УДК 517.95

M. M. Bokalo, V. M. Dmytriv

A FOURIER PROBLEM FOR QUASI-LINEAR PARABOLIC EQUATIONS OF ARBITRARY ORDER IN NONCYLINDRIC DOMAINS

M. M. Bokalo, V. M. Dmytriv. A Fourier Problem for quasi-linear parabolic equations of arbitrary order in noncylindric domains, Matematychni Studii, 14 (2000) 175–188.

The well-posedness of the Fourier Problem defined in noncylindric domains has been proved for some class of quasi-linear parabolic equations of higher order. No conditions on the behaviour of a solution and increasing of the data-in at $t \to -\infty$ are required.

Н. М. Бокало, В. М. Дмытрив. Задача Фурье для квазилинейных параболических уравнений произвольного порядка в нецилиндрических областях // Математичні Студії. — 2000. — Т.14, №2. — С.175—188.

Установлена корректность задачи Фурье для некоторого класса квазилинейных параболических уравнений высших порядков в нецилиндрических областях. Не накладывается никаких условий на поведение решения и рост начальных условий при $t \to -\infty$.

1. Introduction. The boundary value problems in unbounded domains for linear and variety of nonlinear parabolic equations are well-posed if there are some restrictions on behaviour of the a solution and increasing the data-in at infinity (see [7,9–10] and other).

But there are a number of papers (see [1–6,11] and other) where the classes of nonlinear equations which have unique solutions of the corresponding boundary value problems without any restrictions on its behaviour at infinity whereas data-in has free arriving at infinity are founded.

Individually, for the Fourier Problem such results have been obtained for quasi-linear parabolic equations of arbitrary degree with strong monotone space part [4-5]. In these papers the problem is posed in cylindric domain. In our paper analogous results are transmitted into the same problem posed in noncylindric domains.

2. Statement of problem and formulation of main results. Let $Q \subset \mathbb{R}^{n+1}_{x,t}$ be a domain in $\{(x,t): t < T\}$, where $0 < T < +\infty$. Suppose that for every $\tau \in (-\infty; T)$ set $\Omega_{\tau} = Q \cap \{(x,t): t = \tau\}$ is bounded and nonempty; $\Sigma = \partial Q \cap \{(x,t): t < T\}$ is an n-dimensional hyperplane of class C^m and $\nu_{n+1} \neq \pm 1$ on Σ , where $\nu = (\nu_1, \ldots, \nu_n, \nu_{n+1})$ is the external unit vector normal to the surface Σ in the space $\mathbb{R}^{n+1}_{x,t}$.

We consider the problem

$$u_t + \sum_{|\alpha| \le m} (-1)^{|\alpha|} D^{\alpha} a_{\alpha}(x, t, \delta u) = \sum_{|\alpha| \le m} (-1)^{|\alpha|} D^{\alpha} f_{\alpha}(x, t) \quad \text{in} \quad Q,$$
 (1)

2000 Mathematics Subject Classification: 35D05, 35G30, 35K35, 35K55, 35K60.

$$\frac{\partial^{j} u}{\partial \nu^{j}} = 0 \quad \text{on} \quad \Sigma, \quad j = 0, 1, \dots, m - 1.$$
 (2)

Here m is an arbitrary natural number, δu is a vector consisting of all possible derivatives $D^{\beta}u = \frac{\partial^{|\beta|}u}{\partial x_1^{\beta_1}\partial x_2^{\beta_2}\cdots\partial x_n^{\beta_n}}$ of the degree less than or equal to m, and N is the dimension of this vector. From now on, the letters α, β, γ denote multiindexes of length n.

We impose the following conditions on the data-in:

- (A1) the functions $a_{\alpha}(x,t,\xi)$ ($|\alpha| \leq m$) are defined for almost all points $(x,t) \in Q$ and all vectors $\xi \in \mathbb{R}^N$ with coordinates ξ_{β} ($|\beta| \leq m$) and of Caratheodory type, that is they are measurable on (x,t) for all ξ and continuous on ξ for almost all (x,t); $a_{\alpha}(x,t,0) = 0$ ($|\alpha| \leq m$);
- (A2) there is some number $p \ge 2$ such that for all α ($|\alpha| \le m$)

$$|a_{\alpha}(x,t,\xi)| \leq h_{\alpha}(x,t) \sum_{|\beta| \leq m} |\xi_{\beta}|^{p-1} + k_{\alpha}(x,t),$$

where $h_{\alpha} \in L_{\infty,loc}(\overline{Q}), k_{\alpha} \in L_{p',loc}(\overline{Q}), \frac{1}{p} + \frac{1}{p'} = 1;$

(A3) for arbitrary vectors $\xi, \eta \in \mathbb{R}^N$ and for almost all $(x, t) \in Q$ the following inequality holds:

$$\sum_{|\alpha| \leq m} (a_{\alpha}(x, t, \xi) - a_{\alpha}(x, t, \eta))(\xi_{\alpha} - \eta_{\alpha}) \geqslant K_0 \sum_{|\alpha| = m} |\xi_{\alpha} - \eta_{\alpha}|^p,$$

where K_0 is a positive constant;

(A4)
$$f_{\alpha} \in L_{p',\text{loc}}(\overline{Q}) (|\alpha| \leqslant m).$$

Remark 1. Let us note that as an example of an equation satisfying the conditions (A1)-(A4), we may consider the equation

$$u_t + \sum_{|\alpha| = m} (-1)^{|\alpha|} D^{\alpha} (|D^{\alpha} u|^{p-2} D^{\alpha} u) = \sum_{|\alpha| \leqslant m} (-1)^{|\alpha|} D^{\alpha} f_{\alpha}(x, t),$$

where $p \ge 2$, $f_{\alpha} \in L_{p',\text{loc}}(\overline{Q})$ ($|\alpha| \le m$). It follows from Lemma 1.2 [4] that condition (A3) is valid with $K_0 = 2^{2-p}$.

For a domain Ω in \mathbb{R}^n_x and a natural number k, we denote by $\overset{\circ}{W}^k_p(\Omega)$ the completion of the space $C_0^{\infty}(\Omega)$ by the norm $||v|| = \sum_{|\alpha|=k} ||D^{\alpha}v||_{L^p(\Omega)}$, and by $W_{p'}^{-m}(\Omega)$ the dual space to $\overset{\circ}{W}^m_p(\Omega)$.

Let $Q_{t_1,t_2} = Q \cap \{(x,t) : t_1 < t < t_2\}$, where t_1,t_2 are arbitrary numbers, $-\infty < t_1 < t_2 \leqslant T$. $\mathring{W}_p^{k,0}(Q_{t_1,t_2})$ stands for the completion of the space $C_0^{\infty}(Q_{t_1,t_2})$ by the norm $||v|| = \sum_{|\alpha|=k} ||D^{\alpha}v||_{L^p(Q_{t_1,t_2})}$. Denote by $\mathring{W}_{p,\text{loc}}^{m,0}(\overline{Q})$ the space of measurable on Q functions whose restrictions on Q_{t_1,t_2} for arbitrary numbers $t_1,t_2,-\infty < t_1 < t_2 \leqslant T$, belong to the space $\mathring{W}_p^{m,0}(Q_{t_1,t_2})$.

Definition 1. A generalized solution of Problem (1), (2) is a function $u \in \mathring{W}_{p,\text{loc}}^{m,0}(\overline{Q})$, satisfying for any functions $\psi \in C_0^{\infty}(Q)$ the following integral equality

$$\iint\limits_{Q} \left\{ -u\psi_t + \sum_{|\alpha| \le m} a_{\alpha}(x, t, \delta u) D^{\alpha} \psi \right\} dxdt = \iint\limits_{Q} \sum_{|\alpha| \le m} f_{\alpha} D^{\alpha} \psi dxdt. \tag{3}$$

In the sequel we assume that conditions (A1)–(A4) hold. We shall consider the question of well-posedness of Problem (1), (2) i.e. we shall study conditions under which a generalized solution 1) exists for each set of functions $\{f_{\alpha} \in L_{p',loc}(\overline{Q}), |\alpha| \leq m\}$; 2) is unique; 3) continuously depends on data-in.

