ANALYTIC FUNCTIONS OF BOUNDED l-INDEX

V.O. Kushnir, M.M. Sheremeta

> V.O. Kushnir, M.M. Sheremeta. Analytic functions of bounded l-index, Matematychni Studii, $\mathbf{1 2}(1999) 59-66$.
> A notion of bounded l-index for an arbitrary domain is introduced and investigated.
В.О. Кушнир, М.Н. Шеремета. Аналитические функиии ограниченного l-индекса // Математичні Студії. - 1999. - Т.12, № 1. - С.59-66.

Для произвольной области вводится и исследуется понятие ограниченного l-индекса.
$\mathbf{1}^{\circ}$. Introduction. Let at first l be a positive, continuous function in $[0,+\infty)$. An entire function f is called of bounded l-index [1] if there exists $N \in \mathbb{Z}_{+}$such that

$$
\begin{equation*}
\frac{\left|f^{(n)}(z)\right|}{n!l^{n}(|z|)} \leq \max \left\{\frac{\left|f^{(k)}(z)\right|}{k!l^{k}(|z|)}: 0 \leq k \leq N\right\} \tag{1}
\end{equation*}
$$

for all $n \in \mathbb{Z}_{+}$and $z \in \mathbb{C}$ The least such integer N is called the l-index of f.
If $l(x) \equiv 1$ then (1) gives the definition of the entire function of bounded index introduced by B. Lepson in 1969 [2]. The notion of the entire function of bounded index (bounded l-index) turned out to be rather useful, because, firstly, the derivative of such a function is the function of bounded value distribution (of l-bounded value distribution [1]). Besides, the entire solutions of ordinary differential equations of the specific structure are the functions of bounded index (l-index). We note that together with this properties the entire functions of bounded index (l-index) demonstrate some certain regularity in behaviour of maximum modulus, logarithmic derivative, distribution of zeros ([3, 4, 6] and the bibliography in [3]).

Thereby, the problem of introducing a notion of bounded l-index of analytic in an arbitrary complex domain function f and exploration the properties of such functions arises. So, the aim of this paper is a definition of bounded l-index of analytic in an arbitrary complex domain function f and to explore the properties of analytic in an arbitrary fixed complex domain function f. We notice that in [5] a concept of l-index was introduced in the class of analytic in the disc $\mathbb{D}=\{z$: $|z|<1\}$ functions and some analogues of theorems from [3, 4] were considered.

[^0]Let G be an arbitrary complex domain, f be an analytic function in G and l be positive, continuous function in G. We assume that there exists $N \in \mathbb{Z}_{+}$such that

$$
\begin{equation*}
\frac{\left|f^{(n)}(z)\right|}{n!l^{n}(z)} \leq \max \left\{\frac{\left|f^{(k)}(z)\right|}{k!l^{k}(z)}: 0 \leq k \leq N\right\} \tag{2}
\end{equation*}
$$

for all $n \in \mathbb{Z}_{+}$and $z \in G$. We notice that the concepts introduced in [5] is obtained with $l(z)=l_{1}\left(\frac{1}{1-|z|}\right)$.

Let us expand the function f in the Taylor series $f(w)=\sum_{n=0}^{\infty} f^{(n)}(z) / n!(w-$ $z)^{n}$. Since from (2) it follows that $\left|f^{(n)}(z)\right| / n!\leq K(z) l^{n}(z)$, where $K(z)=$ $\max \left\{\left|f^{(k)}(z)\right| /\left(k!l^{k}(z)\right): 0 \leq k \leq N\right\}$, the radius of convergence of the series $R \geq 1 / l(z)$, and the function f is analytic in every disc $\{w:|w-z|<1 / l(z)\}$. If now $l(z)<(\operatorname{dist}(z, \partial G))^{-1}$ for all $z \in G$, then it follows that f can be analytically continued through ∂G. So, henceforth we will consider the case, where the function f has the irregular points on ∂G (perhaps only one point, or perhaps ∂G is the natural border for f), and we require that

$$
\begin{equation*}
l(z)>\frac{\beta}{\operatorname{dist}(z, \partial G)}, \quad z \in G \tag{3}
\end{equation*}
$$

where $\beta>1$ is a fixed number. So, for the continuous, positive in G function l that satisfies condition (3), an analytic in G function f we will be called a function of bounded l-index, if there exists $N \in \mathbb{Z}_{+}$such that inequality (2) holds for all $n \in \mathbb{Z}_{+}$and $z \in G$. The least such integer N will be called the l-index of f and denoted by $N(f ; l)$.

