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A problem on the relation between the [-index boundedness of an entire function and the
growth of its index in the sense of G.Frank is stated.
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[MocTaBrena 3agada o CBA3M MeX Iy OrPAaHUIEHHOCTHIO [-MHIeKca 1eJon GYHKINT W POCTOM
ee nHaekca B cMmbicae ['.Ppanka.

Definitions. Let [ be a positive continuous function on [0, 4+00). An entire function f is
said to be of bounded [-index [1] if there exists N € Z such that for alln € Z; and z € C
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The least of such N is called the [-index of f and denoted by N(I; f). For {(r) = 1 whence
we obtain the definition [2] of entire function of bounded index N(f) = N(I; f).

An entire function f is said to be of bounded [-M-index [3] if there exists N € Z, such
that for all n € Z; and r € [0, +00)
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where M(r, f) = max{|f(z)| : |z| = r}. For I(r) = 1 whence we obtain the definition [4] of
entire function of bounded M-index.
Clearly, if f is an entire function of bounded [-index then f is an entire function of

bounded [- M-index. -
As in [5], we denote cs(a) = maX{w i n €& Z+}7 kf(a) = max{k 17 k’( @)l =

=c¢s(a)} and I(r, f) = sup{ks(a) : |a| < r}. Then f is an entire function of bounded index
if and only if I(r, f) = O(1), r — +oo.
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Finally, let J(r, f) = max {]
J(r, f) < I(r, ).

Some results on the growth. In [7-8] it is shown that if an entire function f is of
bounded index then

for all n € Z+}. Then [6]

o My(r)
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Let K be the class of positive analytic on [0, +o0) functions [ such that I'(x) = o({*(x)),
r — 400, and @) be the class of positive continuous on [0, 4+00) functions [ such that
l(x 4+ O(1/l(x))) = O((x)), x = +oo. It is known [1; 9, p. 72] that if [ € K and f is of
bounded [-index then

< N(f) + 1.

m In M(T, f)
r—r+o0 L(T)
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If 1 € @ and f is of bounded [-index then [9, p. 71] In M(r, f) = O(L(r)), r — +oc.
Finally, in [5-6] it is shown that if an entire function f has the order p < oo then

1H+ J(T, f) 1. 1H+ [(T, f)

— < lim — 2 <« — 2 < p,
max{0, p— 1} < rgg—nm Inr - rgg—nm Inr =P

Problems. The main problem consists in establishment of a relation between the be-
haviour of I(r, f) and the boundedness of the [-index of an entire function f.

If {(r) =1 and f is of bounded [-index then I(r, f) = O(l(r)), r — +o00. Therefore, the
following problem is actual: for which functions [ the boundedness of the l-index of an entire
function f implies the relation I(r, f) = O(l(r)), r — +o0 ?

We remark, that if [ € K and [(r) — 0, r — oo then there is not exist an entire
function f of bounded [-index such that I(r, f) = O(l(r)), r — 4o0. Indeed, if such function
f exists then in view of (1) In M(r, f) = o(r), r — +00, and, thus, f has zeroes. Therefore,
I(r,f) > 1 for greater r. On other hand, since I(r, f) is nondecreasing and I(r, f) =
O(l(r)) = o(1), r — +oo, then I(r, f) = 0.

We can show only certain conditions on [ in order that the boundedness of the [-index of
an entire function f implies the relation J(r, f) = O(l(r)), r — +o0.

By Q we denote a class of positive on (—oo,4+00) functions ® such that the derivative
¢’ is continuous, positive and increasing to +o0o on (—oo,+00). For & € Q let U(x) =
x — ®(x)/P'(x) be a function associated with @ in sense of Newton. Then W is continuous
and increasing to +oo on (—oo, 400).

Theorem. Let & € Q, &'(x) = O(P'(¥(x)) and ¢'(x + O(e™")) = O(P'(x)) as  — +o0.
Let | € K and l(r) = ®'(In r)/r for r > ro. If an entire function f is of bounded [-index
then J(r, f) = O(l(r)), r — +oo.

¢'(In r)

Proof. Since | € K and [(r) =

r — +o0, and from (1) we obtain

for r > 1y, we have L(r) = ®(In r) + O(1),

m In M(T,f)

r—tco ®(In r) SN+ L 2)
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By Hadamard’s theorem the function In M(e”, f) is convex on (—oo, +00), i.e.

xr

In M(e", f) = A+ /w(t)dt, (3)

zo
where w is nondecreasing function on (—oo, +00). N

In [10] the following lemma is proved.

Lemma 1. Let C' be the class of convex functions P on [a, b) and let ® be a continuously
differentiable function on [a, b) such that ®'(x) — 400, © — b. In order that for each P € C

(e <) = (Fgm <)

where P’ is right-side derivatives of P, it is necessary and sufficient that

1 (1)
}L’IL% P'(x) glaf; t—x < Foo
If @ € Q) then
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Therefore, since ®'(x) = O(®'(¥(x)), + — +oo, by Lemma from (2) and (3) we obtain
w(t) =0(P'(t)), t — +oo.

In [6] it is proved that J(r,f)In2 < In % for all » > 0. Hence, since
P'(x 4+ O(e™™)) = O(P'(x)) as v — 400,
In (r+2)
J(r, f) < ﬁ(ln M(eln(r"'z),f) —In M(™7, f) = ﬁ / w(t)dt <
In (r+2) "

<C; / O'(t)dt < C1®'(In(r +2))In (1 + %) <
”

In r

Y(nr) @nr£2/r) 0 M) _ i,
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<204 . ' (In 1) < " C'; = const

Remark. The condition [ € K can be replaced by the condition [ € ().
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