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We prove that non-“nilpotent-by-Černikov” group in which no non-trivial section is perfect
has an infinite ascending chain of non-“nilpotent-by-Černikov” subgroups and give a charac-
terization of the solvable groups with the maximal condition on non-“nilpotent-by-Černikov”
subgroups.

О.Д. Артемович. Pазpешимые гpуппы, насыщенные подгpуппами, являющимися pасши-
pениями нильпотентных гpупп пpи помощи чеpниковских гpупп // Математичнi Студiї.
– 2000. – Т.13, №1. – C.23–32.

Доказано, что гpуппа без нетpивиальных совepшенных секций, не являющаяся pасши-
pением нильпотентной гpуппы пpи помощи чеpниковской, имеет бесконечный убывающий
pяд, состоящий из подгpупп, не являющихся pасшиpением нильпотентной гpуппы пpи
помощи чеpниковской. Охаpактеpизовано рaзpешимые группы с условием максимальнос-
ти для подгрупп, не являющихся pасшиpением нильпотентной гpуппы пpи помощи чеp-
никовской гpуппы.

0. Let X be a class of groups. In the last few years there has been increasing interest in
the structure of groups with many X-subgroups and, in particular, groups with the maximal
or minimal condition on non-X-subgroups. We say that G satisfies the minimal condition on
non-X-subgroups (briefly Min-X) if for every descending chain {Gn | n ∈ N} of subgroups
of G there exists a number n0 ∈ N such that the subgroups Gn are X-groups for all n ≥ n0.
The maximal condition on non-X-subgroups of G (briefly Max-X) is defined dually, namely,
one says that G satisfies Max-X if there is no infinite ascending chain of non-X-subgroups
of G. S.N. Černikov (see [1]) and V.P. Šunkov [2] sdudied groups with the minimal condition
on non-abelian subgroups, while D.I. Zăıtsev and L.A. Kurdachenko [3] characterized the
locally almost solvable groups with the maximal condition on non-abelian subgroups. Every
minimal non-X group, i.e. a non-X group in which every proper subgroup is a X-group,
satisfies Max-X and Min-X. Many authors investigated the minimal non-“nilpotent-by-
finite” groups. M.F. Newman and J. Wiegold [4] described the structure of a minimal
non-nilpotent group with a maximal subgroup. Examples constructed by H. Heineken and
I.J. Mohamed [5] have evoked considerable interest to groups whose all proper subgroups are
nilpotent [6-10], abelian-by-finite [11-14], nilpotent-by-finite [15-16] or hypercentral-by-finite
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[17], respectively. It is natural to extend the above problems by replacing the terms “finite
group” by “Černikov group” like in [18-20].

In this paper we prove that every non-“nilpotent-by-Černikov” group in which no non-
trivial section is perfect with the minimal condition on non-“nilpotent-by-Černikov” sub-

groups Min-NČ is a nilpotent-by-Černikov group. We also characterize the solvable groups

with the maximal condition on non-“nilpotent-by-Černikov” subgroups Max-NČ.
Throughout this paper p and q always denote distinct primes and Cp∞ the quasicyclic

p-group. For any group G, Z(G) means the centre of G, G′, G′′, . . . , G(n) the terms of derived
series of G, RG the group ring of G over a commutative ring R, τG the set of all torsion
elements of G and γcG the term of the lower central series of G. Let also Fp be the finite
field with p elements, Z the group (or set) of rational integers and Q the rational number
field.

Most of the standard notation can be found in [21–23].
1. In this part we study the groups in which no non-trivial section is perfect with the

minimal condition on non-“nilpotent-by-Černikov” subgroups Min-NČ.

Lemma 1.1. Let G be a group satisfying Min-NČ and H be a subgroup of G. Then:

(i) H satisfies Min-NČ;

(ii) if H is normal in G, then the quotient group G/H satisfies Min-NČ;

(iii) if H is a normal non-“nilpotent-by-Černikov” subgroup of G, then G/H is a Černikov
group.

Proof is immediate.

Lemma 1.2. Let G be a non-perfect (i.e. G 6= G′) locally graded group with the “nilpotent-

by-Černikov” commutator subgroup G′. If G satisfies Min-NČ, then it is a “nilpotent-by-
Černikov” group.