Let us notice that if $G=\mathbb{C}$ and f is an entire function, then the validity of inequality (3) for every positive function $l(z)$ is obvious. From (3) it follows that if $z_{0} \in G$, then $\left\{z:\left|z-z_{0}\right| \leq \beta / l\left(z_{0}\right)\right\} \subset G$. We will often use this fact in the sequel.

For $r \in[0, \beta]$ let

$$
\lambda_{1}(r)=\inf \left\{\frac{l(z)}{l\left(z_{0}\right)}:\left|z-z_{0}\right| \leq \frac{r}{l\left(z_{0}\right)}, z_{0} \in G\right\}
$$

and

$$
\lambda_{2}(r)=\sup \left\{\frac{l(z)}{l\left(z_{0}\right)}:\left|z-z_{0}\right| \leq \frac{r}{l\left(z_{0}\right)}, z_{0} \in G\right\}
$$

It is obvious that $\lambda_{1}(r) \leq 1 \leq \lambda_{2}(r)$. We denote by $Q_{\beta}(G)$ the class of positive continuous in G functions satisfying (3) and the conditions $0<\lambda_{1}(r) \leq \lambda_{2}(r)<+\infty$ for all $r \in[0, \beta]$.

Let us notice that if $l \in Q_{\beta}(G)$ and $z_{0} \in G$, then from the inequality $\left|z-z_{0}\right| \leq$ $\frac{r}{l\left(z_{0}\right)}$ it follows

$$
\begin{equation*}
\lambda_{1}(r) l\left(z_{0}\right) \leq l(z) \leq \lambda_{2}(r) l\left(z_{0}\right) \tag{4}
\end{equation*}
$$

for all $r \in[0, \beta]$.
Here we prove the analogues of three main criteria of boundedness of l-y̆ndex which were obtained for the entire functions in [4].
$\mathbf{2}^{\circ}$. The first criterion. Let us begin with the following theorem that points to the behaviour of the derivatives of the analytic in G function of bounded l-y̆ndex and is essentially used in the proofs of other theorems.

Theorem 1. Let $\beta>1$ and $l \in Q_{\beta}(G)$. An analytic in G function $f(z)$ is of bounded l-index if and only if for all $0<\eta \leq \beta$ there exist numbers $n_{0} \in \mathbb{Z}_{+}$and $P_{0} \geq 1$ such that for all $z_{0} \in S$ there exists $k_{0}=k_{0}\left(z_{0}\right) \in \mathbb{Z}_{+}, 0 \leq k_{0} \leq n_{0}$ such that

$$
\begin{equation*}
\max \left\{\left|f^{\left(k_{0}\right)}(z)\right|:\left|z-z_{0}\right| \leq \frac{\eta}{l\left(z_{0}\right)}\right\} \leq P_{0}\left|f^{\left(k_{0}\right)}\left(z_{0}\right)\right| . \tag{5}
\end{equation*}
$$

Proof. Let f have l-index $N(f ; l)=N<\infty$. Let $q(\eta)=\left[2 \eta(N+1) \lambda_{2}^{N+1}(\eta) \lambda_{1}^{-N}(\eta)\right]+$ 1 , and for $z_{0} \in G$ and $n \in\{0,1, \ldots, q(\eta)\}$ let

$$
\begin{aligned}
& R_{n}\left(z_{0}, \eta\right)=\max \left\{\frac{\left|f^{(k)}(z)\right|}{k!l^{k}(z)}:\left|z-z_{0}\right| \leq \frac{n \eta}{q(\eta) l\left(z_{0}\right)}, 0 \leq k \leq N\right\}, \\
& R_{n}^{*}\left(z_{0}, \eta\right)=\max \left\{\frac{\left|f^{(k)}(z)\right|}{k!l^{k}\left(z_{0}\right)}:\left|z-z_{0}\right| \leq \frac{n \eta}{q(\eta) l\left(z_{0}\right)}, \quad 0 \leq k \leq N\right\} .
\end{aligned}
$$

Since $\left|z-z_{0}\right| \leq \frac{n \eta}{q(\eta) l\left(z_{0}\right)} \leq \frac{\eta}{l\left(z_{0}\right)} \leq \frac{\beta}{l\left(z_{0}\right)}$, in virtue of condition (3), the values $R_{n}\left(z_{0}, \eta\right)$ and $R_{n}^{*}\left(z_{0}, \eta\right)$ are defined, and in virtue of (4) we have $R_{n}\left(z_{0}, \eta\right) \leq$ $R_{n}^{*}\left(z_{0}, \eta\right) \lambda_{1}^{-N}(\eta)$ and $R_{n}^{*}\left(z_{0}, \eta\right) \leq R_{n}\left(z_{0}, \eta\right) \lambda_{2}^{N}(\eta)$. Further, repeating literally the reasoning from [4], it is possible to show that $R_{n}^{*}\left(z_{0}, \eta\right) \leq 2 R_{n-1}^{*}\left(z_{0}, \eta\right)$. From the last three inequalities it follows that $R_{n}\left(z_{0}, \eta\right) \leq 2 \lambda_{2}^{N}(\eta) \lambda_{1}^{-N}(\eta) R_{n-1}\left(z_{0}, \eta\right)$. Therefore,

