УДК 512.664

V. V. LYUBASHENKO

ON A FUNCTORIAL ISOMORPHISM IN THE DERIVED CATEGORY OF ℓ -ADIC SHEAVES

V. V. Lyubashenko. On a functorial isomorphism in the derived category of l-adic sheaves, Matematychni Studii, **14** (2000) 115–120.

For a vector bundle $h: E \to B$ of dimension d over the algebraic closure of a finite field we prove that the functor $\bar{R}h_! \circ h^* \colon D^b(B, \mathbb{Q}_\ell) \to D^b(B, \mathbb{Q}_\ell)$ is isomorphic to the (twisted) shift functor [-2d](-d).

В. В. Любашенко. О функториальном изоморфизме в производной категории ℓ -адических пучков // Математичні Студії. — 2000. — Т.14, №2. — С.115—120.

Для векторного расслоения $h: E \to B$ размерности d над алгебраическим замыканием конечного поля доказано, что функтор $\bar{R}h_! \circ h^* \colon D^b(B, \mathbb{Q}_\ell) \to D^b(B, \mathbb{Q}_\ell)$ изоморфен (скрученному) функтору сдвига [-2d](-d).

Let \mathbb{F} be the algebraic closure of the field \mathbb{F}_p of p elements. Denote by \mathbb{Q}_ℓ the field of ℓ -adic numbers, ℓ is a prime, different from the prime p. The bounded derived category of ℓ -adic sheaves on a scheme X is denoted $D^b(X,\mathbb{Q}_\ell)$. We are going to discuss a functor in derived category, which is expected to be a kind of braiding in a monoidal 2-category.

Theorem 1. Let B be a quasicompact scheme over \mathbb{F} . Let $h: E \to B$ be a vector bundle of dimension d over \mathbb{F} . Then there is an isomorphism of functors

$$\left[D^b(B,\mathbb{Q}_\ell) \xrightarrow{h^*} D^b(E,\mathbb{Q}_\ell) \xrightarrow{\bar{R}h_!} D^b(B,\mathbb{Q}_\ell)\right] \simeq \left[D^b(B,\mathbb{Q}_\ell) \xrightarrow{[-2d](-d)} D^b(B,\mathbb{Q}_\ell)\right].$$

Proof. Let \mathcal{E} be a locally free \mathcal{O}_B -module of rank d such that $E \simeq \operatorname{Spec} S_{\mathcal{O}_B}(\mathcal{E})$, where $S_{\mathcal{O}_B}(\mathcal{E})$ is the symmetric algebra of \mathcal{E} [4, Exercise II.5.18]. Considering this symmetric algebra as a graded algebra sheaf, we get $q: Q \to B$, $Q = \operatorname{Proj} S_{\mathcal{O}_B}^{\bullet}(\mathcal{E})$, the bundle of projective spaces associated with the vector bundle E. Denote by \mathbb{I} the trivial line bundle on B, $\mathbb{I} = \mathbb{F} \times B \to B$. Then $p: P \to B$, $P = \operatorname{Proj} S_{\mathcal{O}_B}^{\bullet}(\mathcal{O}_B \oplus \mathcal{E})$ is the bundle of projective spaces associated with the vector bundle $\mathbb{I} \oplus E$.

There is an open embedding $j: E \hookrightarrow P$ and a closed embedding $i: Q \hookrightarrow P$, given in local coordinates by j(e) = (1, e) and i(q) = (0, q). In other words, j identifies E with the open subscheme $D_+(\xi) \subset P$ for the section $\xi = 1 \oplus 0 \in \mathcal{O}_B(B) \oplus \mathcal{E}(B)$, and i makes Q into a closed subscheme of P determined by the ideal $(\xi) \subset S_{\mathcal{O}_B}^{\bullet}(\mathcal{O}_B \oplus \mathcal{E})$ spanned by ξ . The set

2000 Mathematics Subject Classification: Primary 14F20; Secondary 14F05, 18E25, 18E30, 18G10.

of all points of the scheme P is the disjoint union of sets of points of E and Q. Clearly, the following diagram of scheme morphisms commutes.