Proof. Suppose that G has a proper non-“nilpotent-by-Černikov” subgroup. Since G satisfies

Min-NČ, it contains a subgroup S which is a minimal non-“nilpotent-by-Černikov” group.
Then by Theorem A of [20], S = S ′ and consequently S ≤ G′, a contradiction. Therefore all
proper subgroups of G are nilpotent-by-Černikov. From Theorem A of [20] it follows that G
is a nilpotent-by-Černikov group, as desired.

Corollary 1.3. Let G be a non-perfect group with all proper normal subgroups nilpotent-

by-Černikov. If G satisfies Min-NČ, then G is a nilpotent-by-Černikov group.

Remark 1.4. Let G be a locally graded group satisfying Min-NČ. Then one of the following
holds:

(1) G is a nilpotent-by-Černikov group;

(2) G is a non-“nilpotent-by-Černikov” group, but every proper subgroup of G is nilpotent-
by-Černikov;

(3) G contains a proper subgroup S of finite index which is a group of type (2).

Unfortunately it is not known if there exists a group possessing the property (2) from
Remark 1.4.

Lemma 1.1, Corollary 1.3 and Remark 1.4 yield the following
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Proposition 1.5. Let G be a group in which no non-trivial section is perfect (in particular,

G is a solvable group). Then G satisfies Min-NČ if and only if it is a nilpotent-by-Černikov
group.

Consequently every solvable non-“nilpotent-by-Černikov” group has an infinite ascending
chain of non-“nilpotent-by-Černikov” subgroups.

Remark 1.6. Let c be a non-negative integer. In the same manner as before, Theorem C of
[20] and Theorem 1 of [18] imply that a locally graded non-“abelian-by-Černikov” (respec-
tively non-“Černikov-by-nilpotent of class ≤ c”) group G has an infinite ascending chain
of non-“abelian-by-Černikov” (respectively non-“Černikov-by-nilpotent of class ≤ c”) sub-
groups.

2. In this part we establish some properties of groups with the maximal condition on

non-“nilpotent-by-Černikov” subgroups Max-NČ.

Lemma 2.1. Let G be a group satisfying Max-NČ and H be a subgroup of G. Then:

(i) H satisfies Max-NČ;

(ii) if H is normal in G, then the quotient group G/H satisfies Max-NČ;

(iii) if H is a normal non-“nilpotent-by-Černikov” subgroup of G, then G/H satisfies Max.

Proof is immediate.

Lemma 2.2. If G = AB is the product of two normal nilpotent-by-Černikov subgroups A
and B, then G is a nilpotent-by-Černikov group.

Proof. Let N be a normal nilpotent subgroup of A with the Černikov quotient group A/N .
By Lemma 4.7 of [24] the normal closure R = NG of N in G is a nilpotent subgroup with the
Černikov quotient group A/R. Let S be a G-invariant subgroup of B such that the quotient
B/S is a Černikov group. Since G/RS is a product of two normal Černikov subgroups, G is
a nilpotent-by-Černikov group.

Proposition 2.3. Let G be a group satisfying Max-NČ. Then either G is a nilpotent-by-
Černikov group or the quotient group G/G′ is finitely generated.

Proof. If the commutator subgroup G′ is not a nilpotent-by-Černikov group, then G/G′ is
finitely generated by Lemma 2.1(iii). Therefore we assume that G′ is a nilpotent-by-Černikov
subgroup and, furthermore, the quotient G/G′ is not finitely generated. It is well known (see
e.g.[21, Theorem 21.3]) that G = G/G′ = N ×D is a group direct product of the divisible
part D of G and a reducible subgroup N . Let N (respectively D) is an inverse image of N
(respectively N) in G.

Assume that G is not a nilpotent-by-Černikov group.
(1) Let the divisible part D of G is a non-trivial subgroup. By our hypothesis and

Lemma 2.1 D cannot be written as a product D = A1 · A2 of two subgroups A1 and A2

with the infinite indices |D : Ai| (i = 1, 2). This yields D ∼= Cp∞ for some prime p. From
this it follows that G/N ∼= Cp∞ and so N is an extension of a nilpotent subgroup S by a
Černikov subgroup. By Lemma 4.7 of [24] the normal closure R = SG is a nilpotent group
with the Černikov quotient group N/R. But then the quotient group G/N is also Černikov,
a contradiction.
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(2) Now, suppose that D is trivial. Let B be an inverse image for a p-basic subgroup B
of the quotient group G in G (see [21, §32]).