$$
\begin{gathered}
\max \left\{\frac{\left|f^{(k)}(z)\right|}{k!l^{k}(z)}:\left|z-z_{0}\right| \leq \frac{\eta}{l\left(z_{0}\right)}, 0 \leq k \leq N\right\}=R_{q(\eta)}\left(z_{0}, \eta\right) \leq \\
\leq 2 \lambda_{2}^{N}(\eta) \lambda_{1}^{-N}(\eta) R_{q(\eta)-1}\left(z_{0}, \eta\right) \leq\left(2 \lambda_{2}^{N}(\eta) \lambda_{1}^{-N}(\eta)\right)^{2} R_{q(\eta)-2}\left(z_{0}, \eta\right) \leq \ldots \\
\leq P_{1} R_{0}\left(z_{0}, \eta\right)=P_{1} \max \left\{\frac{\left|f^{(k)}\left(z_{0}\right)\right|}{k!l^{k}\left(z_{0}\right)}: 0 \leq k \leq N\right\}, \quad P_{1}=\left(2 \lambda_{2}^{N}(\eta) \lambda_{1}^{-N}(\eta)\right)^{q(\eta)} .
\end{gathered}
$$

Further, the proof of the necessity is the same as that of the similar statement in [4].
Now suppose that for all $\eta, 0<\eta \leq \beta$ there exist numbers $n_{0} \in \mathbb{Z}_{+}$and $P_{0} \geq 1$ such that for all $z_{0} \in G$ there exists $k_{0}, 0 \leq k_{0} \leq n_{0}$ such that (5) holds. Let $\eta=\beta$ and choose j_{0} such that $P_{0} \leq \beta^{j_{0}}$. Since, in virtue of condition (3), we have $\left\{z:\left|z-z_{0}\right| \leq \beta / l\left(z_{0}\right)\right\} \subset G$ for all $z \in G$, hence in virtue of (5) for all $z_{0} \in G$ and corresponding $k_{0}=k_{0}\left(z_{0}\right)$

$$
\frac{\left|f^{\left(k_{0}+j\right)}\left(z_{0}\right)\right|}{j!} \leq \frac{l^{j}\left(z_{0}\right)}{\beta^{j}} \max \left\{\left|f^{\left(k_{0}\right)}(z)\right|:\left|z-z_{0}\right|=\frac{\beta}{l\left(z_{0}\right)}\right\} \leq P_{0} \frac{l^{j}\left(z_{0}\right)}{\beta^{j}}\left|f^{\left(k_{0}\right)}\left(z_{0}\right)\right|,
$$

so

$$
\begin{align*}
& \frac{\left|f^{\left(k_{0}+j\right)}\left(z_{0}\right)\right|}{\left(k_{0}+j\right)!l^{k_{0}+j}\left(z_{0}\right)} \leq \frac{j!k_{0}!}{\left(j+k_{0}\right)!} \frac{P_{0} \mid}{\beta^{j}} \frac{\left|f^{\left(k_{0}\right)}\left(z_{0}\right)\right|}{k_{0}!l^{k_{0}}\left(z_{0}\right)} \leq \\
& \quad \leq \beta^{j_{0}-j} \frac{\left|f^{\left(k_{0}\right)}\left(z_{0}\right)\right|}{k_{0}!l^{k_{0}}\left(z_{0}\right)} \leq \frac{\left|f^{\left(k_{0}\right)}\left(z_{0}\right)\right|}{k_{0}!l^{k_{0}}\left(z_{0}\right)}, j \geq j_{0} . \tag{6}
\end{align*}
$$

Since $k_{0} \leq n_{0}$, and the numbers $n_{0}=n_{0}(\beta)$ and $j_{0}=j_{0}(\beta)$ do not depend on z_{0}, inequality (6) means that $N(f ; l) \leq n_{0}+j_{0}$.

The Fricke technique [6] is used in the proofs of two following theorems similarly as in [4].

3°. The second criterion. Maximum modulus of function of bounded l-index.