$$E \xrightarrow{j} P \xleftarrow{i} Q$$

$$\downarrow p \qquad q$$

$$B$$

The exact sequence of etale sheaves on P [5, Remark II.3.13]

$$0 \to j_! j^* F \xrightarrow{a} F \xrightarrow{b} i_* i^* F \to 0$$

uses the exact functors $j_!$, j^* , i_* , i^* . We denote by the same symbol their extension to the derived category. For $F \in D^b(P, \mathbb{Q}_\ell)$ we have a distinguished triangle

$$j_! j^* F \xrightarrow{a} F \xrightarrow{b} i_* i^* F \xrightarrow{c} .$$

In particular, for $S \in D^b(B, \mathbb{Q}_\ell)$ we have a triangle

$$j_!h^*S \xrightarrow{a} p^*S \xrightarrow{b} i_*q^*S \xrightarrow{c}$$

Applying Rp_* we get a distinguished triangle

$$\bar{R}h_!h^*S \xrightarrow{a'} Rp_*p^*S \xrightarrow{b'} Rq_*q^*S \xrightarrow{c'} ,$$
 (1)

where $\bar{R}h_!$ denotes the functor $Rp_* \circ j_!$, obtained via the compactification $E \xrightarrow{j} P \xrightarrow{p} B$ of h. This version of the derived functor has been defined by

Deligne [3, Definition 5.1.9].

Let us consider the Chern class $\eta_Q \colon \mathbb{Q}_\ell \to \boldsymbol{\mu}[2] \in D^b(Q, \mathbb{Q}_\ell)$ of $\mathcal{O}_Q(1)$, in other terms, an element $\eta_Q \in H^2(Q, \boldsymbol{\mu})$. For an arbitrary $K \in D^b(Q, \mathbb{Q}_\ell)$ it defines a morphism, also denoted by η_Q ,

$$K \xrightarrow{\sim} \mathbb{Q}_{\ell} \xrightarrow{L} \otimes K \xrightarrow{\eta_Q \otimes 1} \mu[2] \xrightarrow{L} \otimes K \xrightarrow{\sim} K[2](1).$$

For $S \in D^b(B, \mathbb{Q}_\ell)$ we define

$$\alpha_i \colon S \xrightarrow{\operatorname{adj}_q} Rq_*q^*S \xrightarrow{(Rq_*\eta_Q)^i} Rq_*q^*S[2i](i).$$

The sum of those is an isomorphism

$$\sum \alpha_i : \bigoplus_{i=0}^{d-1} S[-2i](-i) \xrightarrow{\sim} Rq_* q^* S$$
 (2)

by a version of Lemma 5.4.12 [1] over \mathbb{Q}_{ℓ} .

Let S be a sheaf on B. Let us prove that the morphism b' from distinguished triangle (1) induces an isomorphism in r^{th} cohomology for all r, except for r = 2d. This follows from an equation for $S \in D^b(B, \mathbb{Q}_{\ell})$

$$\alpha_i^q = \left(S[-2i](-i) \xrightarrow{\alpha_i^p} Rp_*p^*S \xrightarrow{b'} Rq_*q^*S \right),$$

which holds for all $i \geq 0$. Notice that for $0 \leq i < d$ the induced morphisms $\alpha_i \colon S(-i) \to R^{2i} p_* p^* S$ and $\alpha_i \colon S(-i) \to R^{2i} q_* q^* S$ are isomorphisms.

For i = 0 this equation is standard:

$$\operatorname{adj}_{q} = \left(S \xrightarrow{\operatorname{adj}_{p}} Rp_{*}p^{*}S \xrightarrow{Rp_{*}\operatorname{adj}_{i}} Rp_{*}i_{*}i^{*}p^{*} \xrightarrow{\sim} Rq_{*}q^{*}S \right).$$

To prove it for i > 0 it suffices to prove the equality

$$(Rp_*p^*S \xrightarrow{b'} 2)Rq_*q^*S \xrightarrow{Rq_*\eta_Q} Rq_*q^*S[2](1)) =$$

$$= (Rp_*p^*S \xrightarrow{Rp_*\eta_P} Rp_*p^*S[2](1) \xrightarrow{b'[2](1)} Rq_*q^*S[2](1)).$$

