F, we have proi = e, where pr: [[; .5 — exp,(X) is the natural projection.
Since e is an embedding, so is the map . Moreover, if X is Hausdorff then e is a closed
embedding and consequently, ¢ is a closed embedding too.

Next, let f: X — S’ be any continuous map into a topological inverse semigroup. Let
(f(X)) denote the smallest inverse subsemigroup of S’ containing the set f(X). Then
the map f: X — (f(X)) is isomorphic to some map fo: X — G from the set F, i.e.
there is an isomorphism h: ¢ — (f(X)) such that ho fo = f. Let prg: [[; e — G
be the projection onto the G-coordinate. Then proot = fi. It is clear that the restric-
tion prg [7x): 1(X) — G is a continuous homomorphism of topological inverse semigroups.
Hence

f=hoprgixy: H{X) = (f(X)) C &
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is a homomorphism with the property f = hoprgoi = ho fo = f. To see that the map f
is unique recall that each element a € [(X) can be written as a product ¢(zq)** ---i(x,)™,
where z; € X and &; = £1. Since f is a homomorphism, f(a) is uniquely determined
and must be equal to f(x1)®--- f(x,) € 5. Hence (I(X),1) is a free topological inverse
semigroup over X.

Let us remark that the construction [ of free topological inverse semigroup is functorial:
for any continuous map f: X — Y let I(f): I(X) — I(Y) be a unique homomorphism
making the diagram

f

X Y
in iy
1(X) == 1Y)

commutative. One can easily prove that I(f o g) = I(f) o I(g) for any continuous maps
f: X—=Yandg: Y — Z.

Repeating these arguments we may also construct the free topological inverse Clifford
semigroup (/C(X),i), the free topological inverse Abelian semigroup (/A(X),¢), and the
free topological semilattice (SL(X),7) over each topological space X.

Summarizing, we obtain

Theorem 1. For every topological space X there exist a free topological inverse semigroup
I(X), a free topological inverse Clifford semigroup [C(X), a free topological inverse Abelian
semigroup [A(X), and a free topological semilattice SL(X) over X. Moreover, if the space
X is Hausdorff then the mentioned semigroups contain X as a closed subspace.

Now let us look at the structure of the constructed free semigroups.

Free topological semilattice. Consider a (unique) homomorphism h: SL(X) —
exp,(X) extending the identity map X — X (it exists according to the definition of SL(X)
as a free topological semilattice). It is known that algebraically, exp, (X)) is a free semilattice
over the set X [45]. This implies that the map & is bijective. Thus, algebraically SL(X) is
a free semilattice of X. Moreover, if the space X is (functionally) Hausdorff then so is the

space SL(X).

Free topological inverse Clifford semigroup. We shall exploit the construction of
free inverse semigroups due to Petrich [45]. Let F(X) and A(X) denote respectively the free
topological group and the free topological Abelian group over a topological space X. It is
known that free topological groups F(X) and A(X) exist for every topological space [32],
[36]. Moreover, for a functionally Hausdorff space X the groups F(X), A(X) are known to
be Tychonoff and algebraically free. For such X the natural maps X — F(X), X — A(X)
are injective. This allows us to identify X with the set of generators of F(X) or A(X).
So, from now on, X is a functionally Hausdorff space. For any a € F(X) let supp(a)
denote the support of a, that is the smallest subset A C X such that a lies in the image of
the group F'(A) under the natural homomorphism F'(A) — F(X). Analogously, the support
supp(a) of a point @ € A(X) can be defined. In fact, supp(a) is nothing else but the set of all
letters in the reduced word of a, i.e. a word of the smallest length, representing the element «.

In the product FI(X) x exp,(X) consider the subset

ICx = {(a, A) : supp(a) C A}.
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Evidently, F'(X)xexp,(X) is a topological inverse Clifford semigroup (as the product of topo-
logical inverse Clifford semigroups F/(X) and exp,(X)). It is easy to see that [Cx is an in-
verse subsemigroup in F/(X) x exp,(X) and the map j: X — [Cx assigning to each z € X
the pair (z,{x}) is a closed embedding. Since [Cx is a topological inverse semigroup, there
exists a unique homomorphism h: IC(X) — ICyx such that hoi = j where i: X — [C(X)
is the embedding of X into IC(X). According to [45], algebraically ICx is a free inverse
Clifford semigroup over X. Consequently, the homomorphism h is bijective and 1C'(X) is al-
gebraically a free inverse Clifford semigroup over X. Moreover, since IC'(X) maps injectively
onto the functionally Hausdorff space ICy, the topological semigroup IC'(X) is functionally
Hausdorft.

Free topological inverse Abelian semigroup. Replacing the free topological group
F(X) by the free topological Abelian group A(X) over X and repeating the preceding
arguments we get that algebraically TA(X) is a free inverse Abelian semigroup over X
and TA(X) is a functionally Hausdorff topological semigroup which can be identified with
the semigroup

TAx = {(a, A) : supp(a) C A} C A(X) x exp,(X)
retopologized by the strongest inverse semigroup topology inducing on X its original topol-
ogy.

Free topological inverse semigroup. We shall identify /(X) with a subset of the prod-
uct F(X) x exp, (F(X)). For an element a« € F'(X) let r(a) denote the reduced word of a,

i.e. the word of the smallest length representing the element a. The identity 1 of FI(X) is
identified with the empty word. For any reduced word a = a; ...a, € F(X) let

a={l,a1,a1az,...,a1ay - a,}.
We call a subset A of FI(X) saturated if a € A implies @ C A. Finally, we put
Ix ={(a,A): A # {1} is saturated and r(a) € A} C F(X) x exp, (F(X)).

with the multiplication (a, A) - (b, B) = (ab, AU aB), where both ab and aB are products
taken in F(X). As noted in [45], (a™',a™"A) is the inverse of (a, A) in Ix. One can easily
verify that the so-defined inverse semigroup operations of [y are continuous with respect to
the topology inherited from F/(X)xexp,, (F(X)). Thus Ix is a topological inverse semigroup.
Let 7: X — Iy be the map assigning to each € X the pair (z,{l,2}) € Ix. Evidently, j
is a closed embedding. Let h: I(X) — Ix be a (unique) homomorphism such that hoi = j,
where i: X — I(X) is the embedding of X into I(X). It is known that algebraically Iy
is a free inverse semigroup over X, see [45]. Because of this, the map h must be bijective.
Consequently, algebraically, 1(X) is a free inverse semigroup over X; moreover the underlying
topological space of I(X) is functionally Hausdorff.
Let us summarize all said above in

Theorem 2. For any functionally Hausdorff space X the free topological inverse semigroup
I(X), the free topological inverse Clifford semigroup 1C(X), the free topological inverse
Abelian semigroup I A(X), and the free topological semilattice SL(X) are functionally Haus-
dorff and algebraically free.