Let B 6= G. Then G/B is a p-divisible abelian group. If G/B is torsion-free then, as
proved in [25] (see also [1, Chapter 2, §6]), it contains a subgroup L which is isomorphic

to a p-divisible subgroup Q(p) =
{
m
n
| m ∈ Z, n ∈ N ∪ {0}

}
of the additive group Q+ of

the rational number field Q. Since L contains a subgroup H with the p-quasicyclic quotient
group L/H, G has a p-quasicyclic homomorphic image. As above this yields that G is a
nilpotent-by-Černikov group, a contradiction. Thus B = G. Since in view of our hypothesis
G is not a finitely generated group, G can be written as a group direct product G = G1×G2,
where every factor is infinitely generated. But then G is a product of two proper normal
nilpotent-by-Černikov subgroups. By Lemmas 2.1 and 2.2 G is a nilpotent-by-Černikov
group.

Corollary 2.4. Let G be a torsion group in which no non-trivial section is perfect. Then

G satisfies Max-NČ if and only if G is a nilpotent-by-Černikov group.

Example 2.5. There are the non-“nilpotent-by-Černikov” groups with Max-NČ.

Indeed, let G = A o 〈x〉, where A ∼= Cp∞ , 〈x〉 is an infinite cyclic group and [a, x] = ap

(a ∈ A). It is easy to see that G satisfies Max-NČ.

Lemma 2.6. Let G be a group satisfying Max-NČ. If G has a normal subgroup S with the
nilpotent-by-Černikov quotient group G/S, then either G is a nilpotent-by-Černikov group
or G/S is a finitely generated group.

Proof. If G/S is a nilpotent-by-“infinite Černikov” group, then obviously that G is nilpotent-
by-Černikov. Therefore we assume that G/S is a nilpotent-by-finite quotient group and G is
a non-“nilpotent-by-Černikov” group. Let M be a normal subgroup of G of finite index such

that the quotient group M = M/S is nilpotent. By Lemma 2.1 M satisfies Max-NČ and in
view of our hypothesis M is a non-“nilpotent-by-Černikov group. By Theorem 21.3 of [21]
M1 = M/M ′ = D1 × F1 is a group direct product of the divisible part D1 and a reducible
subgroup F1.

(1) Suppose that the divisible part D1 is not trivial. Then M has a proper subgroup
X such that M/X ∼= Cp∞ for some prime p. So M is a nilpotent-by-Černikov group,
a contradiction.

(2) Let the divisible part D1 is trivial. By B1 we denote a p-basic subgroup of M1. If
B1 = M1, then in view of our hypothesis B1 is a finitely generated subgroup and so is M ,
as desired. Therefore we assume that B1 6= M1. Then M1/B1 is a p-divisible group. If
the Sylow p-subgroup of M1/B1 is nontrivial or M1/B1 is a non-torsion group, then M is a
nilpotent-by-Černikov group. Assume that M1/B1 is a torsion p′-group. By Proposition 18.3
of [21] and our hypothesis the quotient group M1/B1 is infinite. Since M is non-“nilpotent-
by-Černikov” group, M1/B1 has an infinite Sylow q-subgroup for some prime q. Without
restricting of generality, we can assume that M1/B1 is an infinite q-group. It is obvious that
M1/B1 is not equal to its basic subgroup and thus M1/B1 has a q-quasicyclic quotient group.
This yields that M is a nilpotent-by-Černikov group, a contradiction.

The next lemma is an extension of Lemma 3.1 from [26].
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Lemma 2.7. Let G be a nilpotent p-group and B be a normal subgroup of finite exponent
of G such that G/B is a divisible group. If D is the maximal divisible abelian subgroup of
G, then G = BD.

Proof. We use induction on the nilpotency class c of G. If c = 1 then the assertion follows
from Proposition 21.3 of [21].

