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A notion of bounded l-index for an arbitrary domain is introduced and investi-
gated.
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JIj1st mpOM3BOIbHOM 006JIACTH BBOIUTCS W UCCIEAYETCS MOHSITHE OTPAHWYIEHHOTO
l-uHgekca.

1°. Introduction. Let at first [ be a positive, continuous function in [0, +00).
An entire function f is called of bounded l-index [1] if there exists N € Z, such

that
FM ()] ¥ ()]
STE < max { AR 0<k< N} : (1)

for all n € Z, and z € C The least such integer N is called the l-index of f.

If (z) = 1 then (1) gives the definition of the entire function of bounded in-
dex introduced by B. Lepson in 1969 [2]. The notion of the entire function of
bounded index (bounded l-index) turned out to be rather useful, because, firstly,
the derivative of such a function is the function of bounded value distribution (of
l-bounded value distribution [1]). Besides, the entire solutions of ordinary differen-
tial equations of the specific structure are the functions of bounded index (l-index).
We note that together with this properties the entire functions of bounded index
(I-index) demonstrate some certain regularity in behaviour of maximum modulus,
logarithmic derivative, distribution of zeros ([3, 4, 6] and the bibliography in [3]).

Thereby, the problem of introducing a notion of bounded [-index of analytic in
an arbitrary complex domain function f and exploration the properties of such
functions arises. So, the aim of this paper is a definition of bounded [/-index of
analytic in an arbitrary complex domain function f and to explore the properties
of analytic in an arbitrary fixed complex domain function f. We notice that in [5]
a concept of [-index was introduced in the class of analytic in the disc D = {z :
|z| < 1} functions and some analogues of theorems from [3, 4] were considered.
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Let G be an arbitrary complex domain, f be an analytic function in G and [ be
positive, continuous function in G. We assume that there exists N € Z, such that

£ (2)] f® ()]
T <mes{ ey 0k <N 2

for all n € Z and z € G. We notice that the concepts introduced in [5] is obtained
with I(2) = I, (1_;”)

Let us expand the function f in the Taylor series f(w) = Yo", f™(2)/n!(w —
2)". Since from (2) it follows that [f(™(2)|/n! < K(2)I"(2), where K(z) =
max{|f*) (2)|/(k!1*(z)) : 0 < k < N}, the radius of convergence of the series
R > 1/Il(z), and the function f is analytic in every disc {w : |w — z| < 1/I(2)}. If
now [(z) < (dist (z,0G)) ™! for all z € G, then it follows that f can be analytically
continued through 0G. So, henceforth we will consider the case, where the function
f has the irregular points on G (perhaps only one point, or perhaps JG is the
natural border for f), and we require that

s

l(Z) > m, z € G, (3)

where 5 > 1 is a fixed number. So, for the continuous, positive in G function [
that satisfies condition (3), an analytic in G function f we will be called a function
of bounded I-index, if there exists N € Z, such that inequality (2) holds for all
n € Z4 and z € (. The least such integer N will be called the [-index of f and
denoted by N(f;1).

Let us notice that if G = C and f is an entire function, then the validity of
inequality (3) for every positive function I(z) is obvious. From (3) it follows that if
29 € G, then {z: |z — 29| < B/l(20)} C G. We will often use this fact in the sequel.

For r € [0, 5] let

A(r) = inf{ll(z) r— 2| < ), € G}

(20) — U(%0)
and
_ I(z) r
Ao (r) = SuP{l(zo) Dz — 2] < @, 20 € G}.

It is obvious that A;(r) < 1 < Ay(r). We denote by Qs(G) the class of positive
continuous in G functions satisfying (3) and the conditions 0 < A1 (r) < Aa(r) < +00
for all r € [0, 3].

Let us notice that if | € Qg(G) and 2y € G, then from the inequality |z — 2| <
@ it follows

A1 (r)l(z0) < 1(2) < Aa(r)l(20) (4)

for all r € [0, A].

Here we prove the analogues of three main criteria of boundedness of [-yndex
which were obtained for the entire functions in [4].

2°. The first criterion. Let us begin with the following theorem that points to
the behaviour of the derivatives of the analytic in G function of bounded [-§ndex
and is essentially used in the proofs of other theorems.
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Theorem 1. Let f > 1 and | € Q(G). An analytic in G function f(z) is of
bounded l-index if and only if for all 0 < n < B there exist numbers ng € Z and
Py > 1 such that for all zg € S there exists ko = ko(20) € Z4, 0 < ko < ng such
that

max o) ()| : |2 — = il (ko) (20)].
{7090@) 51e ol < 7] < Pl sth) ) 6)

Proof. Let f have l-index N(f;1) = N < co. Let ¢(n) = 2n(N+D)AY LAY (n)]+
1, and for zp € G and n € {0,1,...,q(n)} let

_ G )
Rn(Z(),?]) —maX{W : |Z—Zo| S q(n)l(zo)’ 0 S k S N},

. _ P )] n1)
Rn(zo,n)—max{k!lk—(zo).|z—zo|§m, OSkSN}.