Question 1 (1. V. Protasov) Are the semigroups [(X), IC(X), TA(X), and SL(X) Tychonoff
for a Tychonoff space X7
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FREE TOPOLOGICAL INVERSE SEMIGROUPS OVER k,-SPACES

Recall that a Hausdorff space X is defined to be a k,-space provided the topology of X
is generated by a countable collection K of compact subsets of X in the sense that X = UK
and a subset U C X is open if and only if the intersection U/’ N K is open in K for every
compactum K € K. According to [26], every k,-space is normal.

It is known that the free topological (Abelian) group over a k,-space is a k,-space too
[35]. An analogous result holds also for free topological inverse semigroups (see also [16],
[17], [18] for further generalizations).

Theorem 3. If X is a k,-space then the topological semigroups I(X), IC(X), [A(X), and
SL(X) are k,-spaces.

Proof. Suppose X is a k,-space and {X,},en is a countable collection of compact sub-
sets of X generating the topology of X. Without loss of generality, X, C X, 41 for each
n € N. We shall prove that I(X) is a k,-space. Let S(XUX™") =, (XUX)"
be the free topological semigroup over the topological sum of X and its copy X~ !. Let
p: S(XUX™') — I(X) be the continuous map assigning to each sequence (z{',...,z5") €
S(X UX™Y the product 7' --- 2% taken in [(X) (here ¢; = +1). Evidently, I(X) =

U,en 1n(X,), where each I,(X,) is compact as a continuous image of the compactum

Su(Xn) = P, (X, I_IXn_l)k. Let 7 be the topology on X generated by the collection
{I.(X,)}:2,, that is a subset U C [(X) is open in 7 if and only if the intersection UN 1, (X,,)
is open in [,(X,) for every n € N. We shall show that the semigroup I(X) equipped with
this topology is a topological inverse semigroup. First, notice that (I,(X,))™" = L.(X,)
and 1,(X,) - [,(X,) C [,(Xs,) for each n € N. By the definition of the topology 7, to
prove the continuity of the inverse (-)™': (I(X),7) — (I(X),7) it suffices to verify that
this map is continuous on each [,(X,). But this is obvious since ([n(Xn))_l C L(X,)
and on [,(X,) the topology 7 coincides with the original one. To prove that the multi-
plication is continuous with respect to the topology 7 we shall use the well known fact
stating that the product of k,-spaces is a k,-space [26]. To be more precise, the topology
of the product (I(X),7) x (I(X),7) is generated by the collection {I,(X,) x I,(X,) }bnen-
Since I,(X,) - I.(Xy) C l9n(X2,), the multiplication (+): I,,(X,) x [,(X,) = (I(X),7) is
continuous for each n € N. Consequently, it is continuous and (/(X),7) is a topological
inverse semigroup.

Now consider the embedding i: X — [(X). Since i(X,) C [,(X,), n € N, we conclude
that the map i: X — (I(X),7) is continuous. Then there exists a (unique) homomorphism
h: 1(X)— (I(X),7) such that ho¢ =1. Since [(X) is a free inverse semigroup over X, h
is the identity mapping. We claim that & is a homeomorphism. To prove this it suffices to
show that the map h~! =id: (I(X),7) — I(X) is continuous. Fix any open set U C I(X).
Since U N 1,(X,,) is open in [,(X,) for each n, we get that U is open in the topology 7.
Thus, the space I(X) is homeomorphic to (I(X),7) which is a k,-space.

Similar arguments show that the semigroups IC(X), [A(X), and SL(X) are k,-spaces
too. U

EMBEDDINGS OF FREE TOPOLOGICAL INVERSE SEMIGROUPS

In this section we investigate the action of the constructions I, IC, [ A, and S L on maps.
Especially, we shall be interested in the question of preservation of topological embeddings
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by these constructions. Let us remark that for free topological groups this question was
resolved in [42], [49], and [47]. In particular, for a subspace X of a metrizable space Y the
induced group homomorphism F(X) — F(Y) is a topological embedding if and only if the
set X is closed in Y.

A similar result will be proven for free inverse topological semigroups: for a subset X
of a metrizable space Y the induced homomorphisms I[(X) — [(Y), IC(X) — IC(Y),
TA(X) = TA(Y), and SL(X) — SL(Y') are topological embeddings if and only if the set X
is locally closed in Y.

Here we call a subset X of a topological space Y locally closed if every point = € X has
a neighborhood U in Y such that the intersection U N X is closed in U. Equivalently, X
is locally closed if X is open in its closure X in Y. We begin from the following statement
resulting from Theorem 2.

Proposition 1. If f: X — Y is a continuous injective (surjective) map between functionally
Hausdorff spaces then so are the maps I(f): I(X) — I(Y), IC(f): IC(X) — IC(Y),
TA(f): TA(X) = TA(Y), and SL(f): SL(X) — SL(Y). O

This proposition allows us for a subset X of a functionally Hausdorff space Y to identity
I(X) with a subset (not a subspace!) of I(Y). The same concerns the free semigroups
IC(X), TA(X), and SL(X).

Proposition 2. Suppose X is an open (closed) subset of a tunctionally Hausdorff space Y.
Then the set I(X) (resp. IC(X), TA(X), SL(X)) is open (closed) in 1(Y) (resp. in IC(Y),
TA(Y), SL(Y)).