Continuous dependence of the generalized solution of Problem (1), (2) on data-in is understood as follows: for arbitrary sequences $\{f_{\alpha,k}\}_{k=1}^{\infty} \subset L_{p,\text{loc}}(\overline{Q}) \ (|\alpha| \leqslant m)$ such that $f_{\alpha,k} \underset{k \to \infty}{\to} f_{\alpha}$ in $L_{p,\text{loc}}(\overline{Q}) \ (|\alpha| \leqslant m)$ the corresponding sequence of generalized solutions $\{u_k\}$ of Problem (1), (2) with f_{α} replaced by $f_{\alpha,k} \ (|\alpha| \leqslant m)$ converges to a generalized solution u of Problem (1), (2) in $\overset{\circ}{W}_{p,\text{loc}}^{m,0}(\overline{Q})$.

Note that $g_k \to g$ in $L_{p,\text{loc}}(\overline{Q})$ $(\overset{\circ}{W}_{p,\text{loc}}^{m,0}(\overline{Q}))$, if for any numbers t_1, t_2 $(-\infty < t_1 < t_2 \leqslant T)$ $g_k \to g$ in $L_p(Q_{t_1,t_2})$ $(\overset{\circ}{W}_p^{m,0}(Q_{t_1,t_2}))$.

Let for any multiindex α ($|\alpha| = m$) $\lambda_{\alpha} \in L_{\infty,loc}((-\infty,T])$ be a positive function, such that

$$||v||_{L_2(\Omega_t)} \leqslant \lambda_{\alpha}(t)||D^{\alpha}v||_{L_p(\Omega_t)} \tag{4}$$

for arbitrary $t \in (-\infty, T)$ and $v \in \overset{\circ}{W}_{p}^{m}(\Omega_{t})$ (see [4, Lemma 1]). Remark 2. Let $\Omega_{t} \subset K_{t} = \{x : -\infty < a_{j}(t) < x_{j} < b_{j}(t) < \infty, j = 1, ..., n\}$ for any $t \in (-\infty, T)$. In this case we can choose $\lambda_{\alpha}(t) = \prod_{l=1}^{n} (b_{l}(t) - a_{l}(t))^{p\alpha_{l}}, \ t \in (-\infty, T)$.

Let for any natural number $k \varkappa_k \in L_\infty((-\infty,T])$ be a positive function such that

$$||v||_{L_p(\Omega_t)} \le \varkappa_k(t) \Big(\sum_{|\alpha|=k} ||D^{\alpha}v||_{L_p(\Omega_t)}^p \Big)^{\frac{1}{p}}$$
 (4')

for arbitrary $t \in (-\infty, T]$ and $v \in \overset{\circ}{W}^k_p(\Omega_t)$. Put $\varkappa_0(t) = 1$ for all $t \in (-\infty, T]$.

Theorem. Suppose that p > 2 and there exists a multiindex γ ($|\gamma| = m$) such that $\lambda_{\gamma}(t) \sim K_{\gamma}|t|^r$ at $t \to -\infty$, where K_{γ} , r are constants satisfying $K_{\gamma} > 0$, $r < \frac{1}{n}$.

Then Problem (1), (2) is well-posed. Its generalized solution u belongs to the space $L_{\infty,loc}((-\infty;T];L_2(\Omega_t))$, besides, $\|u(\cdot,t)\|_{L_2(\Omega_t)} \in C((-\infty,T])$. Moreover, for arbitrary numbers t_1,t_2,δ such that $-\infty < t_1 < t_2 \leqslant T$, $\delta > 0$, u satisfies the estimate:

$$\sup_{[t_{1},t_{2}]} \int_{\Omega_{t}} |u(x,t)|^{2} dx + \iint_{Q_{t_{1},t_{2}}} \sum_{|\alpha|=m} |D^{\alpha}u|^{p} dxdt \leqslant
\leqslant C_{1} \delta^{-\frac{p}{p-2}} \int_{t_{1}-\delta}^{t_{1}} [\lambda_{\gamma}(t)]^{\frac{2p}{p-2}} dt + C_{2} \iint_{Q_{t_{1}-\delta,t_{2}}} \varkappa_{m-|\alpha|}^{p'}(t) \sum_{|\alpha|\leqslant m} |f_{\alpha}(x,t)|^{p'} dxdt, \quad (5)$$

where C_1, C_2 are positive constants depending only on n, m, K_0, γ, p .

Corollary. Suppose that $\varkappa_{m-|\alpha|} \cdot f_{\alpha} \in L_{p'}(Q)$ for every $\alpha(|\alpha| \leq m)$ and the conditions of Theorem hold. Then the generalized solution of Problem (1), (2) satisfies the following inequality

$$\sup_{(-\infty,T]} \int_{\Omega_t} |u(x,t)|^2 dx + \iint_Q \sum_{|\alpha|=m} |D^{\alpha}u|^p dx dt \leqslant C_2 \iint_Q \varkappa_{m-|\alpha|}^{p'}(t) \sum_{|\alpha|\leqslant m} |f_{\alpha}(x,t)|^{p'} dx dt, \quad (6)$$

where C_2 is the constant from (5).

3. Auxiliary statements.

Lemma 1. Let $v \in \overset{\circ}{W}_{p}^{m,0}(Q_{\tau_1,\tau_2})$ and $g_{\alpha} \in L_{p'}(Q_{\tau_1,\tau_2})$ $(|\alpha| \leq m)$ satisfy the integral equality

$$\iint\limits_{Q_{71,72}} \left\{ -v\psi_t + \sum_{|\alpha| \le m} g_\alpha D^\alpha \psi \right\} dxdt = 0 \tag{7}$$

for an arbitrary function $\psi \in C_0^{\infty}(Q_{\tau_1,\tau_2})$, where τ_1, τ_2 are arbitrary numbers such that $-\infty < \tau_1 < \tau_2 \leqslant T$.

Then function $y(t) = \int_{\Omega_t} v^2(x,t) dx$ is absolutely-continuous on $[\tau_1, \tau_2]$ and for arbitrary piece-smooth on $[\tau_1, \tau_2]$ function θ and for any $t_1, t_2, \ \tau_1 \leqslant t_1 < t_2 \leqslant \tau_2$, it holds the following equality

$$\theta(t_2) \int_{\Omega_{t_2}} v^2(x, t_2) \, dx - \theta(t_1) \int_{\Omega_{t_1}} v^2(x, t_1) \, dx - \iint_{Q_{t_1, t_2}} v^2 \theta' \, dx dt + 2 \iint_{Q_{t_1, t_2}} \theta \sum_{|\alpha| \le m} g_{\alpha} D^{\alpha} v \, dx dt = 0.$$
 (8)

Proof. Let t_1, t_2 be any numbers, $\tau_1 \leqslant t_1 < t_2 \leqslant \tau_2$. Denote by $\hat{v}, \hat{g}_{\alpha}$ ($|\alpha| \leqslant m$) the restrictions of v and g_{α} ($|\alpha| \leqslant m$) on Q_{t_1,t_2} , respectively. The function \hat{v} belongs to the space $\mathring{W}_p^{m,0}(Q_{t_1,t_2})$, and \hat{g}_{α} belongs to the space $L_{p'}(Q_{t_1,t_2})$ ($|\alpha| \leqslant m$).