Suppose that c > 1 and the assertion holds for c − 1. Let R = γcG and G = G/R.
If U = U/R is the maximal divisible abelian subgroup of G, then by induction hypothesis
G = U B. Since R ≤ Z(G), the quotient group

UZ(G)/Z(G) ∼= U/(U ∩ Z(G)) ∼= (U/R)/((U ∩ Z(G))/R)

is divisible abelian. By Corollary 4.13 of [27] γ2(UZ(G)) = γ2U is a divisible group. Let
U1 = U/U ′, R1 = RU ′/U ′. Since the quotient U1/R1 is divisible, we conclude that U1 = V1R1,
where V1 is a divisible part of U1. Then U = V R, where V is a divisible group. Thus
G = UB = V RB = V R.

3. In this part we characterize the solvable groups satisfying Max-NČ.
Let D be a commutative Dedekind domain and A a R-right module. By Spec(D) we

denote the set {P | P is a non-zero prime ideal ofD}.Moreover the set AP = {a ∈ A | aP n =
{0} for some n = n(a) ∈ N} is called the P -component of A for some P ∈ Spec(D). It is
well known (see e.g. [28, Theorem 9.4]) that A = AP implies that A has a basic submodule
B, i.e. B satisfies the following conditions:

(1) B is a direct sum of cyclic submodules;
(2) B is a pure submodule of A;
(3) A/B is a divisible D-module.

Lemma 3.1. Let G = A o 〈x〉 be the semidirect product of a normal abelian subgroup A

of prime exponent p and an infinite cyclic subgroup 〈x〉. Then G satisfies Max-NČ if and
only if it is either a polycyclic group or a nilpotent-by-Černikov group.

Proof. (⇐) Obviously.
(⇒) It is clear that A is a right Fp〈x〉-module over a Dedekind ring Fp〈x〉 with x acting

on A by the conjugation and A is a D-torsion module. Suppose that A is not a finitely
generated Fp〈x〉-module and G is not a nilpotent-by-Černikov group. By Corollary 3.6 of
[28] (see also Proposition 2.4 of [29, Chapter 8, §8.2])

A =
∑⊕

P∈Spec(Fp〈x〉)
AP (*)

is a module direct sum of its P -components AP . Then in the decomposition (∗) there are
only finite number of non-trivial summands all of them except for one (say AP ) being finite.
Let B be a basic submodule of AP . In view of our hypothesis B = AP is a module direct
sum of finitely many cyclic submodules and consequently APo〈x〉 is a nilpotent-by-Černikov
subgroup of finite index in G.

Lemma 3.2. Let G = D o 〈u〉 be the semidirect product of a normal divisible abelian
torsion-free subgroup D and an infinite cyclic subgroup 〈u〉. If D is an injective right

Q〈u〉-module (with u acting on D by the conjugation) and G satisfies Max-NČ, then G is
a nilpotent-by-Černikov group.
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Proof. Suppose that G is a non-“nilpotent-by-Černikov” group. Then D is an indecompos-
able Q〈u〉-module. By Theorem 2.4 of [30] D ∼= E(Q〈u〉/I), where E(Q〈u〉/I) is an injective
envelope of Q〈u〉/I and I is an irreducible ideal of Q〈u〉. By Lemma 7.12 of [31] I is a
P -primary ideal for some P ∈ Spec(Q〈u〉) and by Proposition 3.1 of [30] D ∼= E(Q〈u〉/P ).
Let A1 = {x ∈ D | xP = {0}}. By Theorem 3.4 of [30] A1 and the field Q〈u〉/P are
isomorphic as linear (Q〈u〉/P )-spaces. Since Ann Q〈u〉(A1) 6= {0}, by Corollary 7.3 of [28] A1