Proof. Using the definition of I(Y') as a free topological inverse semigroup, define

supp: 1(Y) — exp (V) to be a (unique) continuous homomorphism extending the identity
map id: Y — Y. Using the fact that /(X)) is generated by the set X, one may easily prove
that I1(X) = supp™* (exp,(X)). Now if X is open (closed) in Y then exp, (X) is open
(closed) in exp, (V). Consequently, I(X) is open (closed) in I(Y'). Similar arguments work
also for the semigroups 1C(X), TA(X), and SL(X). O

Let us define a space X to be a local k,-space provided any point * € X has a neighbor-
hood which is a k,-space.

Theorem 4. Suppose X is a subspace of a functionally Hausdorff space Y. The inclusions
I(X) C I(Y), IC(X) C IC(Y), TA(X) C TA(Y), and SL(X) C SL(Y) are topological

embeddings provided one of the following conditions is satisfied:
. X is a retract of Y';
. Y is metrizable and X is locally closed in Y;
. Y is ak,-space and X is locally closed in'Y;

1
2
3
4. X is compact;
5. Y is regular and X is locally compact;
6

. Y is regular and X is an open local k,-subspace in Y.

Proof. We shall consider the inclusion I(X) C I(Y) only; for the other inclusions the proofs
are analogous. To prove the items 2, 3, and 5 we will need the following
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Lemma 1. Suppose X is a subset of a functionally Hausdorft space Y. The homomorphism
I(X) — I(Y) is a topological embedding, provided every finite subset of X has a neighbor-
hood F in X such that F'is closed in Y and the homomorphism [(F) — [(Y') is a topological
embedding.

Proof. Let e: X — Y denote the natural embedding. Denote by supp: I[(X) — exp,(X)
a unique homomorphism extending the identity embedding X — exp,(X). To prove that
the map I(e) is a topological embedding, fix an element a € 1(X) and consider its support
supp(a) C X. By the hypothesis, supp(a) has a neighborhood F' C X such that F is closed
in Y and the inclusion I(F) — I(Y) is a topological embedding.

Consider the chain of embeddings F' s X — Y and the chain of the induced ho-

momorphisms [(F') fen) I(X) 1 I(Y). By Proposition 2, the set V = I(ep)(I(F)) is a

neighborhood of @ in (X)) and the set I(e)(V) = [(eoep)(I(F))is a neighborhood of I(e)(a)
in I(e)(I(X)) C I(Y). By the hypothesis, the composition I(e)o I(ep) = [(eoep): I[(F) —
I(Y) is an embedding. This implies that the restriction /(e)|y is a homeomorphism onto its
image.

Therefore each element a € (X)) has a neighborhood V' C I(X) such that the restriction
I(e)|v:V — I(e)(V) of I(e) onto V is a homeomorphism onto a neighborhood of I(e)(a) in
I(e)(I(X)). This fact together with the injectivity of I(e) imply that I(e): [(X) — I(Y) is
a topological embedding. O

Now let us return to the proof of Theorem 4.

1. f r: Y — X is a retraction, i.e. roe = idx, where e: X — Y is the embedding, then,
by the functoriality of the construction I, we obtain I(r)o I(e) = id |7x) which implies I(e)
is a closed topological embedding.

2. Using the regularity of metrizable spaces and applying Lemma 1 we reduce our task to
considering the particular case when the set X is closed in Y. We will exploit the Hartman-
Mycielski construction HM(X) over X, see [28]. Recall that HM(X) is the set of all maps
f:10,1) = X for which there exist n € N and a sequence 0 = a9 < a3 < -+ < a, = 1
such that f is constant on each mterval [@i—1,a;), 1 <i<n.Ifdis abounded metric on X
then the formula d (f,9) fo (t))dt defines a metric on HM(X). The topology on
HM(X) generated by this metrlc does not depend on the choice of the bounded metric d
generating the topology of X. Moreover, a reasonable topology on HM(X) can be defined
for any (not necessarily metrizable) topological space X, see [14]. Remark that the space
X can be identified with the subspace of constant functions in HM(X). We shall use the
following important extension property of the space HM(X) (proven in [7, Proposition 3]):
in the case where X is a closed subset of a metrizable (more generally stratifiable) space Y,
the identity embedding X — HM(X) extends to a continuous map £: Y — HM(X).

Now consider the free topological inverse semigroup I(X) of X and the Hartman-Myciel-
ski construction HM(I(X)) over I(X). Since X is a subspace of I(X), we may consider
HM(X) as a subspace of HM(1(X)), see Proposition 2 of [14]. Notice that the operation of
pointwise multiplication of functions turns H M (/(X)) into an inverse topological semigroup
(cf. Corollary 2 of [14]). Hence, the map £: Y — HM(X) C HM(I(X)) can be uniquely
extended to a continuous homomorphism &: I(Y) — HM(I(X)). Denote by ¢: X — Y the
natural embedding and let I(e): I(X) — I(Y") be the continuous injective homomorphism
extending the map e. Notice that the composition £ o I(e): I(X) — HM(I(X)) coincides
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with the natural topological embedding I(X) C HM(/(X)). This immediately implies that
I(e): I(X) — I(Y) is a topological embedding.

3. As in the preceding case, it is enough to prove the particular case of a closed subset
X of a k,-space Y. But this case can be easily derived from the proof Theorem 3 describing
the topological structure of free topological inverse semigroups over k,-spaces.

4. Suppose X is compact. Denote by F the collection of all continuous maps from Y
into the segment [0,1] and consider the map £: Y — [0,1]7 of Y into the Tychonoff cube
[0,1)7 defined by £(y) = (f(y))ser, y € Y. Denote by e: X — Y the natural embedding.
Since Y is functionally Hausdorff, the map ¢ is injective. Then the compactness of X
implies that the composition £ o e is a closed embedding. By item 3, the homomorphism
I(oe)=1I(£)ol(e): [(X)— I([0,1}7) is a topological embedding. This implies that the
map [(e): [(X) — I(Y) is a topological embedding too.