It follows from the identity (7) that

$$\iint\limits_{Q_{t_1,t_2}} \hat{v}\psi_t \, dxdt = \iint\limits_{Q_{t_1,t_2}} \sum_{|\alpha| \leqslant m} \hat{g}_{\alpha} D^{\alpha}\psi \, dxdt \tag{9}$$

for an arbitrary $\psi \in C_0^{\infty}(Q_{t_1,t_2})$. We can consider the right side of (9) as a linear functional on $C_0^{\infty}(Q_{t_1,t_2}): \psi \to \iint_{Q_{t_1,t_2}} \sum_{|\alpha| \leqslant m} \hat{g}_{\alpha} D^{\alpha} \psi \, dx dt$, which is continuous in the norm of the space $\overset{\circ}{W}_p^{m,0}(Q_{t_1,t_2})$. Let us extend this functional on the whole space $\overset{\circ}{W}_p^{m,0}(Q_{t_1,t_2})$ by the continuity and denote this extension by F. It is evident that F is an element of the space $(\overset{\circ}{W}_p^{m,0}(Q_{t_1,t_2}))^*$, which is dual to the space $\overset{\circ}{W}_p^{m,0}(Q_{t_1,t_2})$. So we can rewrite the identity (9)

$$-\iint_{Q_{t,t,0}} \hat{v}\psi_t \, dxdt = \langle F, \psi \rangle \tag{10}$$

for any $\psi \in C_0^{\infty}(Q_{t_1,t_2})$, where $\langle \cdot, \cdot \rangle$ is a canonical bilinear form on $(\overset{\circ}{W}_p^{m,0}(Q_{t_1,t_2}))^* \times \overset{\circ}{W}_p^{m,0}(Q_{t_1,t_2})$, $\langle F, \hat{\psi} \rangle = \iint_{Q_{t_1,t_2}} \hat{g}_{\alpha} D^{\alpha} \hat{\psi} \, dx dt$ for an arbitrary $\hat{\psi} \in \overset{\circ}{W}_p^{m,0}(Q_{t_1,t_2})$. From correlation (10) it follows that $\hat{v}_t \in (\overset{\circ}{W}_p^{m,0}(Q_{t_1,t_2}))^*$ and

$$\langle \hat{v}_t, \hat{\psi} \rangle = \langle F, \hat{\psi} \rangle \quad \forall \hat{\psi} \in \overset{\circ}{W}_p^{m,0}(Q_{t_1,t_2}).$$
 (11)

Substituting $\hat{\psi} = \hat{v}$ in (11), we get

$$\langle \hat{v}_t, \hat{v} \rangle = \langle F, \hat{v} \rangle.$$
 (12)

Taking into account the formula of integration by the parts for the functions of type \hat{v} (see, for example, [8;p.359]) we obtain

$$\langle \hat{v}_t, \hat{v} \rangle = \frac{1}{2} \left(\int_{\Omega_{t_2}} \hat{v}^2(x, t_2) \, dx - \int_{\Omega_{t_1}} \hat{v}^2(x, t_1) \, dx \right).$$
 (13)

It follows from (12) and (13) that

$$\frac{1}{2} \left(\int_{\Omega_{t_2}} v^2(x, t_2) \, dx - \int_{\Omega_{t_1}} v^2(x, t_1) \, dx \right) = \iint_{Q_{t_1, t_2}} \sum_{|\alpha| \le m} g_{\alpha} D^{\alpha} v \, dx dt. \tag{14}$$

Since the numbers t_1, t_2 are arbitrary, from (14) we obtain that the function $y(t) = \int_{\Omega_t} v^2(x,t) dx$ is absolutely-continuous on $[\tau_1, \tau_2]$ and

$$\frac{1}{2}\frac{dy(t)}{dt} + \int_{\Omega_t} \sum_{|\alpha| \le m} g_{\alpha} D^{\alpha} v \, dx = 0 \tag{15}$$

for almost all $t \in [-\tau_1, \tau_2]$. Multiplying the identity (15) by θ and integrating by parts from t_1 to t_2 we obtain (8). Lemma 1 is proved.

Let $Q_0 = Q \cap \{0 < t < T\}$, $\Sigma_0 = \partial Q \cap \{0 < t < T\}$. We consider the problem

$$u_t + \sum_{|\alpha| \leqslant m} (-1)^{|\alpha|} D^{\alpha} a_{\alpha}(x, t, \delta u) = \sum_{|\alpha| \leqslant m} (-1)^{|\alpha|} D^{\alpha} f_{\alpha}(x, t) \quad \text{in} \quad Q_0, \tag{16}$$

$$\frac{\partial^{j} u}{\partial \nu^{j}} = 0 \quad \text{on} \quad \Sigma_{0}, \quad j = 0, 1, ..., m - 1, \tag{17}$$

$$u|_{t=0} = 0. (18)$$

Definition 2. A generalized solution of problem (16)–(18) is a function $u \in \overset{\circ}{W}_{p}^{m,0}(Q_{0})$, satisfying the following integral equality

$$\iint\limits_{Q_0} \left\{ -u\psi_t + \sum_{|\alpha| \leqslant m} a_{\alpha}(x, t, \delta u) D^{\alpha} \psi \right\} dx dt = \iint\limits_{Q_0} \sum_{|\alpha| \leqslant m} f_{\alpha} D^{\alpha} \psi dx dt \tag{19}$$

for arbitrary functions $\psi \in C_0^{\infty}(Q)$.

Remark 3. Let us note that in (19) we take ψ from the space $C_0^{\infty}(Q)$. It provides the correctness of condition (18) in some sense.

Lemma 2. Problem (16)–(18) has a unique generalized solution.

Proof. Let us prove with the help of the method of fine. Let $G_0 = \Omega \times (0,T)$, where Ω is a bounded domain in \mathbb{R}^n_x with partly smooth boundary $\partial\Omega$, such that $Q_0 \subset G_0$. We consider an auxiliary problem

$$u_{\varepsilon t} + \sum_{|\alpha| \leqslant m} (-1)^{|\alpha|} D^{\alpha} a_{\alpha}^{0}(x, t, \delta u_{\varepsilon}) + \frac{1}{\varepsilon} M u_{\varepsilon} = \sum_{|\alpha| \leqslant m} (-1)^{|\alpha|} D^{\alpha} f_{\alpha}^{0}(x, t) \quad \text{in} \quad G_{0}, \tag{20}$$

$$\frac{\partial^{j} u_{\varepsilon}}{\partial \nu^{j}} = 0 \quad \text{on} \quad \partial \Omega \times (0, T), \quad j = 0, 1, ..., m - 1, \tag{21}$$

$$u_{\varepsilon}(x,0) = 0, \tag{22}$$

where $\varepsilon > 0$ is any real number; the function $M \in L_{\infty}(G_0)$ is equal to zero on Q_0 and to one on $G_0 \setminus Q_0$; $f_{\alpha}^0(x,t) = f_{\alpha}(x,t)$, if $(x,t) \in Q_0$, and $f_{\alpha}^0(x,t) = 0$, if $(x,t) \in G_0 \setminus Q_0$; $a_{\alpha}^0(x,t,\xi) = a_{\alpha}(x,t,\xi)$, if $(x,t) \in Q_0$, $\xi \in \mathbb{R}^N$, and $a_{\alpha}^0(x,t,\xi) = K_0 \cdot 2^{2-p} |\xi_{\alpha}|^{p-2} \xi_{\alpha}$, if $(x,t) \in G_0 \setminus Q_0$, $\xi \in \mathbb{R}^N$ ($|\alpha| \leq m$). It is evident that the functions $a_{\alpha}^0(x,t,\xi)$ ($|\alpha| \leq m$) have Caratheodory type and for arbitrary vectors $\xi, \eta \in \mathbb{R}^N$ and for almost all $(x,t) \in Q_0$ the following inequality holds:

$$(A'3) \sum_{|\alpha| \leq m} (a_{\alpha}^0(x, t, \xi) - a_{\alpha}^0(x, t, \eta))(\xi_{\alpha} - \eta_{\alpha}) \geqslant K_0 \sum_{|\alpha| = m} |\xi_{\alpha} - \eta_{\alpha}|^p,$$

where $K_0 = \text{const} > 0$ is from condition (A3).

Definition 3. A generalized solution of problem (20)–(22) is a function $u_{\varepsilon} \in \overset{\circ}{W}_{p}^{m,0}(G_{0}) \cap C([0,T];L_{2}(\Omega))$, satisfying condition (22) and the following integral equality

$$\iint_{G_0} \left\{ -u_{\varepsilon} \psi_t + \sum_{|\alpha| \leq m} a_{\alpha}^0(x, t, \delta u_{\varepsilon}) D^{\alpha} \psi + \frac{1}{\varepsilon} M u_{\varepsilon} \psi \right\} dx dt = \iint_{G_0} \sum_{|\alpha| \leq m} f_{\alpha}^0(x, t) D^{\alpha} \psi dx dt \quad (23)$$

for arbitrary functions $\psi \in C_0^{\infty}(G_0)$.