Since |z — 2| < q(ngll?z()) < l(go) < l(fo)’ in virtue of condition (3), the val-
ues R, (z0,n) and R} (z9,7n) are defined, and in virtue of (4) we have R, (29,n) <
R (20,)A N () and R (20,m) < Rn(20,m)AY (n). Further, repeating literally the
reasoning from [4], it is possible to show that R (zo,n) < 2R} _,(z0,7). From
the last three inequalities it follows that R, (z0,7) < 2AY (MM (1) Rn_1(20, 7).
Therefore,

(k)
max{’f—gzﬂz|z—zo|< il O<k<N}:Rq(n)(z0,n)§

<20 (MATY () Ry(ny—1(20,m) < @AY (AN () Ry —2(20,m) < ...

™) (20)]

RIIF(29) :OS’“N}» Py = (23 ()N ()1,

Further, the proof of the necessity is the same as that of the similar statement in [4].

Now suppose that for all n, 0 < n < 3 there exist numbers ng € Z, and Py > 1
such that for all 2y € G there exists kg, 0 < kg < ng such that (5) holds. Let
n = [ and choose jo such that Py < 7. Since, in virtue of condition (3), we have
{2 ]z — 20| < B/l(20)} C G for all z € G, hence in virtue of (5) for all z5 € G and
corresponding ko = ko (20)

(ko+7) ‘
ol < B0 e {100 )] 2~ ol = 125 b < e 0o,
SO
| f R0t (20)] < _Jko! Py [ £ ()]
(ko + j)NWFo+I(z0) = (j + ko)t B7 kollFo(z0) ~
o0i LS5 (z0)| _ [f5(z0)] L
< Bio=i o TR (20) < kollFo (z0) J = Jo- (6)

Since ko < ng, and the numbers ng = n¢(8) and jo = jo(8) do not depend on
29, inequality (6) means that N(f;1) < ng + jo. O
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The Fricke technique [6] is used in the proofs of two following theorems similarly
as in [4].

3°. The second criterion. Maximum modulus of function of bounded
[-index.

Theorem 2. Let § > 1 and | € Q(G). An analytic in G function f(z) is of
bounded l-index if and only if for all 0 < ry < ro < [ there exists Py(r1,r3) > 1,
such that for all zo € G

max {11 2 = 20l = 12

W} < Pl(rl,r2)ma,x{|f(z)| o — 20| = lr—l} (7)

(z0)

Proof. Using Theorem 1 we prove the necessity of condition (7). An analogous
statements are proved like in [4] and [6]. Let us prove the adequacy of condition (7).
Let zgp € G be an arbitrary point. We expand the function f into the power series
F(2) =30 bm(z—20)™, by, = £ (29)/ml, in the circle {2z : |z—2| < B/1(20)} C
G. For r < /l(z9) we denote M(r,zg, f) = max{|f(z)| : |z — 20| = r}, and let
p(r, zo, F) = max{|by,|r"™ : m > 0} be the maximum term of series (18), and
v(r, zo, f) = max{|by,|r"™ : [by|r™ = u(r, 20, f)} be its central index. According to
the Cauchy inequality wu(r, 2o, f) < M(r, 29, f). On the other hand, if r < 1/I(z)
then M(r, zo, f) < Yoo _o lbm|(Br)™27™ < %u(ﬁr, 20, f) and In p(Br, zo, f) —

ln,u(r, Zo,f) - frﬁr V(thOaf)tildt Z V(T7 ZO;f) h’lﬁ, SO

v(r, 20, f) < ﬁ(ln w(Br 20, f) — In (. 20, f)) <

. 1
gm{lnM(ﬁT,Zo,f)—ln(ﬁﬁ M(r/ﬁ,m,f))}z
mB-In(B—1) 1

=22 lr?éﬁ )+1n5{1nM(5r,zo,f)—lnM(’“/ﬁvZO’f)}' )

Let N(f;l,29) be the l-index of function f in zg, i.e. the least of numbers N
for which inequality (2) holds under z = z5. It is easy to see that N(f;l,z9) <
v(1/l(%0), 20, f). On the other hand, putting 7o = 8 and r; = 1/8 in (7) we obtain
M(B/l(20), 20, f) < PFM(1/Bl(z0), 20, f), where P = P;(1/3,3). Thus from (9)
we obtain the inequality

N(il ) < N(p) = BE D B

for all zg € G, hence N(f;1) < N(B). O

From the proof of Theorem 2 we can easily see that the following theorem is
valid.