5. This easily follows from the preceding item and Lemma 1.

6. Finally, suppose X is an open local k -subspace of a regular space Y. Denote by
e: X — Y the embedding. Since the map I(e): [(X) — [(Y) is injective, to prove that /(e)
is an embedding, it suffices for every point a € I(X) to find a neighborhood W C I(X) of a
such that 1(e)(W) is open in I(Y) and I(e)|w is a topological embedding. So, fix any point
a € I(X). Since X is a local k,-space, the finite set supp(a) C X has an open neighborhood
U which is a k,-space. Using the regularity of Y, find an open neighborhood V' C Y of
supp(a) such that cly (V) C U. Notice that the quotient space Y/(Y'\V) coincides with
the quotient space U/(U\V') and the latter is a k,-space. Then we have the following chain
of continuous maps

VS TS X SY Sy
which induces the chain of continuous homomorphisms

1v) " 1oy 9 o) 21 1oy 2 vy vy
Remark that W = [(iy o iyv)(I(V)) is an open neighborhood of a and [I(i)(W) is open
in I(Y). Since the composition w07 0 iy 07y embeds V as an open subset into the k,-space
Y/(Y\V), the composition I(m)o I(i) o [(iy) o [(iv) embeds [(V) into I[(Y/(Y\V)) (see
item 3). Consequently, /(i) embeds W into I(Y). O

Remark 1. From the proof it follows that the requirement of the metrizability of the space
Y in item 2 of Theorem 4 can be weakened to the stratifiability of Y (for definition and
properties of stratifiable spaces, see [13]). In the meantime, the following theorem shows
that for metrizable Y the condition of local closedness of X in Y is the best possible.

Theorem 5. Let Y be a metrizable space and X be a subset of Y. The homomorphisms
I(X) = I(Y), IC(X) = IC(Y), TA(X) —» TA(Y) and SL(X) — SL(Y) are topological
embeddings if and only if the subset X is locally closed in Y.

Proof. The sufficiency follows from item 2 of Theorem 4. To prove the necessity, suppose
the subset X is not locally closed. Then X is not open in its closure X and we may find a
compact subset K C Y such that the intersection K N X is not locally compact (cf. [22, 8.3]
or [8, Lemma 7]). Now the necessity follows from the subsequent O

Lemma 2. Let Y be a functionally Hausdorff space and X a normal subspace of Y. If Y
contains a compact subset K such that KNX is metrizable and non-locally compact, then the
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homomorphisms [(X) — [(Y), IC(X) — [C(Y), TA(X) — [TA(Y) and SL(X) — SL(Y)

are not topological embeddings.

Proof. Suppose K C Y is a compact subset such that A N X is metrizable and non-locally
compact. Consider the following subsets of the complex plane:

. 1
T:{rew:rgl,0<<p§1}andT0:{0}U{—el/m:n,mEN}.
n

According to [22, 8.3] or [8, Lemma 7] any non-locally compact metrizable space contains
a closed topological copy of the space Ty. Hence there exists a closed embedding h: Ty —
X such that A(Ty) C X N K. By Theorem 2, the free topological semilattice SL(X) is
algebraically free and thus each point of SL(X) can be identified with a non-empty finite
subset of X. The same concerns the other considered free topological semilattices. In SL(Tj)
consider the subset

1 .
F= {AESL(TO):AC {Wel/m:mEN}}

Let f: X — Y denote the natural embedding. According to Theorem 4, SL(K) can be
identified with a subspace of SL(Y).

Let us show that foh(0) € K C SL(K) C SL(Y) is a cluster point of the set
SL(foh)(F)C SL(K)C SL(Y). For this, fix any neighborhood U of f o h(0) in SL(K).
SL(K), being a k,-space, is regular. Hence there exists a neighborhood V' C SL(K) of
f o h(0) such that V'.C U. Then (f o h)~*(V) is a neighborhood of 0 in Ty and hence there
is an n € N such that %ei/m € (foh)™Y(V) for every m € N. Since K NV is compact, the
set f o h({%ei/m :m € N}) C VN K has a cluster point + € VN K. Since 2" = x, there is
a neighborhood W of x in SL(K') such that W™ C U. Because W N K is a neighborhood
of ¥ in K and z is a cluster point of the set f o h({%ei/m :m € N}) we may find n
distinct numbers my,...,m, € N such that f o h(%ei/mk) € W for each 1 < k <n. Then
foh({%ei/mk 1 <k <n})e W CU. Evidently, foh({%ei/mk 1<k <n})e SL(foh)(F),
ie. UNSL(foh)(F)+# @ and thus f o h(0) is a cluster point of SL(f o h)(F).

Now consider the (injective continuous) semilattice homomorphism SL(f): SL(X) —
SL(Y). To prove that SL(f) is not an embedding, it suffices to verify that h(0) € X C
SL(X) is not a cluster point of the set SL(f)™ (SL(foh)(F)) = SL(h)(F)in SL(X). The
space T', being a convex (is-subset of the complex plane, is an absolute extensor for normal
spaces, see [31, Ch.II, §14 and §16]. Hence the embedding h™': h(Ty) — T can be extended
to a map g: X — T. Because SL(h)(F) C SL(g)~*(F), to show that 2(0) is not a cluster
point of the set SL(h)(F) in SL(X), it is enough to verify that 0 is not a cluster point of
the set Fin SL(T).

For this we shall construct a special semilattice S over T" as follows. In the free Lawson
semilattice exp, (1) over T' consider the subset

S = U {A €exp,(T):|z] =r for any z € A}.

0<r<1

The semilattice operation “x” on S is defined by the rule:

— . . targ(z) .
Ax B (Z$13B|z|) {e :z€ AUB} CC



34 T. O. BANAKH, I. YO. GURAN, O. V. GUTIK

for any A, B € S. Remark that this operation is continuous with respect to the Vietoris
topology V on S (that is, the topology on S inherited from exp, (7).
Now we enrich the topology of S at the point 0. For every k € N consider the subset

Fk:{AGS:AC{rei/ :m € N} for some r > — }CS.