Existence and uniqueness of the solution of problem (16)–(18) is easily proved using Faedo-Galerkin method (see [5,8]).

From [5, Lemma 2] for arbitrary $\tau \in (0, T]$ we have

$$\frac{1}{2} \int_{\Omega} [u_{\varepsilon}(x,\tau)]^2 dx + \int_{0}^{\tau} \int_{\Omega} \left\{ \sum_{|\alpha| \leqslant m} a_{\alpha}^0(x,t,\delta u_{\varepsilon}) D^{\alpha} u_{\varepsilon} + \frac{1}{\varepsilon} M u_{\varepsilon}^2 - \sum_{|\alpha| \leqslant m} f_{\alpha}^0 D^{\alpha} u_{\varepsilon} \right\} dx dt = 0. \quad (24)$$

From (A'3) we get for all $\tau \in (0, T]$

$$\frac{1}{2} \int_{\Omega} [u_{\varepsilon}(x,\tau)]^2 dx + \int_{0}^{\tau} \int_{\Omega} \{K_0 \sum_{|\alpha|=m} |D^{\alpha}u_{\varepsilon}|^p + \frac{1}{\varepsilon} M u_{\varepsilon}^2\} dx dt \leqslant \int_{0}^{\tau} \int_{\Omega} \sum_{|\alpha| \leqslant m} f_{\alpha}^0 D^{\alpha} u_{\varepsilon} dx dt. \quad (25)$$

Using Young inequality $ab \le \varepsilon a^p + M(\varepsilon, p)b^{p'}$, where $a \ge 0$, $b \ge 0$, $\varepsilon > 0$, p > 1, $\frac{1}{p} + \frac{1}{p'} = 1$, $M(\varepsilon, p) = \varepsilon^{-1/(p-1)}p^{-p'}(p-1)$, we get

$$\int_{0}^{\tau} \int_{\Omega} \sum_{|\alpha| \leq m} f_{\alpha}^{0} D^{\alpha} u_{\varepsilon} \, dx dt \leqslant \sum_{|\alpha| \leq m} \varepsilon_{\alpha} \int_{0}^{\tau} \int_{\Omega} |D^{\alpha} u_{\varepsilon}|^{p} \, dx dt + \sum_{|\alpha| \leq m} M(\varepsilon_{\alpha}, p) \int_{0}^{\tau} \int_{\Omega} |f_{\alpha}^{0}|^{p'} \, dx dt \leqslant$$

$$\leqslant \sum_{|\alpha| \leq m} \varepsilon_{\alpha} \cdot H_{\alpha} \int_{0}^{\tau} \int_{\Omega} \sum_{|\beta| = m} |D^{\beta} u_{\varepsilon}|^{p} \, dx dt + \sum_{|\alpha| \leq m} M(\varepsilon_{\alpha}, p) \int_{0}^{\tau} \int_{\Omega} |f_{\alpha}^{0}|^{p'} \, dx dt,$$

where $\varepsilon_{\alpha} > 0$ is any real number, $H_{\alpha} > 0$ is a constant such that

$$\int_{\Omega} |D^{\alpha}v|^p dx \leqslant H_{\alpha} \int_{\Omega} \sum_{|\beta|=m} |D^{\beta}v|^p dx$$

for all $v \in \stackrel{\circ}{W}_p^m(\Omega)$ ($|\alpha| \leqslant m$), besides $H_{\alpha} = 1$ for all such α that $|\alpha| = m$. Hence, taking ε_{α} ($|\alpha| \leqslant m$) such that $\sum_{|\alpha| \leqslant m} \varepsilon_{\alpha} H_{\alpha} = \frac{1}{2} K_0$, and from (25) we get

$$\int_{\Omega} [u_{\varepsilon}(x,\tau)]^{2} dx + K_{0} \sum_{|\alpha|=m} \int_{0}^{\tau} \int_{\Omega} |D^{\alpha}u_{\varepsilon}|^{p} dx dt + \frac{2}{\varepsilon} \int_{0}^{\tau} \int_{\Omega} Mu_{\varepsilon}^{2} dx dt \leqslant$$

$$\leqslant C_{3} \int_{0}^{\tau} \int_{\Omega} \sum_{|\alpha| \leqslant m} |f_{\alpha}^{0}(x,t)|^{p'} dx dt, \tag{26}$$

where $C_3 > 0$ is a constant which doesn't depend on τ and ε . From (26) we have

$$\int_{\Omega} [u_{\varepsilon}(x,t)]^2 dx \leqslant C_4 \qquad \forall t \in [0,T], \tag{27}$$

$$\iint_{G_0} |D^{\alpha} u_{\varepsilon}|^p \, dx dt \leqslant C_5 \quad \forall \alpha \quad (|\alpha| \leqslant m), \tag{28}$$

$$\iint_{G_0} |a_{\alpha}^0(x, t, \delta u_{\varepsilon})|^{p'} dxdt \leqslant C_6 \quad \forall \alpha \quad (|\alpha| \leqslant m), \tag{29}$$

$$\iint_{G_0 \setminus Q_0} u_{\varepsilon}^2 \, dx dt \leqslant C_7 \cdot \varepsilon, \tag{30}$$

where $C_4, C_5, C_6, C_7 > 0$ are the constants which don't depend on ε . Hence, it follows that a sequence $\{\varepsilon_j\}$, $\varepsilon_j \searrow 0$ when $j \to +\infty$, functions $u \in W^{m,0}_{\overrightarrow{p}}(G_0) \cap L_{\infty}((0,T); L_2(\Omega))$ and $\chi_{\alpha} \in L_{p'_{\alpha}}(G_0)$ ($|\alpha| \leq m$) exist with the following conditions

$$u_{\varepsilon_i} \to u \quad *\text{-weakly in } L_{\infty}((0,T); L_2(\Omega)),$$
 (31)

$$D^{\alpha}u_{\varepsilon_{i}} \to D^{\alpha}u \quad \text{weakly in } L_{p}(G_{0}) \quad (|\alpha| \leqslant m),$$
 (32)

$$a_{\alpha}^{0}(\cdot,\cdot,\delta u_{\varepsilon_{i}}(\cdot,\cdot)) \to \chi_{\alpha}(\cdot,\cdot)$$
 weakly in $L_{p'}(G_{0})$ $(|\alpha| \leqslant m),$ (33)

$$u_{\varepsilon_i} \to 0$$
 strongly in $L_2(G_0 \setminus Q_0)$, (34)

$$u_{\varepsilon_i}(x,t) \to 0 \quad \text{for almost all} \quad (x,t) \in G_0 \setminus Q_0.$$
 (35)

Thus, u = 0 on $G_0 \setminus Q_0$. Let us note that equality (23) is valid for any function ψ which belongs to the space $C_0^{\infty}(Q)$. From (23), (31)–(35), taking $\varepsilon = \varepsilon_i$ in (23), we get

$$-\iint\limits_{Q_0} u\psi_t \, dx dt + \iint\limits_{Q_0} \left\{ \sum_{|\alpha| \leqslant m} \chi_\alpha(x, t) D^\alpha \psi - \sum_{|\alpha| \leqslant m} f_\alpha^0(x, t) D^\alpha \psi \right\} dx dt = 0 \tag{36}$$

for all $\psi \in C_0^{\infty}(Q)$.

Let us show that

$$\iint\limits_{Q_0} \sum_{|\alpha| \leq m} \chi_{\alpha}(x, t) D^{\alpha} \psi(x, t) \, dx dt = \iint\limits_{Q_0} \sum_{|\alpha| \leq m} a_{\alpha}(x, t, \delta u(x, t)) D^{\alpha} \psi(x, t) \, dx dt \qquad (37)$$

for all $\psi \in \overset{\circ}{W}_{p}^{m,0}(Q_0)$.