Theorem 2'. Let 5 > 1 and |l € Qs(G). An analytic in G function f(z) is of
bounded l-index if and only if there exist 0 < r; < ry < f and P(r1,72) > 1 such
that for all zy € G inequality (7) holds.

4°, The third criterion. Maximum and minimum modulus.
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Theorem 3. Let § > 1,1 € Q. An analytic in G function f(z) is of bounded
l-index if and only if for all 0 < R < [ there exist Po(R) > 1 and n(R) € (0, R)
such that for all zy € G there exists r(z9) = r € [n(R), R] such that

ma {152 < |l = 1 b < o { @ s - 2ol = 1 5L o)

Proof. The necessity of condition (10) can be proved literally as in [4]. For the
proof of the adequacy, according to Theorem 2’ we have to show that there exists
a number P; such that

max { 1G] | = 2l = 5 b < P I - sl = 5 5 b

for all zp € S. Let R = 5 1 . Then there exist Py = P, <E> and n =7 (%) €

<O, i—;) such that for all z* € GG and some r € [fr}, M}

max{I£]: -1 = i f < Brmin {15 - = s b a2

Let us denote [* = max{l(z) |z — 29| < Z(ZO)} = 45[% and pr, = po +

l* , k€ Zy. Since £ < 45[@10) < l(f) — 2?:; s there exists n* € N that does not

depend on zg such that p,—1 < 2[;(z 3 < pn < (5) for some n = n(z) < n*

Let Cr = {2 : |z — 20| = p&}, [f(25¥)] = max{|f(2)| : z € Cx}, and 2z} be the
point of intersection of the segment [20, z;*] with the circle C_;. Then for r < n
|2 — 2| = nl* < ri(z;) and taking into consideration (12) there exists r € [7}, ’i—_ﬁl}
such that

) Smax{mz)r: 2 — 2] = ﬁ} <

k

< Py m1n{|f(z)| Dz —zp] = < Pymax{|f(2)]: z € Cr—1}.

Hence

<max{|f(z)]: z€ C,} <
() max {|f(2)] : = € Co} <
s<R;>”*max{\f<z)|: -zl = 21 }

e. (11) holds with Py = (Py)" . O

5°. The fifth criterion. The bounded zeros distribution of function of
bounded [-index. Let a; be the zeros of the function f analytic in G,

n(r,z9,1/f) = Z 1, GT:U{z: |z —ak| <7r/l(ag)}.
k

lag —zo|<r,ar,€G

mac {172 < 2= 20l = 5
< Pfmax {|f(z)]: 2 € Cui} <

~—
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Theorem 4. Let § > 1,1 € Qpg) and G\ G, # 2. A function f is of bounded
l-index if and only if

1) for allr € (0, (] there exists P = P(r) such that |f'(z0)/f(20)| < Pl(zo) for all
20 € G\G,; 2) for allr € (0, 5] there exists i = n(r) € Zy such that n(r/l(zy), 20,1/ f) <
n for all zg € G.

Proof. We prove the necessity of conditions 1) and 2). Firstly, we show that if f is
of bounded l-index then for all zp € G\ G, (r € (0,4]) and for all k € Z

|20 — ak| > (13)

2)\2 (T)Z(ZO) ’

Let us assume, on the contrary, that there exist zp € G \ G, and k € Z, such
that |zg — ax| < 7/(2X2(r)l(z0)) < r/l(29). Then from (4) it follows that [(ax) <
A2 (r)l(zp), hence |zg — ax| < 7/(2l(ar)) < r/l(ai) that contradicts to the condition
z0 € G \ G,

Let us put in Theorem 3 R = r/(2X\3(r)). Then there exist P, > 1 and n €
(0,7/2X2(r)) such that for all zp € G and some r* € [n,7/2X2(r)] (10) holds with
r* instead of r. Therefore, according to the Cauchy inequality

|f'(z0)] < (I(20)/r") max{|f(2)| : |z — 20| = r"/I(20)} <
< (I(z0)/m)Po min{|f(2)] : |z — 20| = 7" /1(20)}.

But according to inequality (13) for all zp € G\ G, the disc {z : |z — 2| <
r/(2X2(r)l(z0))} does not contain the zeros of function f. So, applying to the
function 1/f the maximum modulus principle we obtain |f(zg)| > min{|f(2)| :
|2 = 20| = 1 /U(20)} s0 | f'(20)/ f(20)| < (P2/n)l(20), i. e. property 1) is proved with
P; = Py/n.