Since b' is Rp_*b composed with a canonical isomorphism, the above equality follows from

$$\left(p^*S \xrightarrow{b} i_*i^*p^*S \xrightarrow{i_*\eta_Q} i_*i^*p^*S[2](1)\right) = \left(p^*S \xrightarrow{\eta_P} p^*S[2](1) \xrightarrow{b=b[2](1)} i_*i^*p^*S[2](1)\right),$$

where $b = \operatorname{adj}_i$ is the adjunction unit. The above equality holds not only for $F = p^*S$, but also for an arbitrary $F \in D^b(P, \mathbb{Q}_{\ell})$. To prove it, notice that in the diagram

$$\mathbb{Q}_{\ell} \otimes F \xrightarrow{\operatorname{adj}_{i} \otimes 1} i_{*}i^{*}\mathbb{Q}_{\ell} \otimes F \xrightarrow{\sim} i_{*}(i^{*}\mathbb{Q}_{\ell} \otimes i^{*}F) \xrightarrow{\sim} i_{*}i^{*}(\mathbb{Q}_{\ell} \otimes F)$$

$$\eta_{P} \otimes 1 \downarrow \qquad \qquad \qquad \qquad \downarrow i_{*}\eta_{Q} \otimes 1 \downarrow \qquad \qquad \qquad \downarrow i_{*}(\eta_{Q} \otimes 1) \qquad \qquad \downarrow \downarrow i_{*}i^{*}(\eta_{Q} \otimes 1)$$

$$\boldsymbol{\mu}[2] \otimes F \xrightarrow{\operatorname{adj}_{i} \otimes 1} i_{*}i^{*}\boldsymbol{\mu}[2] \otimes F \xrightarrow{\sim} i_{*}(i^{*}\boldsymbol{\mu}[2] \otimes i^{*}F) \xrightarrow{\sim} i_{*}i^{*}(\boldsymbol{\mu}[2] \otimes F)$$

the rows are equal to adj_i .

More generally, for bounded above complexes G, F on P the commutativity of the exterior of the left diagram implies the right one:

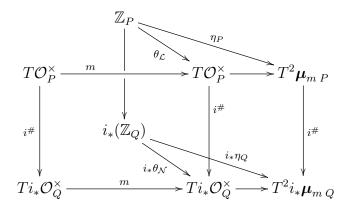
$$i^{*}(G \otimes F) \xrightarrow{i^{*}(\operatorname{adj}_{i} \otimes 1)} i^{*}(i_{*}i^{*}G \otimes F) \qquad G \otimes F \xrightarrow{\operatorname{adj}_{i} \otimes 1} i_{*}i^{*}G \otimes F$$

$$\downarrow^{\downarrow} \qquad = \qquad \downarrow^{\downarrow} \qquad$$

So it remains to prove the particular case $S = \mathbb{Q}_{\ell}$, that is, the equality

$$\left(\mathbb{Z}/m_P \longrightarrow i_*(\mathbb{Z}/m_Q) \xrightarrow{i_*\eta_Q} i_*\boldsymbol{\mu}_m[2]_Q\right) = \left(\mathbb{Z}/m_P \xrightarrow{\eta_P} \boldsymbol{\mu}_m[2]_P \xrightarrow{i^\#} i_*\boldsymbol{\mu}_m[2]_Q\right)$$

for $m = l^n$ or any m > 0 not divisible by p. Instead of working with 2-cocycles, we reduce the question to 1-cocycles via Kummer sequences and associated triangles:



Here $\mathcal{L} = \mathcal{O}_P(1)$, $\mathcal{N} = i^* \mathcal{L} \otimes_{i^* \mathcal{O}_P} \mathcal{O}_Q \simeq \mathcal{O}_Q(1)$, and $\theta_{\mathcal{L}}$, $\theta_{\mathcal{N}}$ are corresponding 1-cocycles. We apply the following lemma.

Lemma 2. Let $f: X \to Y$ be a morphism of schemes. Let \mathcal{L} be an invertible sheaf on Y, it induces an invertible sheaf $\mathcal{N} = f^*\mathcal{L} \otimes_{f^*\mathcal{O}_Y} \mathcal{O}_X$ on X. The class of \mathcal{L} in the Picard group $\operatorname{Pic} Y \xrightarrow{\sim} H^1(Y_{et}, \mathcal{O}^{\times})$ is denoted by $\theta_{\mathcal{L}} \colon \mathbb{Z}_Y \to T\mathcal{O}_Y^{\times}$, similarly for $\theta_{\mathcal{N}}$. Then the diagram

$$f^* \mathbb{Z}_Y \xrightarrow{f^* \theta_{\mathcal{L}}} T f^* \mathcal{O}_Y^{\times}$$

$$\downarrow \qquad \qquad \downarrow^{Tf^{\#}}$$

$$\mathbb{Z}_X \xrightarrow{\theta_{\mathcal{N}}} T \mathcal{O}_X^{\times}$$

is commutative.