We consider the expression

$$M_{\varepsilon_j} = \iint_{Q_0} g_{\delta}(t) \sum_{|\alpha| \leq m} (a_{\alpha}(x, t, \delta v) - a_{\alpha}(x, t, \delta u_{\varepsilon_j})) (D^{\alpha} v - D^{\alpha} u_{\varepsilon_j}) \, dx dt \geqslant 0, \tag{38}$$

where $v \in W_p^{m,0}(Q_0)$ is now an arbitrary function, g_{δ} is partly-smooth function on \mathbb{R} such that $g_{\delta}(t) = 1$, if $t \in (-\infty, T - \delta]$, $g_{\delta}(t) = \frac{T - t}{\delta}$, if $t \in (T - \delta, T]$, $g_{\delta}(t) = 0$, if $t \in (T; +\infty)$, where $\delta \in (0, T)$ is an arbitrary real number. Thus,

$$M_{\varepsilon_j} = \iint\limits_{Q_0} g_{\delta}(t) \sum_{|\alpha| \leqslant m} a_{\alpha}(x, t, \delta v) (D^{\alpha} v - D^{\alpha} u_{\varepsilon_j}) \, dx dt -$$

$$-\iint\limits_{Q_0}g_{\delta}(t)\sum_{|\alpha|\leqslant m}a_{\alpha}(x,t,\delta u_{\varepsilon_j})D^{\alpha}v\,dxdt+\iint\limits_{Q_0}g_{\delta}(t)\sum_{|\alpha|\leqslant m}a_{\alpha}(x,t,\delta u_{\varepsilon_j})D^{\alpha}u_{\varepsilon_j}\,dxdt\geqslant 0.$$

From (23) and [5, Lemma 2] we get

$$\iint_{G_0} g_{\delta}(t) \left\{ \sum_{|\alpha| \leq m} a_{\alpha}^0(x, t, \delta u_{\varepsilon_j}) D^{\alpha} u_{\varepsilon_j} + \frac{1}{\varepsilon_j} M u_{\varepsilon_j}^2 - \sum_{|\alpha| \leq m} f_{\alpha}^0 D^{\alpha} u_{\varepsilon_j} \right\} dx dt - \frac{1}{2} \iint_{G_0} g_{\delta}' u_{\varepsilon_j}^2 dx dt = 0.$$

Hence,

$$\iint_{Q_0} g_{\delta} \sum_{|\alpha| \leqslant m} a_{\alpha}(x, t, \delta u_{\varepsilon_j}) D^{\alpha} u_{\varepsilon_j} dx dt \leqslant \iint_{G_0} g_{\delta} \sum_{|\alpha| \leqslant m} a_{\alpha}^0(x, t, \delta u_{\varepsilon_j}) D^{\alpha} u_{\varepsilon_j} dx dt =$$

$$= \iint_{G_0} g_{\delta} \left\{ \sum_{|\alpha| \leqslant m} f_{\alpha}^0 D^{\alpha} u_{\varepsilon_j} - \frac{1}{\varepsilon_j} M u_{\varepsilon_j}^2 \right\} dx dt + \frac{1}{2} \iint_{G_0} g_{\delta}' u_{\varepsilon_j}^2 dx dt \leqslant$$

$$\leqslant \iint_{G_0} g_{\delta} \sum_{|\alpha| \leqslant m} f_{\alpha}^0 D^{\alpha} u_{\varepsilon_j} dx dt - \frac{1}{2\delta} \int_{T-\delta}^T \int_{\Omega} u_{\varepsilon_j}^2 dx dt.$$

Thus,

$$0 \leqslant M_{\varepsilon_j} \leqslant \iint\limits_{Q_0} g_{\delta} \sum_{|\alpha| \leqslant m} a_{\alpha}(x, t, \delta v) (D^{\alpha}v - D^{\alpha}u_{\varepsilon_j}) \, dx dt - \iint\limits_{Q_0} g_{\delta} \sum_{|\alpha| \leqslant m} a_{\alpha}(x, t, \delta u_{\varepsilon_j}) D^{\alpha}v \, dx dt + \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt + \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt + \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_{Q_0} f(x, t, \delta u_{\varepsilon_j}) \, dx dt = \prod_{\alpha \in S} \int\limits_$$

$$+ \iint_{G_0} g_{\delta} \sum_{|\alpha| \leqslant m} f_{\alpha}^0 D^{\alpha} u_{\varepsilon_j} \, dx dt - \frac{1}{2\delta} \int_{T-\delta}^T \int_{\Omega} u_{\varepsilon_j}^2 \, dx dt.$$

Since $u_{\varepsilon_j} \to u$ weakly in $L_2((T - \delta, T); L_2(\Omega))$, we obtain

$$-\iint\limits_{Q_0} g_{\delta}' u^2 \, dx dt = \frac{1}{\delta} \int\limits_{T-\delta}^T \int\limits_{\Omega} u^2 \, dx dt \leqslant \lim_{\varepsilon_j \to 0} \frac{1}{\delta} \int\limits_{T-\delta}^T \int\limits_{\Omega} u_{\varepsilon_j}^2 \, dx dt.$$

Hence and from (31)–(35) we have

$$0 \leqslant \lim_{\varepsilon_{j} \to 0} M_{\varepsilon_{j}} \leqslant \iint_{Q_{0}} g_{\delta} \sum_{|\alpha| \leqslant m} a_{\alpha}(x, t, \delta v) (D^{\alpha}v - D^{\alpha}u) dx dt -$$

$$- \iint_{Q_{0}} g_{\delta} \sum_{|\alpha| \leqslant m} \chi_{\alpha} D^{\alpha}v dx dt + \iint_{Q_{0}} g_{\delta} \sum_{|\alpha| \leqslant m} f_{\alpha} D^{\alpha}u dx dt + \frac{1}{2} \iint_{Q_{0}} g'_{\delta} u^{2} dx dt.$$
 (39)

Using (36) and Lemma 1 we obtain that $||u(\cdot,t)||_{L_2(\Omega_t)} \in C([0,T])$. ¿From (26) and (31) it follows that

$$||u(\cdot,\tau)||_{L_2(\Omega_\tau)} \leqslant C_3 \cdot \iint_{Q_{0,\tau}} f(x,t) dx dt, \quad \tau \in [0,T],$$

in other words, $||u(\cdot,0)||_{L_2(\Omega_0)} = 0$. Using Lemma 1, from (36) we get

$$-\frac{1}{2} \iint_{Q_0} g_{\delta}' u^2 dx dt + \iint_{Q_0} g_{\delta} \left\{ \sum_{|\alpha| \leqslant m} \chi_{\alpha} D^{\alpha} u - \sum_{|\alpha| \leqslant m} f_{\alpha} D^{\alpha} u \right\} dx dt = 0.$$
 (40)

Thus, from (39) and (40) we have

$$\iint\limits_{Q_0} g_{\delta}(t) \sum_{|\alpha| \leq m} (a_{\alpha}(x, t, \delta v(x, t)) - \chi_{\alpha}(x, t)) (D^{\alpha} v(x, t) - D^{\alpha} u(x, t)) \, dx dt \geqslant 0. \tag{41}$$

Putting $v = u + \lambda \psi$ in (41), where $\lambda > 0$ is any real number and $\psi \in C_0^{\infty}(Q_0)$, we get

$$\lambda \iint_{Q_0} g_{\delta}(t) \sum_{|\alpha| \leqslant m} (a_{\alpha}(x, t, \delta u(x, t) + \lambda \delta v(x, t)) - \chi_{\alpha}(x, t)) D^{\alpha} \psi(x, t) \, dx dt \geqslant 0. \tag{42}$$

Let us divide (42) by λ and take the limit as $\lambda \to 0$. Taking into consideration conditions (A1)–(A4) and Lebesgue theorem about passage to the limit, we get

$$\sum_{|\alpha| \leq m} \iint_{Q_0} g_{\delta}(t) (a_{\alpha}(x, t, \delta u(x, t)) - \chi_{\alpha}(x, t)) D^{\alpha} \psi(x, t) dx dt \geqslant 0$$

for any $\psi \in C_0^{\infty}(Q_0)$ and $\delta \in (0, T)$. Hence we have (37). From (36) and (37) we get (19). The existence of a generalized solution of problem (16)–(18) is proved.