1
k| Al
Define a topology 7 on S letting {U\F}, | U € V,k € N} be its neighborhood base at 0;
at other points of S the topology 7 coincides with the Vietoris topology V. We claim that
the semilattice operation “x” is continuous with respect to the topology 7. Obviously, it is
enough to prove the continuity of the operation “x” at pairs (Ag, Byg) € S x S, where Ay = 0.

Let U\Fy, U € V, k € N, be any neighborhood of 0 = Ag* By in the topology 7. Since the
operation “*” is continuous in the Vietoris topology, there are neighborhoods V, W € V of Ay,
By, respectively, such that V«W C U. We consider separately two cases: By = 0 and By # 0.
In the first case we claim that (V'\ Far) * (W\ For) C U\ Fy. Indeed, suppose on the contrary
that A* B E Fj, for some A € V\ Iy, and B € W\ Fy,. Then A% B C {re' :m € N} for
some r > k|A 57 By the definition of the operation “+” , |AxB| < |A|+|B]| < 2max{|A|, |B|}.
Without loss of generality, |A| > | B| and hence |AxB| < 2|A|. Then AxB C {re'/™ : m € N}
for r > m implies A C {r'e/™ : m € N}, where v/ > m > %A', le, A€ Fy, a
contradiction. Therefore, (V\ Far) * (W\ Fyr) C U\ Fy.

Now consider the case By # 0. Find mg € N such that arg(z) > m%) and |z| > m%) for
every z € By. We may choose a neighborhood W of By such that arg(z) > m%) and |z| > m%)
for each z € B € W. We claim that (V\ Fakpm,) * W C U\ Fj. Suppose on the contrary that
A% B C Fy for some A € V\Fapp, and B € W. Then A * B C {re!/™ : m € N} for some
By the definition of the operation “x” this implies B C {rge’/™ : m € N} for

klAl*B| and A C {rAei/m tmC N} for some ry4 >
each z € B, we get |B| < mg. Then

1
T2 WA-Bl

some rg > Since arg(z) > m%) for

k|A*B|‘

k| A B] < k(|A| +|B|) < k(JA] + mo) < 2kmo| A

Hence

1 1
> >
" AR Bl T 2kemol A

and A € I, a contradiction.

Therefore (S, 7,%) is a topological semilattice. Since the natural inclusion a: T — S is
continuous with respect to the topology 7 on S and SL(T)) is a free topological semilattice, the
(unique) semilattice homomorphism a: SL(T) — S extending the map « is continuous. By
the definition of the topology 7, the point 0 is not cluster for the set Fy C S. Consequently,
0 is not a cluster point for the subset a~'(F}) in SL(T). Because F' C a~*(F}) this implies
that 0 is not a cluster point for the set F'in SL(T'). Consequently, the map SL(f) is not an
embedding.

Considering the semilattices of idempotents, by similar arguments it can be shown that

the maps I(f), IC(f) and [ A(f) neither are embeddings. O

Question 2. Is Theorem 5 true for all functionally Hausdorff spaces Y7 (Notice that the
proof can be adapted in order to show that the theorem holds for first countable stratifiable
spaces Y).
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SOME TOPOLOGICAL PROPERTIES OF FREE TOPOLOGICAL INVERSE SEMIGROUPS

First, we derive from Theorem 4 the following important

Theorem 6. If X is a Tychonoff local k,-space then so are the spaces [(X), IC(X), [A(X),
and SL(X).

Proof. Suppose X is a Tychonoff local k,-space. Show firstly that I(.X) is a local k,-space.
Fix any point @ € I(X). Since X is a local k,-space, the finite set supp(a) has an open
neighborhood U which is a k,-space. According to Theorem 3, I(U) is a k,-space and by
Proposition 2 and item 6 of Theorem 4, I(U) is an open subspace of [(X). Since a € [(U),
we see that [(U) is a k,-neighborhood of a. Thus I(X) is a local k,-space.

To show that I(X) is Tychonoff let F' be a closed subset in [(X) such that a ¢ F. Since
X is Tychonoff, we may find a neighborhood V' C X of supp(a) such that V = clx(V) C U.
Then by Proposition 2, I(V) is a closed subset of I(X). The space I(U), being a k,-space,
is Tychonoff. Thus, there is a continuous function f: [(U) — [0, 1] such that f(a) =1 and
JWI(UNI(V))U F) = 0. Extend f over all I(X) letting f|rxy7v) = 0. Obviously, the so
extended map is continuous and has the properties: f(a) =1 and f(F) = 0. Thus the space
I(X) is Tychonoff. O

It follows from the proof of Theorem 3 that in the case of a k,-space X the structure
of compact subsets of I(X) is quite understandable: every such a subset K C [(X) lies in
I,,(C) for some compact subset C' C X and some n € N. It turns out that the same is true
for any functionally Hausdorff space X.

Proposition 3. For a functionally Hausdorff space X and a compact subset K of I(X)
(resp. of IC(X), [A(X), SL(X)) there are a compact subset C' C X and n € N such that
K lies in I,,(C) (resp. 1C,(C), [A,(C), SL,(C)).

Proof. Let supp: I(X) — exp,(X) be a unique homomorphism extending the identity em-
bedding X C exp,(X). By the continuity of the homomorphism supp, the subset supp(K)
of exp,(X) is compact. Consequently, its union C' = U,ecx supp(a) is a compact subset of
X. By Theorem 4, the natural homomorphism I(C') — I(X) is a topological embedding.
Thus we can consider K as a compact subset of the k,-semigroup /(C'). Since the collection
{I.(C)}en generates the topology of I(C') (see the proof of Theorem 3), we conclude that
K C I,(C) for some n € N.

The same argument works in the case of the semigroups IC(X), TA(X), and SL(X). O

Remark that each local k -space is a k-space. According to [4] the free topological group
F(X) over a metrizable space X is a k-space if and only if either X is discrete or X is
a ky-space; the free topological Abelian group A(X) over a metrizable space X is a k-space
if and only if X is a topological sum of a discrete space and a k,-space. What can be said
about free topological inverse semigroups?

