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Every automaton over a finite alphabet X determines a transformation of both the free
monoid generated by X and the countable power X (automatic permutation). Some problems
concerning the group of all automatic permutations are formulated.
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Kaxxprit aBromar Ha/1 KOHEIHBIM ajidaBuToM X Ompeseser npeodpa3oBanne CBOOOIHOTO
MoHoH1a Hag X u cuerHOil crenern X (aBroMarHast MoACTaHOBKA). POPMYIUPYIOTCS HEKOTO-
pble pobJIeMBI O IPYIIIAX aBTOMATHBIX HMOJCTAHOBOK MHOYKECTBA.

1. An initial Mealy automaton over a finite alphabet X (|X| > 1) is a quadruple A =
(@, q0,0,\), where Q is a set of internal states of the automaton, gy € @ is its initial state,
¢:QxX = Qand X\ : Q xX — X are the transition and output functions respectively. The
automaton A is finite if the set ) is finite and it is called permutational if for every q € @ the map
x — Mg, ) is a permutation of the alphabet X.

For two automata Ay = (Q1,q1, ¢1, A1), A2 = (Q2, g2, P2, A2) we define their composition Ay Ay
as the automaton B = (@, q, ¢, \), where

Q=Q1%xQ2,q9=(q1,q),
¢ ((s1,52),7) = (o1 (51,7) , P2 (52, M1 (51, 7)))
A((s1,82), @) = Aa(s2, A1 (51, 2)).
If the automaton A; is permutational then its inverse automaton is the automaton A1_1 = (Q1,q1,
b1, A\[ 1), where AT (s, M\1(s,2)) = x for every x € X and s € Q.

We extend (see [1]) the functions ¢ and A onto the set @ x X*, where X* is the free monoid
generated by X (the set of finite words over the alphabet X) by the following recursive rules:

¢(Q> 1) =dq, Qs(q’wx) =¢ (¢ (Q7w) ,l‘) s
Mg, 1) =1, Mg, wz) = A (¢ (¢, w), @),

where x € X, w € X* and g € ) are arbitrary elements.
An automaton A is accessible if for any state ¢ € ) there exists a word w € X* such that

¢(q0, w) = q.
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Thus every automaton A defines a transformation w4 of the set X* or of the set X“ of all
infinite sequences over the alphabet X (w-words) by the equalities:

TA(z122...) =1Y2.--5 Yk = Mo, x172 . .. Tp),

where x1x2 ... is a finite or infinite word. Every transformation defined by a (finite) automaton
can be defined by a (finite) accessible automaton. A transformation w4 defined by an accessible
automaton A, is a permutation if and only if the automaton A is permutational. Permutations
defined by automata are called automatic.

The sets of all automatic permutations of the set X* and of the set X*“ are groups. These groups
are isomorphic as abstract groups but have different permutational properties. For instance, the
group of automatic permutations of X“ is transitive, while the group of automatic permutations
of X* is not. The group of all automatic permutations over the alphabet X is isomorphic to the
automorphism group of a rooted n-adic tree, where n = | X|. It is also isomorphic to the full isometry
group of a special ultrametric space [1, 2]. This makes possible to use combinatorial, geometrical
and topological methods to study this group (see [2, 4]). In particular, one can introduce a natural
complete ultrametric on the group of all automatic permutations (see [2]).

An automatic permutation is said to be finitely automatic if it can be defined by a finite
automaton. Product of two automatic permutations is defined by their composition and since
composition and inverses of two finite automata are again finite automata, the set of all finitely
automatic permutations over the alphabet X is a group. This group will be denoted FGA(X).
The group FGA(X) was introduced for the first time in [3].

2. The properties of the group FGA(X), in the contrast to the group of all automatic permu-
tations, are known very little. The main known facts about them are the following.

The group FGA(X) is residually finite as a subgroup of the profinite group of all automatic
permutations over the alphabet X.