Let us prove that this solution is unique. Let u_1 and u_2 be two generalized solutions of problem (16)–(18). Subtracting from integral identity (19) for u_1 the same identity for u_2 and using Lemma 1 with $t_1 = 0$, $t_2 = t_1 \in (0, T]$, $\theta_{\delta} = 1$, $v = u_1 - u_2$, we get

$$\int_{\Omega} [u_1(x,\tau) - u_2(x,\tau)]^2 dx +$$

$$\int_{0}^{\tau} \int_{\Omega_{\tau}} \sum_{|\alpha| \leq m} (a_{\alpha}(x, t, \delta u_{1}(x, t)) - a_{\alpha}(x, t, \delta u_{2}(x, t))) D^{\alpha}(u_{1}(x, t) - u_{2}(x, t)) dx dt = 0.$$
 (43)

From the monotony of spacial part of the equation (16) we conclude that the second term of the left side of (43) is non-negative. Thus two terms of the left side of (43) are equal to zero. Hence we have the uniqueness of the generalized solution of Problem (16)–(18). Lemma 2 is proved. \Box

Lemma 3. Let \tilde{u} be a generalized solution of problem which differs from Problem (1), (2) only by \tilde{f}_{α} instead of $f_{\alpha}(|\alpha| \leq m)$ in the right side of equation (1). Suppose that all the conditions of Theorem hold.

Then for arbitrary numbers t_1, t_2, δ such that $-\infty < t_1 < t_2 \leq T, \delta > 0$ the following inequality holds:

$$\sup_{t \in [t_{1}, t_{2}]} \int_{\Omega_{t}} |u(x, t) - \tilde{u}(x, t)|^{2} dx + \iint_{Q_{t_{1}, t_{2}}} \sum_{|\alpha| = m} |D^{\alpha}u - D^{\alpha}\tilde{u}|^{p} dx dt \leqslant$$

$$\leqslant C_{1} \delta^{-\frac{p}{p-2}} \int_{t_{1} - \delta}^{t_{2}} [\lambda_{\gamma}(t)]^{\frac{2p}{p-2}} dt + C_{2} \iint_{Q_{t_{1} - \delta, t_{2}}} \varkappa_{m-|\alpha|}^{p'}(t) \sum_{|\alpha| \leqslant m} |f_{\alpha} - \tilde{f}_{\alpha}|^{p'_{\alpha}} dx dt, \quad (44)$$

where C_1, C_2 are constants depending only on n, m, γ, K_0, p .

Proof. Let us subtract from integral identity (3) for u the same integral identity for \tilde{u} . As a result, taking $w = u - \tilde{u}$, we obtain

$$\iint\limits_{Q} \left\{ -w\psi_{t} + \sum_{|\alpha| \leq m} (a_{\alpha}(x, t, \delta u) - a_{\alpha}(x, t, \delta \tilde{u})) D^{\alpha} \psi \right\} dxdt = \iint\limits_{Q} \sum_{|\alpha| \leq m} (f_{\alpha} - \tilde{f}_{\alpha}) D^{\alpha} \psi dxdt$$
(45)

for arbitrary $\psi \in C_0^{\infty}(Q)$.

Let $\theta_1(t)$ be a function from the space $C^{\infty}(\mathbb{R}^1)$ with the following properties: $0 \leq \theta_1(t) \leq 1$, $\theta'_1(t) \geq 0$ on \mathbb{R}^1 , $\theta_1(t) = 0$, if $t \in (-\infty, -1]$, $\theta_1(t) = \exp\{-1/(t+1)\}$, if $t \in (-1, -1/2]$, $\theta_1(t) \geq \exp\{-2\}$, if $t \in (-1/2, 0)$, $\theta_1(t) = 1$, if $t \in [0, +\infty)$.

It is clear that $\sup_{t \in (-1;+\infty)} \theta_1'(t)\theta_1^{-\varkappa}(t) \leqslant C_0$, where $0 < \varkappa < 1$, $C_0 > 0$ is a constant depending only on \varkappa .

Let $\theta_{\delta,t_1}(t) = \theta_1(\frac{t-t_1}{\delta})$ where t_1, δ are arbitrary numbers such that $-\infty < t_1 \le T, \delta > 0$. From Lemma 1 and identity (45) we obtain

$$\int_{\Omega_{s}} w^{2}(x,s) dx - \iint_{Q_{t_{1}-\delta,s}} w^{2} \theta_{\delta,t_{1}}' dx dt + 2 \iint_{Q_{t_{1}-\delta,s}} \theta_{\delta,t_{1}} \sum_{|\alpha| \leq m} (a_{\alpha}(x,t,\delta u) - a_{\alpha}(x,t,\delta \tilde{u})) D^{\alpha}w dx dt = 2 \iint_{Q_{t_{1}-\delta,s}} \theta_{\delta,t_{1}} \sum_{|\alpha| \leq m} (f_{\alpha} - \tilde{f}_{\alpha}) D^{\alpha}w dx dt, \quad (46)$$

where t_1, t_2, δ are arbitrary numbers such that $-\infty < t_1 < t_2 \leqslant T, \delta > 0$; s is an arbitrary number from the interval $[t_1, t_2]$.

Let us estimate the second term of the left side of equality (46). Taking into account the properties of the function θ_{δ,t_1} , (4) and the Young inequality we obtain

$$\iint_{Q_{t_{1}-\delta,s}} w^{2} \theta_{\delta,t_{1}}' dx dt = \int_{t_{1}-\delta}^{s} \theta_{\delta,t_{1}}' \int_{\Omega_{t}} w^{2} dx dt = \int_{t_{1}-\delta}^{t_{1}} \|w\|_{L_{2}(\Omega_{t})}^{2} \theta_{\delta,t_{1}}' dt \leqslant$$

$$\leqslant \int_{t_{1}-\delta}^{t_{1}} \lambda_{\gamma}^{2}(t) \|D^{\gamma}w\|_{L_{p}(\Omega_{t})}^{2} \theta_{\delta,t_{1}}' dt = \int_{t_{1}-\delta}^{t_{1}} \lambda_{\gamma}^{2}(t) \|D^{\gamma}w\|_{L_{p}(\Omega_{t})}^{2} \frac{\theta_{\delta,t_{1}}^{2/p}}{\theta_{\delta,t_{1}}^{2/p}} \theta_{\delta,t_{1}}' dt \leqslant$$

$$\leqslant \varepsilon_{\gamma} \int_{t_{1}-\delta}^{s} \|D^{\gamma}w\|_{L_{p}(\Omega_{t})}^{p} \theta_{\delta,t_{1}} dt + C_{8} \varepsilon_{\gamma}^{-\frac{2}{p-2}} \int_{t_{1}-\delta}^{t_{1}} (\theta_{\delta,t_{1}}' \theta_{\delta,t_{1}}^{-2/p} \lambda_{\gamma}^{2}(t))^{\frac{p}{p-2}} dt \leqslant$$

$$\leqslant \varepsilon_{\gamma} \iint_{Q_{t_{1}-\delta,s}} |D^{\gamma}w|^{p} \theta_{\delta,t_{1}} dx dt + C_{9} \varepsilon_{\gamma}^{-\frac{2}{p-2}} \delta^{-\frac{p}{p-2}} \int_{t_{1}-\delta}^{t_{1}} [\lambda_{\gamma}(t)]^{\frac{2p}{p-2}} dt,$$

$$\leqslant \varepsilon_{\gamma} \iint_{Q_{t_{1}-\delta,s}} |D^{\gamma}w|^{p} \theta_{\delta,t_{1}} dx dt + C_{9} \varepsilon_{\gamma}^{-\frac{2}{p-2}} \delta^{-\frac{p}{p-2}} \int_{t_{1}-\delta}^{t_{1}} [\lambda_{\gamma}(t)]^{\frac{2p}{p-2}} dt,$$

where $\varepsilon_{\gamma} > 0$ is an arbitrary number, $C_8, C_9 > 0$ are the constants depending only on γ, p . Now we estimate the right side of (46), using the Hölder inequality, (4') and the Young inequality

$$2 \iint\limits_{Q_{t_1 - \delta, s}} \theta_{\delta, t_1} \sum_{|\alpha| \leqslant m} (f_{\alpha} - \tilde{f}_{\alpha}) D^{\alpha} w \, dx dt \leqslant 2 \sum_{|\alpha| \leqslant m} \int\limits_{t_1 - \delta}^{s} \left(\theta_{\delta, t_1} \int\limits_{\Omega_t} (f_{\alpha} - \tilde{f}_{\alpha}) D^{\alpha} w \, dx \right) dt \leqslant$$