Proposition 4. Suppose X is a functionally Hausdorff space. If the free topological inverse
semigroup I(X) (or IC(X), TA(X), SL(X)) is a k-space, then every closed metrizable

subspace in X is locally compact.
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Proof. Suppose X contains a closed non-locally compact metrizable subspace. Then X
contains a closed topological copy of the above-mentioned non-locally compact space T =
{0y U {Le/™ : nym € N} C C, see [22, 8.3] or [8]. Let f: Ty — X be the corresponding
closed embedding. Then the map g = f- f~': Ty — E(I(X)), g : v — f(2)(f(x))™! is
a closed embedding of Ty into the subset F(I(X)) of all idempotents of I(X). (This follows
from the equality supp og = supp of and the fact that suppof = f is a closed embedding,
where supp : 1(X) — exp,(X) is a unique continuous homomorphism extending the natural
embedding X C exp,(X)). Let ag = ¢(0) and a,,, = g(lei/m> for n,m € N and put

n
bum = Gmm * G141 Ggn,mtn for n,m € N Consider the set

Z =Aanm  bpm:m>n} C E(I(X)).

We claim that 7 is a closed set in [(X). Since I(X) is a k-space, it suffices to verify
that the intersection Z N K is closed in K for any compact subset K C I(X). So, fix
a compactum K C [(X). By Proposition 3, K C [,,(C) for some ng € N and some
compact subset €' C X. Since f: Ty — X is a closed embedding, f~*(C) is a compact
subset of Ty. Thus there exists my € N such that %ei/m ¢ f~H(C), provided n < ng and
m > mg. Fix any point ay,m - by € Z N K. Then apm - bym € 1,,(C) and thus n < ng
and supp (anm - bnm) C C. Since f(%ei/m> € supp (anm - bpm) C C we get m < my.
This implies that the intersection Z N K C {anm - bum : 0 < ng,m < mg} is finite and,
consequently, closed in K. Therefore the set 7 is closed in I(X). Now use the continuity of
the multiplication to find a neighborhood U C I(X) of ag = ¢(0) such that (U-U)NZ =@
(remark that ag ¢ Z and ag - ag = ag). Since g~'(U) is a neighborhood of 0 in Ty, there
exists ng € N such that %ei/m € g *(U) for all n > ng and m € N. This implies a,,,, € U for
any n > ng and m € N. Since a;° = g there is a neighborhood V' of @ such that V™ C U.
Since the sequence {a, .} tends to ag as m — oo, there is mg > ng such that a,, ., € V for
any m > mg. This implies b, m, € U and thus @,y mg - bng.me € (U - U) N Z, a contradiction
with (U -U)NZ = @. O

Theorem 6 and Proposition 4 imply the following theorem characterizing metrizable
spaces whose free topological inverse semigroups are k-spaces.

Theorem 7. For a metrizable space X the following conditions are equivalent:
1) one of the spaces I(X), IC(X), [A(X), or SL(X) is a k-space;
2) the semigroups [(X), IC(X), TA(X), and SL(X) are Tychonoff local k,-spaces;
3) the space X is locally compact.
Now we consider some dimension questions connected with free topological inverse semi-

groups. Recall that a space X is defined to be totally disconnected if for every distinct points
x,y € X there is a clopen (= closed-and-open) subset /' C X such that € U but y ¢ U.

Theorem 8. If X is a totally disconnected space then so are the spaces I(X), 1C(X),
TA(X), and SL(X).

Proof. Suppose X is totally disconnected. Fix two distinct points a,b € (X)) and let
C = supp(a) U supp(b). Since C is a finite subset of X, there is a retraction r: X — C
which induces the retraction I(r): I(X) — I(C). According to statement 1 of Theorem 4,
I(C) is a discrete subspace in [(X). Thus the set {a} is a clopen neighborhood of a in I(C)
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not containing the point b. Consequently, U = (1(r))~" ({a}) is a clopen neighborhood of a
in [(X) such that b ¢ U. Therefore, [(X) is totally disconnected. By analogy, prove that
the spaces [C(X), TA(X), and SL(X) are totally disconnected too. O

Under a zero-dimensional space we understand a topological space X admitting a base
of topology consisting of clopen subsets (of course, this is equivalent to ind X < 0). Evi-
dently, every zero-dimensional Hausdorff space is totally disconnected. For compact spaces
the converse is also true, see [23, 7.1.12]. Moreover, since each k,-space is normal (see [26]),
Theorem 7.2.1 [23] implies that the same is true for k,-spaces: any totally disconnected
k.-space is zero-dimensional.

Since the zero-dimensionality is a local property, we get that a regular local k,-space is
zero-dimensional if and only if it is totally disconnected. This fact and Theorems 6 and 8
imply

Theorem 9. If X is a zero-dimensional local k,-space then so are the spaces [(X), IC(X),
TA(X), and SL(X).

Question 3 Are the spaces [(X), IC(X), TA(X), and SL(X) zero-dimensional for a zero-

dimensional space X7

ISOMORPHISMS OF FREE TOPOLOGICAL INVERSE SEMIGROUPS

The main result of this section reads as follows (for related results, see [2], [3], [6], [40],

[43]).

Theorem 10. For functionally Hausdorff spaces X, Y the following conditions are equiva-
lent:

1) X and Y are homeomorphic;

2) the free Lawson semilattices exp, (X) and exp,(Y') are isomorphic;

3) the free topological semilattices SL(X) and SL(Y) are isomorphic;

4) the free topological inverse Abelian semigroups I A(X) and I A(Y') are isomorphic;
5) the free topological inverse Clifford semigroups IC(X) and [C(Y') are isomorphic;
6) the free topological inverse semigroups 1(X) and I(Y') are isomorphic.

Proof. The implications 1) = 1), ¢ =2,...,6, are trivial.

To prove 2) = 1) and 3) = 1) notice that points of X can be identifies with the minimal
elements of the semilattices exp, (X) and SL(X) (every semilattice is partially ordered by
the relation s < &' if and only if s - s = &).

To prove 4) = 1) and 5) = 1) notice that the map assigning to each € X the idem-
potent zz~! is a homeomorphism of X onto the set of minimal elements of the semilattice
of idempotents of 1C(X) (or TA(X)).