Let m be an automatic permutation. If there exists a number n such that for every word
w = x1xe... and its image m(w) = y1y2... we have y, = x for all k& > n, then 7 is finitely
automatic. Such permutations are called finitary and they form a dense subgroup of the group of
all automatic permutations (and thus it is also dense in FGA(X)). The subgroup of all finitary
automatic permutations was introduced in [5, 6]. In fact, this is the most simple subgroup of
FGA(X) and it can be studied by group theoretic methods. It was extensively studied in [7],
where it is called the base group.

The group FGA(X) can be constructed of symmetric groups Symm(X) using the general
construction of up-wreath power of a permutation group, introduced in [8].

An infinite word w € X* is said to be ultimately periodic if there exist finite words u,v € X*
such that w = wwvvv.... The set of all ultimately periodic words from X is denoted by X“P. The
set X“P is an orbit of the group FGA(X) under its action on X“. The action of FGA(X) on X"P
is faithful [8].

The permutation group (FGA(X), X"P) is imprimitive. The imprimitivity blocks are intersec-
tions of the imprimitivity blocks of the whole group of automatic permutations with X*? [§].

A finite group G can be embedded into FGA(X) if and only if it has a subnormal series
G=Gyp>Gy>...>Gs = {1} with all quotients embeddable into Symm(X) [9].

Any finitely generated subgroup of FGA(X) has a solvable word problem.

The group FGA(X) contains free subgroups of any finite rank for all X, |X| > 1 (see [10, 11}).
For | X| > 2™ the group GL(n,Z) is a subgroup of FGA(X) [11].

The group FGA(X) contains subgroups of Burnside type, i.e., infinite finitely generated torsion
groups. Examples of such subgroups constructed using different languages (tree automorphisms,
permutations of a segment, wreath products) can be found in [12]-[15].

For more special properties of the group of finitely automatic permutations see [16, 17].
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3. Besides the properties, formulated in section 2, the group FGA(X) can be used in construc-
tion of different extremal examples of groups, in symbolic dynamics, ergodic theory etc. These
investigations proved that more detailed study of the structure and properties of FGA(X) is nec-
essary. In this direction we emphasize the following problems.

3.1. Systems of generators of FGA(X). We still do not know any not very excessive system of
generators of FGA(X). In particular, the following problem stated in [6] is still open.
Does there exist an irreducible generating system of FGA(X)?

3.2. Conjugacy classes in the group of all automatic permutations over an alphabet X (in terms
of rooted trees) is described in [18, 19]. But similar description is not valid for FGA(X) and no
suitable modification is known. In connection with this the following questions arise.

(i) Is the conjugacy problem algorithmically solvable in FGA(X)?
(ii) Describe the conjugacy classes of FGA(X).

(iii) Investigate conjugacy problem for finitely generated subgroups of FGA(X). Is it always solv-
able?

3.3. Automorphism groups of different groups of automatic permutations where studied by
S. Sidki [20], A. Brunner, S. Sidki [11] and Y. Lavreniuk [21]. Accoding to results of Y. Lavreniuk,
the automorphism group of FGA(X) coincides with the normalizer of FGA(X) in the group of all
automatic permutations over the alphabet X. We conjecture that FGA(X) is complete.

3.4. Verbal subgroups of the group of finitary automatic permutations over an alphabet with two
letters where studied by N.Smetaniuk and the second author [22]. They proved that every such a
verbal subgroup is a member of the lower central series. The members of the lower central series in
this case are clearly described by the polynomial representation introduced by L.Kaloujnine [23, 24].
But this description can not be applied directly for the group FGA(X). Therefore the following
questions arise.

(i) Describe the members of the lower central series of the group FGA(X), | X| = 2. In particular,
how can the derived subgroup and abelianization be described.

(ii) Describe all verbal subgroups of FGA(X). Are they all members of the lower central series?

3.5. Embeddings of linear and free groups into FGA(X) were studied by several authors (see [10,
11, 12]), but still for many groups it is not known if they are isomorphic to subgroups of FGA(X). In
particular, this concerns the automorphism group of a free group, the braid groups, the Nottingham
group and the Golod-Shafarevich torsion groups.
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