$$\leqslant 2 \sum_{|\alpha| \leqslant m} \int_{t_{1}}^{s} \theta_{\delta,t_{1}} \left(\int_{\Omega_{t}} |D^{\alpha}w|^{p} dx \right)^{\frac{1}{p}} \left(\int_{\Omega_{t}} |f_{\alpha} - \tilde{f}_{\alpha}|^{p'} dx \right)^{\frac{1}{p'}} dt \leqslant$$

$$\leqslant 2 \sum_{|\alpha| \leqslant m} \int_{t_{1}-\delta}^{s} \theta_{\delta,t_{1}} \varkappa_{m-|\alpha|} \left(\sum_{|\alpha| \leqslant m} \int_{\Omega_{t}} |D^{\beta}w|^{p} dx \right)^{\frac{1}{p}} \left(\int_{\Omega_{t}} |f_{\alpha} - \tilde{f}_{\alpha}|^{p'} dx \right)^{\frac{1}{p'}} dt \leqslant$$

$$\leqslant \sum_{|\alpha| \leqslant m} \left(\varepsilon_{\alpha} \int_{Q_{t_{1}-\delta,s}} \theta_{\delta,t_{1}} \sum_{|\beta|=m} |D^{\beta}w|^{p} dx dt + C_{\alpha} \varepsilon_{\alpha}^{-1/(p-1)} \int_{Q_{t_{1}-\delta,s}} \theta_{\delta,t_{1}} \varkappa_{m-|\alpha|}^{p'} |f_{\alpha} - \tilde{f}_{\alpha}|^{p'} dx dt \right), \quad (48)$$

where $\varepsilon_{\alpha} > 0$ is an arbitrary number, $C_{\alpha} > 0$ is a constant depending only on $p(|\alpha| \leq m)$. From (4), (46)–(48), choosing ε_{α} ($|\alpha| \leq m$) as need, we obtain (44). Lemma 3 is proved. \square

4. Proof of basic results.

Proof of Theorem. Uniqueness. Let u_1, u_2 be two generalized solutions of Problem (1), (2). From Lemma 3 we obtain

$$\sup_{t \in [t_1, t_2]} \int_{\Omega_t} |u_1(x, t) - u_2(x, t)|^2 dx \leqslant C_1 \delta^{-\frac{p}{p-2}} \int_{t_1 - \delta}^{t_1} [\lambda_{\gamma}(t)]^{\frac{2p}{p-2}} dt, \tag{49}$$

where δ is an arbitrary number and t_1, t_2 are any numbers such that $-\infty < t_1 < t_2 \leqslant T$. From conditions of Theorem for arbitrary $\tau \in (-\infty, T]$ we have

$$\int_{\tau-\delta}^{\tau} \left[\lambda_{\gamma}(t)\right]^{\frac{2p}{p-2}} dt \sim \delta^{\frac{2p \cdot r - 2}{p-2}} \tag{50}$$

when $\delta \to +\infty$.

Let us take the limit in (49) at $\delta \to +\infty$, when t_1, t_2 are fixed. Taking into account (50), independence C_1 on δ and that $r < \frac{1}{p}$ we obtain $u_1 = u_2$ almost everywhere on Q_{t_1,t_2} .

Existence. Now we construct a sequence of functions approximating the generalized solution of Problem (1), (2) in some sense. Let $Q_{\mu} = Q_{T-\mu,T}, \Sigma_{\mu} = \partial Q \cap \{(x,t) : T - \mu < t < T\}, \mu \in \mathbb{N}$. Let us consider the family of problems $(\mu \in \mathbb{N})$

$$\hat{u}_{\mu t} + \sum_{|\alpha| \le m} (-1)^{|\alpha|} D^{\alpha} a_{\alpha}(x, t, \delta \hat{u}_{\mu}) = \sum_{|\alpha| \le m} (-1)^{|\alpha|} D^{\alpha} f_{\alpha}(x, t) \text{ in } Q_{\mu}, \tag{1}_{\mu}$$

$$\frac{\partial^{j} \hat{u}_{\mu}}{\partial \nu^{j}} = 0 \quad \text{on} \quad \Sigma_{\mu}, \quad j = 0, 1, ..., m - 1, \tag{2}_{\mu}$$

$$\hat{u}_{\mu}(x, T - \mu) = 0. \tag{3}_{\mu}$$

A function $\hat{u}_{\mu} \in \mathring{W}^{m,0}_{\vec{p}}(Q_{\mu})$ is called a generalized solution of problem (1_{μ}) – (3_{μ}) , if it satisfies the integral equality

$$\int_{Q_{\mu}} \left\{ -\hat{u}_{\mu}\psi_{t} + \sum_{|\alpha| \leq m} a_{\alpha}(x, t, \delta\hat{u}_{\mu}) D^{\alpha}\psi \right\} dxdt = \int_{Q_{\mu}} \sum_{|\alpha| \leq m} f_{\alpha}D^{\alpha}\psi dxdt \tag{4}_{\mu}$$

for arbitrary $\psi \in C_0^{\infty}(Q)$.

The existence and the uniqueness of a generalized solution \hat{u}_{μ} of Problem (1_{μ}) – (3_{μ}) follows from Lemma 2. Let us extend the function \hat{u}_{μ} by zero on $\overline{Q} \setminus \overline{Q}_{\mu}$ and denote this extension by u_{μ} . Put $f_{\alpha,\mu}(x,t) = f_{\alpha}(x,t)$ for $(x,t) \in Q_{\mu}$ and $f_{\alpha,\mu}(x,t) = 0$ for $(x,t) \in Q \setminus Q_{\mu}(|\alpha| \leq m)$. It is evident that u_{μ} is a generalized solution of Fourier problem

$$u_{\mu t} + \sum_{|\alpha| \le m} (-1)^{|\alpha|} D^{\alpha} a_{\alpha}(x, t, \delta u_{\mu}) = \sum_{|\alpha| \le m} (-1)^{|\alpha|} D^{\alpha} f_{\alpha, \mu}(x, t) \text{ in } Q, \tag{5}_{\mu}$$

$$\frac{\partial^{j} u_{\mu}}{\partial \nu^{j}} = 0 \quad \text{on} \quad \Sigma, \quad j = 0, 1, ..., m - 1, \tag{6}_{\mu}$$

i.e. $u_{\mu} \in \mathring{W}_{p}^{m,0}(Q) \subset \mathring{W}_{p,\mathrm{loc}}^{m,0}(Q)$ and satisfies the identity

$$\iint\limits_{Q} \left\{ -u_{\mu}\psi_{t} + \sum_{|\alpha| \leq m} a_{\alpha}(x, t, \delta u_{\mu}) D^{\alpha}\psi - \sum_{|\alpha| \leq m} f_{\alpha, \mu}(x, t) D^{\alpha}\psi \right\} dxdt = 0 \tag{7}_{\mu}$$

for arbitrary $\psi \in C_0^{\infty}(Q)$.