Now we show that if f is of bounded [/-index then there exists P, > 0 such that
for all zp € G and r € (0, 1]

n(r/l(z0), 20, 1/ f) min{|f(2)] : |z — 20| = 7/l(20)} <
< Pymax{|f(2)| : |z — 20| = 1/1(z0)}. (14)

Indeed, according to the Cauchy inequality for all z, |z — 29| = 1/l(29). Using
Theorem 2 we obtain

[F/(2)] < (l(20)/(B = 1)) max{[f(7)[ : |7 — 2] = (B = 1)/I(20)} <
< (I(20)/(6 — 1)) max{[f(2)] : |z — 20| = B/I(20)} <

< (P(1,8 = Di(20)/(8 — 1)) max{|f(2)] : |z — 20 = 1/I(20)}-
If f(z) # 0 on the circumference {z : |z — zg| = 7/l(20)} then

(o)t | el

|z—zo|=7/l(20)

max{\f’(2)| Dz — 20| = Z(ZO)}/mm{\f(zﬂ Dz — 20| = Z(Zo)}.
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From the last two inequalities we obtain

n(r/Uz0), z0, 1/ f) min{|f(2)| = |z — 20| = 7/l(20)} <
< (1/1(20)) max{|f'(2)| : |z — 20| = 1/1(20)} <
< (P(1,8=1)/(B = 1) max{|f(2)] : [z = 20| = 1/1(20) },

i. e. (14) with Py = P (1,5 —1)/(8 — 1). If there are zeros of f on the circle
{z: ]z — 20| =7/l(20)} then inequality (14) is obvious.

Now let us choose R = 1 in Theorem 3. Then there exist P, = P5(1) > 1 and
n € (0,1) such that for all zy € G and some r* € (1, 1)

max {17+ 12 =0l = ;s < Pamin {1 12 = 20l = 3 |

Therefore, according to Theorem 2 there exists P;(1,7) such that

max {17+ 12— ol = s f < Pt {7 5 e = sal = 0 | <

< P(1) max{|f<z>| - } < P(L )P min{|f<z>| = 2] =

*

I(20)

and according to (14),

n(r*/l(z0), 20,1/ f) min{[f (2)[ : |z = 20| = 7" /U(20)} <
< P (1,n) Py Pymax{[f(2)] : [z — 20| = 1/I(20)},

/B R _
”(l(zw’ O’f) = (uzo)’ °’f> =1
= Pi(Ln)PP, = Pi(1,n)P(1)Pi(1,5-1)/(8 - 1).

Now let € (1, 5] be an arbitrary number and [, = max{l(z) : |z—z¢| = r/l(20)}-
Then . < \y(7)l(20). Let p=1/(A2(r)l(z0)) and R =1/l(2). An arbitrary closed
disc K of radius R can be covered with a finite quantity m of closed discs K; of
radius p with the centers in K. Since n/l(z;) > n/l. > n/(X2(r)l(20)), in every K;
are no more then P5 zeros of function f. Therefore there are no more then mP;
zeros of f in K. Hence, n(r/l(zo), z0,1/f) < #(r) = [mPs] + 1, and property 2) is
proved.

On the contrary, let conditions 1) and 2) hold. According to 2) for any R € (0, J]
there exists n(R) € Z4 such that there are no more than n(R) zeros of f in an
arbitrary disc K = {z: |z — 20| < R/l(20)}. Let a = a(R) = R\ (R)/(2(7(R) +1)).
According to condition 1) there exists P = P(R) > 1 such that |f'(2)/f(2)| < Pl(2)
for all z € G\G,, i.e. for all z that does not lie in the discs {z : |z—a,| < a(R)/l(an)}
with the centers a,, € K. But A\ (R)I(20) < l(a,). Therefore, |f'(2)/f(z)| <
Pl(z) for all z that does not lie in the discs {z : |z — an| < a(R)/ (M (R)l(20)) =
R/(2(n(R) 4+ 1)I(20)). The total length of the diameters of these discs does not
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exceed R (R)/((R(R)+1)l(29)) < R/l(zp)- So there exists the circle {z : |z — 29| =
r/l(z0)} with RAi(R)(4(7(R) + 1)) = n(R) < r < R, on which |f'(2)/f(2)| <
Pl(z) < PA\y(R)l(z0). For the arbitrary points z; and 2o that lie on this circle
</

2r

[(20)

ln‘ < 2R\ (R)P(R).

F'(z) ’ ldz| < PAs(R)l(z0)

f(z1)
f(z2) f(2)

Hence
max {[f(2)|: [z — 20| = 7/U(20)} < Pomin{|f(2)]: |z — 20| = 7/l(20)},

where Py = exp{2R)2(R)P(R)}, and according to Theorem 2 the function f is of
bounded [-index. [
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