Proof. The class $\theta_{\mathcal{L}}$ is the image of $[\mathcal{L}]$ under the sequence of isomorphisms

$$\operatorname{Pic} Y \to \check{H}^1(Y_{Zar}, \mathcal{O}^{\times}) \to H^1(Y_{Zar}, \mathcal{O}^{\times}) \to H^1(Y_{et}, \mathcal{O}^{\times}).$$

Let $\mathcal{U} = (\mathcal{U}_i)_{i \in I}$ be an affine Zariski covering of Y and $\phi_i : \mathcal{O}_Y \big|_{U_i} \to \mathcal{L} \big|_{U_i}$ are isomorphisms. Then

$$\left. \mathcal{O}_Y \right|_{U_i \cap U_j} \xrightarrow{\phi_j} \mathcal{L} \left|_{U_i \cap U_j} \xrightarrow{\phi_i^{-1}} \mathcal{O}_Y \right|_{U_i \cap U_j}$$

is the action of a section $s_{ij}^{\mathcal{L}} \in \mathcal{O}_Y^{\times}(U_i \cap U_j)$. The collection $s^{\mathcal{L}} = (s_{ij}^{\mathcal{L}})_{i < j}$ is a Čech 1-cocycle. The corresponding morphism $\theta_{\mathcal{L}} \colon \mathbb{Z}_Y \to T\mathcal{O}_Y^{\times}$ in $D^b(Y_{Zar})$ (resp. $D^b(Y_{et})$) is constructed via the Čech resolution of $F = \mathcal{O}_Y^{\times}$

$$0 \to \mathcal{C}^0(\mathcal{U}, F) \to \mathcal{C}^1(\mathcal{U}, F) \to \mathcal{C}^2(\mathcal{U}, F) \to \mathcal{C}^p(\mathcal{U}, F) = \prod_{i_0 < \dots < i_p} j_{i_0 \dots i_p *} j_{i_0 \dots i_p}^* F,$$

where $j_{i_0...i_p}: U_{i_0} \cap \cdots \cap U_{i_p} \longrightarrow Y$ is the embedding. In particular,

$$C^p(\mathcal{U}, F)(V) = \prod_{i_0 < \dots < i_p} F(V \cap U_{i_0} \cap \dots \cap U_{i_p}).$$

As a morphism in the derived category, $\theta_{\mathcal{L}}$ can be written as $(\mathbb{Z}_Y \xrightarrow{s^{\mathcal{L}}} T\mathcal{C}(\mathcal{U}, \mathcal{O}_Y^{\times}) \xleftarrow{\epsilon} T\mathcal{O}_Y^{\times})$, where the quasi-isomorphism ϵ is the product of restriction maps.

Let us denote by f^{-1} the open covering $(f^{-1}U_i)_{i\in I}$ of X. The morphisms of Zariski sheaves on X

$$f^*\mathcal{O}_Y^{\times} = f^*\mathcal{O}_Y^{\times} \xrightarrow{f^\#} \mathcal{O}_X^{\times}$$

extend to chain maps of resolutions

$$f^*\mathcal{C}^{\bullet}(\mathcal{U}, \mathcal{O}_Y^{\times}) \xrightarrow{\tau} \mathcal{C}^{\bullet}(f^{-1}\mathcal{U}, f^*\mathcal{O}_Y^{\times}) \xrightarrow{\mathcal{C}^{\bullet}(f^{-1}\mathcal{U}, f^{\#})} \mathcal{C}^{\bullet}(f^{-1}\mathcal{U}, \mathcal{O}_X^{\times}).$$