is a module direct sum of cyclic Q〈u〉-submodules. In view of Proposition 2.2 of [30] A1 is a
cyclic Q〈u〉-submodule. Hence A1o〈um〉 is a nilpotent subgroup for some integer m ≥ 2. By
Z we denote the centre Z(A1 o 〈um〉). Without restricting of generality we can assume that
Z(A1 o 〈u〉) = 1. Since the quotient group A1/(A1 ∩ Z) is torsion-free by Mal’cev Theorem
(see [22, Proposition 5.2.19]), the subgroup A1∩Z is pure in A1 (see [21, §26]). Consequently
A1 ∩ Z is a divisible subgroup of A1. Moreover Z is a 〈u〉-invariant subgroup. This means
that A1 ∩ Z is an injective right Q〈u〉-submodule of A1 and hence A1 ∩ Z = A1. By U we
denote the quotient group 〈u〉/〈um〉. Let π be a finite set of distinct primes p1, . . . , pl (l ≥ 2).
By Lemma 2.3 of [16] the nontrivial right ZU -module A1 has a submodule N such that A1/N
is a torsion π-group. Clearly that N is a normal in G. Let C = D/N . Then C is a right
Q〈u〉-module with the action induced by the conjugation of u on A1. Moreover C is a P -
module (see e.g.[28, §3]) and by Theorem 9.4 of [28] C has a basic submodule B. If B = C,
then G/N is a nilpotent-by-Černikov group, a contradiction. Hence B 6= C and by Theorem
5.28 of [28] the quotient module C/B is injective. In view of Proposition 2.2 of [30] C/B is
a nilpotent-by-Černikov group. By Lemma 2.6 G is a nilpotent-by-Černikov group.

Lemma 3.3. Let G = A o 〈u〉 be the semidirect product of a normal abelian torsion-free

subgroup A and an infinite cyclic subgroup 〈u〉. If G satisfies Max-NČ then it is either
a polycyclic group or a nilpotent-by-Černikov group.

Proof. By Theorem 21.3 of [21] A = D × F is a group direct product of the divisible part
D and a reducible subgroup F . We also assume that G is neither a polycyclic group nor
a nilpotent-by-Černikov group. Then G is a locally “nilpotent-by-finite” group.

(1) First, suppose that the divisible part D is trivial. Let B be a p-basic subgroup of F
for some prime p. If B = F is a finitely generated subgroup, then G is polycyclic. Assume
that B = F is not finitely generated. Then by Lemma 3.1 the quotient group G/Bp is
nilpotent-by-Černikov and by Lemma 2.6 so is G, a contradiction.

Let B 6= F . If B is not finitely generated, then by Lemma 26.1 of [21] B = B/Bp is
a p-pure subgroup of F = F/Bp and then by Proposition 27.1 of [21] F = B × C is a
group direct product of an infinite abelian subgroup B of prime exponent p and a p-divisible
subgroup C. Thus F/F p is an infinite group and by Lemma 3.1 G/F p is a nilpotent-by-
Černikov group. In view of Lemma 2.6 G is the ones, a contradiction. Hence B is a finitely
generated subgroup.

(a) Suppose that the quotient group F/B is torsion and has a non-trivial p-subgroup.
Then we can assume that F/B ∼= Cp∞ . Therefore 〈B, u〉 is a nilpotent-by-Černikov subgroup
and by Lemma 3.7 of [1, Chapter 3, §5] 〈B, u〉 = N o 〈u〉 for some G-invariant subgroup
N of F . Since 〈B, u〉 6= G, we can assume that B = N . Moreover 〈B, um〉 is a nilpotent
subgroup for some integer m and therefore B has a 〈B, um〉-invariant subgroup B1 with the
infinite cyclic quotient group B/B1. Let Ĝ1 = (F o 〈um〉)/B1 = F̂ o 〈ûm〉. It is clear that
F̂ ∼= Q(p). Since F o〈um〉 is a non-“nilpotent-by-Černikov” subgroup, [F, 〈um〉] * B1 in view

of Proposition 2.3 and consequently ûm induces an automorphism of F̂ of infinite order. But
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as stated in Exercise 5 of [32, §113]

AutQ(p) ∼= Z2 × Z

and therefore Ĝ1 is not a locally “nilpotent-by-finite” group, a contradiction.
(b) If F/B is a p′-group, then it has an infinite Sylow q-subgroup of finite index for some

prime q. Therefore we can assume that F/B is an infinite q-group. If S/B is a basic subgroup
of F/B then, in the same manner as before we can prove that S/B is finitely generated and
F/S ∼= Cp∞ , a contradiction.