Finally, consider the implication 6) = 1). First, remark that each minimal idempotent
of the semigroup /(X)) is of the form za~" or 7' for some @ € X. This can be easily seen
analyzing the Petrich construction of a free inverse semigroup Iy over X [45]. Moreover, one
may prove that the map ix: XUX™! — [(X) assigning to each x € XU X! the idempotent
xz~ ! is a homeomorphism of the topological sum X LI X! onto the subspace of all minimal
idempotents of the semilattice I(.X).
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Observe that ix (z71) = (iX(:L'))_l for each x € X U X', Define the retraction | -
|x: XUX™' = X letting |z|x =z if 2 € X and |z|x = 27! if # € X~! (we suppose that
(:1:_1)_1 = ). By analogy, define the maps iy: YUY ™' = [(Y)and |- |[y: YUY =Y.

Now suppose h: I(X) — I(Y) is a topological isomorphism. Then it induces a homeo-
morphism between the sets of minimal idempotents. Hence hoix (X UX™1) =4y (YUY ™).
Consider the maps f: X — Y and ¢g: Y — X, where f(z) = ‘z{,l ohoiX(:L')‘Y for x € X
and g(y) = ‘z)_(l ohlo iy(y)‘X for y € Y. We claim that fog¢g =idy and go f =idy, i.e. [
is a homeomorphism. Indeed, fix any z € X and let y = f(x). Then either yy=' = h (za™")
or y~'y = h(zz™'). In the first case,

o) = iz o b () = iz oA o h (a1 =|ix! (a5, = folx = .

Now consider the second case: y~'y = I (zz™'); h (x7'z) being a minimal idempotent of I(Y)
is of the form h (z7'z) = 227! for some z € Y U Y ™. The equality

y lyzz Ty Tz =0 ((:1;:1;_1)(:1;_1:1;)(:1;:1;_1)(:1;_1:1;)> =
=h ((:1;(:1;_1:1;_1)(:1;:1;)(:1;_1:1;_1):1;> =h ((:1;:1;_1:1;_1:1;> =y lyzz!
implies 2 = y or 2 = y~*. In fact, the case z = y~! not possible because zz7' = h (27 'z) #
h(zz™') = y~'y. Consequently, h (z7'z) = yy~'. Then

gly) = |ix" o™ (yy )|y = [ix o hT o h (@7 h2) [ =[5 (a7 )| = [T = =
Thus go f =1dx. By analogy we may verify that f o g = idy. 0

Therefore, the isomorphic classification of the free inverse semigroups 1(X) (resp. IC(X),
TA(X), SL(X), and exp, (X)) coincides with the topological classification of the spaces X.
What can be said about topological classification of these semigroups? The situation here
is more complicated. We begin with three characterizations.

Let lj% denote the linear hull of the standard orthonormal basis of the separable Hilbert
space [?. Evidently, lj% may be written as a countable union /5 = [J_ R", where

R" = {(z;) € *:2;=0for i >n} C I

Besides the topology inherited from /2, there is another natural topology on (%, that generated
by the collection {R"} .. The obtained topological space is denoted by R (thus, a subset
U is open in R* if and only if U N R" is open in R" for all n € N).

Theorem A [21]. The free Lawson semilattice exp,(X) is homeomorphic to [} if and
only if X is a connected locally path-connected o-compact strongly countable-dimensional
metrizable space.

Theorem B [9]. The free topological semilattice SL(X) is homeomorphic to R* if and
only if the topology of X is generated by a countable increasing collection { X, }°2, of finite-
dimensional non-degenerate Peano continua.

Recall that a space X is strongly countable-dimensional, provided X can be expressed as
a countable union of closed finite-dimensional subspaces; a Peano continuum is, by definition,
any connected locally connected metrizable compact space.

To give the third characterization we need to recall the definition of a bitopological space
that is a triple (X, 7,7’) consisting of a set X and two topologies 7 and 7/ on X. Often
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a bitopological space (X, 7, 7’) is identified with the pair ((X, ), (X, 7)) of topological spaces.
Two bitopological spaces (X,7x,7%) and (X, 7y, 7y ) are called homeomorphic if there is
a bijective map h: X — Y which is both a homeomorphism of (X,7x) and (Y, 7y) and
a homeomorphism of (X, 7% ) and (Y, 7). The pairs (I3, R*) and (exp,,(X), SL(X)) are just
examples of bitopological spaces.

Theorem C [10]. The bitopological space (exp,(X), SL(X)) is homeomorphic to (17, R*)
if and only if X is a connected locally connected locally compact locally finite-dimensional
metrizable space.

These characterizations imply the following remarks.

Remark 2. There are spaces X, Y such that exp (X) and exp,(Y") are homeomorphic, but
SL(X) and SL(Y) are not (e.g. X =1[0,1], Y =13).
Remark 3. There are spaces X, Y such that SL(X) and SL(Y) are homeomorphic, but
exp,(X) and exp,(Y) are not (e.g. X =10,1], Y = R>).
Remark 4. There are spaces X, Y such that the bitopological spaces (exp,(X), SL(X)) and
(exp,(Y), SL(Y)) are homeomorphic, but X and Y are not (e.g. X =1[0,1], Y = (0, 1]).
Remark 5. 1f exp,(X) is homeomorphic to [} and SL(X) is homeomorphic to R* then
the bitopological space (exp,,(X), SL(X)) is homeomorphic to ({7, R™).
Question 4. Do there exist X, Y such that

1) exp,(X) is homeomorphic to exp,(Y);

2) SL(X) is homeomorphic to SL(Y);

3) (exp,(X),SL(X)) is not homeomorphic to (exp,(Y), SL(Y))?

Question 5. Do there exist Peano continua X and Y such that SL(X) and SL(Y) are
homeomorphic, but exp,,(X) and exp,(Y) are not?

Some partial results are known also for the semigroups IC(X) and TA(X). We recall
that a space X is called a Fuclidean retract if X is homeomorphic to a retract of a finite-
dimensional Euclidean space, see [11, §1] or [12].