The map τ corresponds to the map $\mathcal{C}^{\bullet}(\mathcal{U}, \mathcal{O}_{Y}^{\times}) \to f_{*}\mathcal{C}^{\bullet}(f^{-1}\mathcal{U}, f^{*}\mathcal{O}_{Y}^{\times})$, constructed from the components

$$j_{i_0...i_p*}j_{i_0...i_p}^*F \to j_{i_0...i_p*}f_{i_0...i_p*}f_{i_0...i_p}^*j_{i_0...i_p}^*F \stackrel{\sim}{\longrightarrow} f_*k_{i_0...i_p*}k_{i_0...i_p}^*f^*F,$$

where the maps are taken from

$$f^{-1}(U_{i_0} \cap \dots \cap U_{i_p}) \xrightarrow{c^{k_{i_0 \dots i_p}}} X$$

$$f_{i_0 \dots i_p} = f \bigcup_{j_{i_0 \dots i_p}} f$$

$$U_{i_0} \cap \dots \cap U_{i_n} \xrightarrow{j_{i_0 \dots i_p}} Y$$

The required diagram follows from the commutativity of the right rectangle in

The explicit computation of the cocycle $s^{\mathcal{N}}$ shows that it is obtained from $s^{\mathcal{L}}$ via the algebra sheaf homomorphisms

$$\mathcal{O}_Y \xrightarrow{\operatorname{adj}_f} f_* f^* \mathcal{O}_Y \xrightarrow{f_* f^\#} f_* \mathcal{O}_X$$

restricted to $U_i \cap U_j$:

$$\mathcal{O}_Y(U_i \cap U_j) \longrightarrow f^*\mathcal{O}_Y(f^{-1}(U_i \cap U_j)) \xrightarrow{f^\#} \mathcal{O}_X(f^{-1}U_i \cap f^{-1}U_j), \quad s_{ij}^{\mathcal{L}} \mapsto s_{ij}^{\mathcal{N}}.$$

This is precisely the commutativity of rectangle (3).

From the long exact sequence associated with (1) we deduce that for a sheaf S the derived sheaf $\bar{R}^j h_! h^* S$ vanishes for $j \neq 2d$ and $\bar{R}^{2d} h_! h^* S \simeq S[-2d](-d)$. Furthermore, the morphism a' composed with the canonical projection gives the functorial morphism for $S \in D^b(B, \mathbb{Q}_\ell)$

$$\bar{R}h_!h^*S \xrightarrow{a'} Rp_*p^*S \to S[-2d](-d),$$

which is an isomorphism for sheaves S. By devissage, we deduce that it is an isomorphism for all $S \in D^b(B, \mathbb{Q}_{\ell})$.

Problem 3. Prove Theorem 1 for sheaves of \mathbb{C} -vector spaces on schemes over \mathbb{C} .

This would have an equivariant analogue: assuming that a complex algebraic group acts equivariantly on a complex vector bundle $h \colon E \to B$, we would get an isomorphism for a vector bundle of dimension d

$$\left[D^b_G(B,\mathbb{C}) \xrightarrow{h^*} D^b_G(E,\mathbb{C}) \xrightarrow{Rh_!} D^b_G(B,\mathbb{C})\right] \simeq \left[D^b_G(B,\mathbb{C}) \xrightarrow{[-2d]} D^b_G(B,\mathbb{C})\right],$$

where $D_G^b(X,\mathbb{C})$ is the equivariant derived category of Bernstein and Lunts [2].

Problem 4. Define an equivariant derived category of ℓ -adic sheaves on a G-scheme over \mathbb{F} , so that Theorem 1 had an equivariant version.

REFERENCES

- 1. A. A. Beilinson, J. Bernstein, and P. Deligne, *Faisceaux pervers*, Soc. Math. de France, Astérisque, **100** (1982).
- 2. J. Bernstein and V. Lunts, *Equivariant sheaves and functors*, Lecture Notes in Math., vol. 1578, Springer, Berlin, Heidelberg, 1994.
- 3. P. Deligne, *Cohomologie à supports propres*, in book: Théorie des Topos et Cohomologie Etale des Schémas (SGA 4) (M. Artin, A. Grothendieck, and J. L. Verdier eds.) Lect. Notes in Math., no. 305, Springer-Verlag, Berlin, Heidelberg, New York, 1973, 250–480.
- 4. R. Hartshorne, *Algebraic geometry*, Graduate texts in mathematics, vol. 52, Springer-Verlag, New York, Heidelberg, Berlin, 1977.
- 5. J. S. Milne, *Etale cohomology*, Princeton Mathematical Series, vol. 33, Princeton Univ. Press, Princeton, New Jersey, 1980.

Institute of Mathematics, National Academy of Sciences of Ukraine, 3, Tereshchenkivska st., Kyiv-4, 01601 MSP, Ukraine lub@imath.kiev.ua

Received 10.05.2000