(c) Now suppose that the quotient group F/B is mixed. Without restricting of generality
we may assume that F is a p-divisible group. Then H = ζαG · 〈u〉 is a hypercentral group.
Assume that F/((ζαG) ∩ F ) is a finitely generated group. In view of Proposition 2.3 the
quotient group H/H ′ is finitely generated. Then H = H ′E for some finitely generated
subgroup E. If H = H/γc+2H, where c is the nilpotent class of E, then H = H ′ E = E.
This yields that L = [L,E], where L = γc+2H, and so

H = LE = [L, 〈u〉]E. (**)

Since the quotient F/L is a finitely generated abelian p-divisible group, it is finite and
consequently L o 〈u〉 is a subgroup of finite index in G. In view of our hypothesis and
Lemma 2.6 L/Lp is a finite quotient group for all primes p. By (∗∗) L is a divisible group.
Lemma 3.2 yields a contradiction.

If the quotient group F/((ζαG)∩F ) is not finitely generated, then without restricting of
generelity we can assume that the centre Z(G) is trivial. Let K be any finitely generated
subgroup of F . Then 〈K, us〉 is a nilpotent subgroup for some integer s. By X we denote the
subgroup Z(〈K, us〉)∩F . Then X is a finitely generated 〈u〉-invariant subgroup and moreover
X is a non-trivial right ZU -module, where U = 〈u〉/〈us〉 and the action of U on X is induced
by the conjugation of u on X. By Lemma 2.3 of [21] X has a proper ZU -submodule Y such
that X/Y is a p-group. It is clear that Y is a finitely generated normal subgroup in G. Then
by Theorem 21.3 of [13] F/Y = T/Y ×M/Y , where T/Y ∼= Cp∞ and M/Y is some subgroup.
If S = (M/Y )/τ(M/Y ) is not finitely generated then G is a nilpotent-by-Černikov group.
Therefore S is a finitely generated p-divisible torsion-free group. This means that M/Y is
a finite group. Hence F/Y1 ∼= Cp∞ for some finitely generated G-invariant subgroup Y1,
a contradiction.

(2) Now suppose that the divisible part D is non-trivial. From the part (1) of this proof it
follows that G/D is a polycyclic group or G is a nilpotent-by-Černikov group. Assume that
G/D is a polycyclic quotient group. Then 〈F, u〉 is a finitely generated nilpotent-by-finite
subgroup and moreover 〈F, u〉 = N o 〈u〉 for some abelian subgroup N of A. Lemma 3.2
yields that D o 〈us〉 is a nilpotent subgroup for some integer s. Furthermore, the subgroup
N o 〈um〉 is nilpotent for some integer m. Put k = min{m, s}. Then Ao 〈uk〉 is a nilpotent
subgroup of finite index in G, a contradiction.

Proposition 3.4. Let G = NU be the product of a normal nilpotent subgroup N and

a polycyclic abelian subgroup U . If G satisfies Max-NČ, then it is of one of the following
types:

(i) G is a polycyclic group;

(ii) G is a nilpotent-by-Černikov group;
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(iii) G = DV is a product of a normal divisible abelian p-subgroup D and a polycyclic
subgroup V .

Proof. Suppose that G satisfies Max-NČ and G is neither a polycyclic group nor a nilpotent-
by-Černikov group. By Lemmas 3.1, 3.3 and 2.2 we can assume that the subgroup N is
torsion and consequently N is a π-group for some finite set π of primes. Thus G = QU1,
where Q is the infinite Sylow q-subgroup of N for some q ∈ π and U1 is a polycyclic subgroup.
Put G = G/Q′. Then by Theorem 21.3 of [21] Q = D ×X is a group direct product of the
divisible part D and a reducible subgroup X.

(a) First, assume that D is trivial. By B we denote a basic subgroup of X. If X = B
and B is a finitely generated subgroup, then G is a polycyclic group, a contradiction. Let
X = B and B is not a finitely generated subgroup. Then the quotient group (X o 〈u〉)/Xq

is nilpotent-by-Černikov for every element u of U by Lemma 3.1. As consequence of Lemma
2.6 the quotient group G/Q′Xq is polycyclic, a contradiction. Thus X 6= B.