Let us show that the sequence of restrictions of $\{u_{\mu}\}$ on Q_{\varkappa} , where \varkappa is an arbitrary natural number, is fundamental in the space $\overset{\circ}{W}_{p}^{m,0}(Q_{\varkappa}) \cap L_{\infty}([T-\varkappa,T];L_{2}(\Omega_{t}))$. Let k,l be arbitrary natural numbers such that $k > 2\varkappa, l > 2\varkappa$. Using Lemma 3 in the case of $u = u_{k}, \tilde{u} = u_{l}, f_{\alpha} = f_{\alpha,k}, \tilde{f}_{\alpha} = f_{\alpha,l}(|\alpha| \leqslant m), t_{1} = T - \varkappa, t_{2} = T, \delta = \min\{k - \varkappa, l - \varkappa\}$, we obtain

$$\sup_{[T-\varkappa,T]} \int_{\Omega_t} |u_k(x,t) - u_l(x,t)|^2 dx + \iint_{Q_{T-\varkappa,T}} \sum_{|\alpha|=m} |D^{\alpha}u_k - D^{\alpha}u_l|^p dxdt \leqslant$$

$$\leqslant C_1 \delta^{-\frac{p}{p-2}} \int_{T-\varkappa-\delta}^{T-\varkappa} [\lambda_{\gamma}(t)]^{\frac{2p}{p-2}} dt. \quad (51)$$

Since the right side of inequality (51) tends to zero at $\delta \to +\infty$ and C_1 does not depends on δ it follows that the sequence of restrictions $\{u_\mu\}$ on Q_\varkappa is fundamental in the space $\overset{\circ}{W}_p^{m,0}(Q_\varkappa) \cap L_\infty((T-\varkappa,T);L_2(\Omega_t))$, where \varkappa is an arbitrary natural number. Therefore, there exists a function $u \in \overset{\circ}{W}_{p,\text{loc}}^{m,0}(\overline{Q}) \cap L_\infty((-\infty,T];L_2(\Omega_t))$ such that

$$u_{\mu} \to u \quad \text{in} \quad L_{\infty,\text{loc}}((-\infty, T]; L_2(\Omega_t)),$$
 (52)

$$D^{\alpha}u_{\mu} \to D^{\alpha}u$$
 strong in $L_{p,\text{loc}}(\overline{Q})$ $(|\alpha| \le m).$ (53)

From (53) and condition (A2) it follows that there exist a subsequence $\{u_{\mu_i}\}\subset\{u_{\mu}\}$ and functions $\tilde{\chi}_{\alpha}\in L_{p',\text{loc}}(\overline{Q})(|\alpha|\leqslant m)$, such that

$$a_{\alpha}(\cdot, \cdot, \delta u_{\mu_i}(\cdot, \cdot)) \to \tilde{\chi}_{\alpha}(\cdot, \cdot) \quad \text{weakly in} \quad L_{p'}, \text{loc}(\overline{Q}) \quad (|\alpha| \leqslant m),$$
 (54)

$$D^{\alpha}u_{\mu_i} \to D^{\alpha}u$$
 nearly everywhere on $Q \ (|\alpha| \leqslant m)$. (55)

From (54), (55), condition (A1) and Lemma 1.3 from [8;p.25] we obtain

$$a_{\alpha}(\cdot, \cdot, \delta u_{\mu_i}(\cdot, \cdot)) \to a_{\alpha}(\cdot, \cdot, \delta u(\cdot, \cdot))$$
 weakly in $L_{p', \text{loc}}(\overline{Q})$ $(|\alpha| \leq m)$. (56)

Let us show that u is a generalized solution of Problem (1),(2). Let $\psi \in C_0^{\infty}(Q)$ be an arbitrary fixed function. From (7_{μ}) we obtain

$$\iint\limits_{Q} \left\{ -u_{\mu_i} \psi_t + \sum_{|\alpha| \leq m} a_{\alpha}(x, t, \delta u_{\mu_i}) D^{\alpha} \psi \right\} dx dt = \iint\limits_{Q} \sum_{|\alpha| \leq m} f_{\alpha, \mu_i} D^{\alpha} \psi dx dt. \tag{57}$$

Let us take the limit at $i \to +\infty$ in (57). Taking into account (52), (53), (56) and the definition of f_{α,μ_i} , we obtain identity (3).

Continuous dependence on the data-in. Let $\{f_{\alpha,k}\}_{k=1}^{\infty} \subset L_{p',\text{loc}}(\overline{Q})(|\alpha| \leqslant m)$ be sequences of functions such that $f_{\alpha,k} \to f_{\alpha}$ in $L_{p',\text{loc}}(\overline{Q})(|\alpha| \leqslant m)$, and $\{u_k\}$ be a sequence of generalized solutions of problems which differ from Problem (1), (2) only by $f_{\alpha,k}$ instead of f_{α} in the right side of the equation (1). Let us show that $u_k \to u$ in $\overset{\circ}{W}_{p,\text{loc}}^{m,0}(\overline{Q}) \cap L_{\infty,\text{loc}}((-\infty,T];L_2(\Omega_t))$. Indeed, let $\varepsilon > 0$ be an arbitrary number, t_1, t_2 are any numbers such that $-\infty < t_1 < \infty$

 $t_2 \leqslant T$. From Lemma 3 we obtain

$$\sup_{[t_1,t_2]} \int_{\Omega_t} |u_k(x,t) - u(x,t)|^2 dx + \iint_{Q_{t_1,t_2}} \sum_{|\alpha| \le m} |D^{\alpha} u_k - D^{\alpha} u|^p dx dt \le$$

$$\leq C_1 \delta^{-\frac{p}{p-2}} \int_{t_1-\delta}^{t_1} [\lambda_{\gamma}(t)]^{\frac{2p}{p-2}} dt + C_2 \iint_{Q_{t_1-\delta,t_2}} \sum_{|\alpha| \le m} |f_{\alpha,k} - f_{\alpha}|^{p'} dx dt, \quad (58)$$

where $\delta > 0$ is an arbitrary number, C_1, C_2 are the constants which do not depend on δ . From conditions of the theorem it follows that we can choose $\delta > 0$ such that

$$C_1 \delta^{-\frac{p}{p-2}} \int_{t_1-\delta}^{t_1} [\lambda_{\gamma}(t)]^{\frac{p}{p-2}} dt < \frac{\varepsilon}{2}.$$

$$(59)$$

Since $f_{\alpha,k} \to f_{\alpha}$ in $L_{p'}(Q_{t_1-\delta,t_2})(|\alpha| \leqslant m)$, we obtain the existence of a number $k_0 \in \mathbb{N}$ such that for any $k \ge k_0$

$$C_2 \iint_{Q_{t_1-\delta,t_2}} \sum_{|\alpha| \leqslant m} |f_{\alpha,k} - f_{\alpha}|^{p'} dxdt \leqslant \frac{\varepsilon}{2}.$$
 (59)

Taking into account (59), (60), we conclude that the right side of (58) is less than ε for any $k \ge k_0$. The theorem is proved.

REFERENCES

- Абдулаев У. Г., О существовании неограниченных решений нелинейного уравнения теплопрово*дности со стоком*, Журн. вычисл. мат. и мат. физики. **33** (1993), no. 2, 232–245.
- Bernis F., Elliptic and parabolic semilinear problems without conditions at infinity, Arch. Ration Mech. and Anal., 106 (1989), 217–241.
- Brezis H., Semilinear equations in \mathbb{R}^N without condition at infinity, Appl. Math. Optim. 12 (1984), 271 - 282.
- Бокало Н. М., О задаче без начальных условий для некоторых классов нелинейных параболических уравнений, Тр. семинара им. И.Г.Петровского. М.: Изд-во Моск. ун-та (1989), Вып. 14, 3–44.

- 5. Bokalo M. M., Sikorsky V. M., The well-posedness of a Fourier problem for quasilinear parabolic equations of arbitrary order in unisotropic spaces, Математичну студії, 8 (1997), no. 1, 53–70.
- 6. Herrero M. A., Pierre M., Cauchy problem for $u_t \Delta u^m = 0$, when 0 < m < 1, Trans. Amer. Math. Soc. **291** (1985), 145–158.
- 7. Калашников А. С., О задаче Коши в классах растущих функций для некоторых квазилинейных вырождающихся параболических уравнений второго порядка, Дифференц. уравнения. **9** (1973), no.4, 682–691.
- 8. Лионс Ж.-Л. Некоторые методы решения нелинейных краевых задач, М.: Мир, 1972.
- 9. Шишков А. Е., Классы единственности обобщенных решений краевых задач для параболических уравнений в неограниченных областях, Дифференциальные уравнения. **26** (1990), no.9, 1627–1633.
- 10. Тихонов А.Н., Teopemы единственности для уравнения теплопроводности, Мат. сб. (1935), no.2, 199–216.
- 11. Vazquez J., Walias M., Existence and uniqueness of solutions of diffusion-absorption equations with general data, Journ. Diff. Int. Equations, 7 (1994), 15–36.

Faculty of Mechanics and Mathematics, Lviv National University

Received 22.10.1999