Theorem D [29]. If X is a Euclidean absolute retract, then the semigroups 1C(X x [0,1])
and [A(X x [0,1]) are homeomorphic to R*™ x Z.
In light of Theorems B and D the following question seems to be natural (cf. [50]).

Problem. Characterize the topological spaces X whose free topological inverse semigroup

I(X) (resp. IC(X), TA(X)) is locally homeomorphic to R™.

Since for non-homeomorphic X, Y their free topological semilattices may be homeomor-
phic let us ask the following
Question 6. Describe the classes P of topological spaces, having the following property: if
I(X) is homeomorphic to I(Y) and X € P, then Y € P.

Let us define two spaces X, Y to be [-equivalent if I[(X) is homeomorphic to I(Y).
Similarly, define IC-, I A-, SL-, and exp_-equivalent spaces.

We define a class P of topological spaces to be

o topological if any topological copy of a space X € P belongs to P;

o closed-hereditary if for every space X € P every closed subspace of X belongs to
the class P;
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o closed under finite products if X xY € P for every X, Y € P;

o closed under images of closed maps of finite order if a Tychonoff space X belongs to P,
whenever there exists a surjective closed map f: Y — X of a space Y € P such that

supgex |/ ()] < Ro;
o o-closed if X € P whenever X can be written as a countable union X = (J'_, X, of
closed subsets X,, C X with X,, € P;

o weakly o-closedif X € P, whenever X can be written as a countable union X = J7_, X,

of subsets X,, C X with X,, € P, such that X = [J _, Int(.X,,).

The following general theorem answers Question 6.

Theorem 11. Suppose P is a topological closed-hereditary weakly o-closed class of topo-
logical spaces, closed with respect to finite products and images of closed maps of finite
order.

1. Suppose X and Y are I-, IC-, TA-, SL-, or exp, -equivalent Tychonoff spaces. If
the class P is o-closed and X € P, then Y € P.

2. Suppose X and Y are [-, IC-, [ A- or S L-equivalent functionally Hausdorff spaces. If
X € P andY is first countable then Y € P.

Proof. Recall that S(X) = @,_, X* is a free topological semigroup over X and S,(X) =
P, X*. n € N. Now suppose X € P is a Tychonoff space. Let px: S (XU X™') = I(X)
be the natural homomorphism. Let us show that the restriction pX|5n(X|_|X—1) 1s a closed
map. For this consider the commutative diagram

S, (XUXHe—S, (X UpX

pxl lpﬁx

I(X) —— o 1(3X)

where (i) is the homomorphism induced by the embedding i: X — GX of X into its
Stone-Cech compactification. To show that px |s.(xux-1y is a closed map, fix any closed set
F C S, (XUX™') and let F be the closure of Fin S, (3X UBX~!) which is, obviously,
compact. Then psx (F) is compact, and consequently, px(F) = (I(i))™" (pﬁX (F)) is closed
in I(X). This proves that px|s,(xux-1) is a closed map of finite order (the latter being
obvious). This implies 1,,(X) = px (S, (X U X™1)) € P is closed in I(X).

Now suppose a Tychonoff space Y is [-equivalent to X. Since Y embeds as a closed
subset into I(Y), we get that Y is homeomorphic to a closed subset Y in I(X). Then

Y =12, <3~/ N [n(X)> is a countable union of closed subsets from the class P (which is
closed-hereditary). In the case of a o-closed class P this implies Y € P and Y € P because
P is a topological class. Similar arguments work also in the case of IC-, [A-, SL-, and

exp,-equivalences.
Suppose now X € P and Y is first countable. We shall show that

Y = G Int (f/ n [n(X)> .
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Fix any point y € Y. We have to prove that y has a neighborhood U C Y which lies in
I,(X) for some n € N. Assuming the converse and using the fact that Y is first countable
at y, we could construct a sequence (y,,) C Y convergent to y and such that y, ¢ I1,(X) for
every n € N.

Since K' = {yo} U{y, : n € N} is compact in 1(X), Proposition 3 implies that K C
I,(X) for some n € N, a contradiction with the choice of the sequence (y,). Thus Y =

Uo—, Int <3~/ N [n(X)> and Y € P (because P is weakly o-closed). The same arguments

work also in the cases of IC-, I A-, and S L-equivalences (but not exp -equivalences). 0

Remark 6. Theorem 11 implies that in the class of metrizable (separable) spaces many
important topological properties are preserved by [-, IC-, [ A- and S L- equivalences. Among
such properties there are dimension properties such as the local finite-dimensionality and the
(strong) countable-dimensionality (see [24, Ch.5]) as well as many descriptive properties such
as belonging to a given Borel or projective class (see [33]).

ONE APPLICATION

[t is known that each topological group is a quotient-group of a zero-dimensional group [3].
In this section we prove a semigroup counterpart of this result. Recall that a topological
space X is called sequential if a subset F' C X is closed if and only if for every convergent
in X sequence (x,,) C F we have limz,, € F' [23, §1.6].

Theorem 12. For every topological inverse semigroup X which is a k-space (resp. a sequen-
tial space) there is a quotient homomorphism h: Y — X of a topological inverse semigroup
Y which is a topological sum of zero-dimensional (resp. countable) k,-spaces. Moreover if
X is Clifford, Abelian or a semilattice, then the same is Y.

Proof. Consider firstly the case where X is sequential. Then by Franklin Theorem [25], there
is a quotient map f: Y — X of a topological sum of all convergent sequences of X onto
the space X. By the definition of a free topological inverse semigroup, there is a unique
homomorphism h: I(Y) — X extending the map f. Evidently, & is a quotient map. Theo-
rems 3, 4 and Propositions 1, 2 imply that I(Y) is a topological sum of countable k,-spaces.

If X is a k-space then there is a quotient map f: Y — X of a topological sum of zero-
dimensional compacta onto X. Using Theorems 3, 4, and 9, and Propositions 1, 2 we get X
is a quotient semigroup of the free topological inverse semigroup which is a topological sum
of zero-dimensional k_-spaces.

If X is Clifford, Abelian or a semilattice, replace in the preceding arguments /(Y) by
the corresponding free semigroups. O
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