If B is not finitely generated then by Lemma 2.7 and Theorem 21.3 of [12] X/B
q

= S×B1

is a group direct product of its divisible part S and an infinite abelian subgroup B1 of prime
exponent q. This yields that |X : X

q| =∞.
Then by Lemmas 3.1 and 2.6 the quotient group G/X

q
is polycyclic, a contradiction.

Therefore B is a finitely generated subgroup and X is a finite-by-divisible group, a contra-
diction with Theorem 1.16 of [1] and Proposition 2.4.

(b) Let D be a non-trivial subgroup. By D we denote an inverse image of D in G. Lemma
2.6 implies that G/D is a polycyclic quotient group. Put G1 = G/Q′′D′ and Q1 = Q/Q′′D′.
Assume that the quotient group Y = Q1

′/(Q1
′)q is an infinite group. By Lemma 2.7 Y = A·C

is a product of its non-trivial divisible part A and an infinite abelian G1/(Q1
′)q-invariant

subgroup C of prime exponent q. Applying Lemmas 3.1 and 2.6 we conclude that G is
a nilpotent-by-Černikov group, a contradiction. Hence |Q1

′ : (Q1
′)q| < ∞. So Y is an

abelian group by Theorem 1.16 of [1] and consequently Q1
′ = (Q1

′)q is a divisible abelian
q-group. This yields that D/D′Q′′ is a divisible abelian subgroup of finite index in Q1. Since
D/D′Q′′ ∼= (D/Q′′)/(D′Q′′/Q′′) and D is a nilpotent subgroup, the quotient group D/Q′′ is
a divisible abelian group. Moreover |Q/Q′′ : D/Q′′| < ∞ and hence Q/Q′′ is a central-by-
finite group. This means that the commutator subgroup Q′ is finite and therefore D is a
divisible abelian q-subgroup, as desired.

Lemma 3.5. Let G = DU be the product of a normal divisible abelian subgroup D and an

abelian polycyclic subgroup U . If G satisfies Max-NČ, then one of the following holds:

(i) G is a nilpotent-by-Černikov group;

(ii) if u ∈ U and D〈u〉 is a non-“nilpotent-by-Černikov” subgroup, then u has infinite order,
D is a p-group for some prime p and [D, 〈u〉] = D.

Proof. Let u be an element of U such that D〈u〉 is not a nilpotent-by-Černikov subgroup.
Then by Proposition 3.4 D is a p-group for some prime p. If [D, 〈u〉] 6= D, then [D, 〈u〉]〈u〉
is a normal nilpotent-by-Černikov subgroup of G. Thus G is a nilpotent-by-Černikov group
in view of Lemma 2.2, a contradiction.

If G is a non-“nilpotent-by-Černikov” group, by X0(G) we denote the set⋂
{H | H is a non-“nilpotent-by-Černikov” subgroup of G}.
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Theorem 3.6. Let G be a solvable group. Then G satisfies Max-NČ if and only if it is of
one of the following types:

(i) G is a polycyclic group;

(ii) G is a nilpotent-by-Černikov group;

(iii) G = DW is a product of a normal divisible abelian p-subgroup D and a non-torsion
polycyclic subgroup W and moreover X0(G) = D.

Proof. (⇐) Obvious.

(⇒) Let G satisfies Max-NČ and G is neither a polycyclic group nor a nilpotent-by-
Černikov. By n we denote the derived length of G. Then there exists an integer k (0 ≤ k ≤ n
and G(0) = G) such that G(k) is not a nilpotent-by-Černikov subgroup, but G(k+1) is a
nilpotent-by-Černikov. By Proposition 2.3 the quotient group G/G(k+1) is polycyclic. From
Proposition 3.4 it follows that G(k+1) has a G-invariant divisible abelian p-subgroup D such
that G(k+1)/D is a polycyclic group. If K is any non-“nilpotent-by-Černikov” subgroup of G,
then from DK/(D∩K) = DoK it follows that D is a trivial subgroup. Hence X0(G) ≥ D
and by Mal’cev Theorem (see [22, Proposition 5.4.16]) X0(G) = D.
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