Theorem 2. Let $\beta>1$ and $l \in Q_{\beta}(G)$. An analytic in G function $f(z)$ is of bounded l-index if and only if for all $0<r_{1}<r_{2} \leq \beta$ there exists $P_{1}\left(r_{1}, r_{2}\right) \geq 1$, such that for all $z_{0} \in G$

$$
\begin{equation*}
\max \left\{|f(z)|:\left|z-z_{0}\right|=\frac{r_{2}}{l\left(z_{0}\right)}\right\} \leq P_{1}\left(r_{1}, r_{2}\right) \max \left\{|f(z)|:\left|z-z_{0}\right|=\frac{r_{1}}{l\left(z_{0}\right)}\right\} . \tag{7}
\end{equation*}
$$

Proof. Using Theorem 1 we prove the necessity of condition (7). An analogous statements are proved like in [4] and [6]. Let us prove the adequacy of condition (7). Let $z_{0} \in G$ be an arbitrary point. We expand the function f into the power series $f(z)=\sum_{m=0}^{\infty} b_{m}\left(z-z_{0}\right)^{m}, b_{m}=f^{(m)}\left(z_{0}\right) / m!$, in the circle $\left\{z:\left|z-z_{0}\right| \leq \beta / l\left(z_{0}\right)\right\} \subset$ G. For $r \leq \beta / l\left(z_{0}\right)$ we denote $M\left(r, z_{0}, f\right)=\max \left\{|f(z)|:\left|z-z_{0}\right|=r\right\}$, and let $\mu\left(r, z_{0}, F\right)=\max \left\{\left|b_{m}\right| r^{m}: m \geq 0\right\}$ be the maximum term of series (18), and $\nu\left(r, z_{0}, f\right)=\max \left\{\left|b_{m}\right| r^{m}:\left|b_{m}\right| r^{m}=\mu\left(r, z_{0}, f\right)\right\}$ be its central index. According to the Cauchy inequality $\mu\left(r, z_{0}, f\right) \leq M\left(r, z_{0}, f\right)$. On the other hand, if $r \leq 1 / l\left(z_{0}\right)$ then $M\left(r, z_{0}, f\right) \leq \sum_{m=0}^{\infty}\left|b_{m}\right|(\beta r)^{m} 2^{-m} \leq \frac{\beta}{\beta-1} \mu\left(\beta r, z_{0}, f\right)$ and $\ln \mu\left(\beta r, z_{0}, f\right)-$ $\ln \mu\left(r, z_{0}, f\right)=\int_{r}^{\beta r} \nu\left(t, z_{0}, f\right) t^{-1} d t \geq \nu\left(r, z_{0}, f\right) \ln \beta$, so

$$
\begin{gather*}
\nu\left(r, z_{0}, f\right) \leq \frac{1}{\ln \beta}\left(\ln \mu\left(\beta r, z_{0}, f\right)-\ln \mu\left(r, z_{0}, f\right)\right) \leq \\
\leq \frac{1}{\ln \beta}\left\{\ln M\left(\beta r, z_{0}, f\right)-\ln \left(\frac{\beta-1}{\beta} M\left(r / \beta, z_{0}, f\right)\right)\right\}= \\
=\frac{\ln \beta-\ln (\beta-1)}{\ln \beta}+\frac{1}{\ln \beta}\left\{\ln M\left(\beta r, z_{0}, f\right)-\ln M\left(r / \beta, z_{0}, f\right)\right\} . \tag{9}
\end{gather*}
$$

Let $N\left(f ; l, z_{0}\right)$ be the l-index of function f in z_{0}, i.e. the least of numbers N for which inequality (2) holds under $z=z_{0}$. It is easy to see that $N\left(f ; l, z_{0}\right) \leq$ $\nu\left(1 / l\left(z_{0}\right), z_{0}, f\right)$. On the other hand, putting $r_{2}=\beta$ and $r_{1}=1 / \beta$ in (7) we obtain $M\left(\beta / l\left(z_{0}\right), z_{0}, f\right) \leq P_{1}^{*} M\left(1 / \beta l\left(z_{0}\right), z_{0}, f\right)$, where $P_{1}^{*}=P_{1}(1 / \beta, \beta)$. Thus from (9) we obtain the inequality

$$
N\left(f ; l, z_{0}\right) \leq N(\beta)=\frac{\ln \beta-\ln (\beta-1)}{\ln \beta}+\frac{\ln P_{1}^{*}}{\ln \beta}
$$

for all $z_{0} \in G$, hence $N(f ; l) \leq N(\beta)$.
From the proof of Theorem 2 we can easily see that the following theorem is valid.

Theorem 2'. Let $\beta>1$ and $l \in Q_{\beta}(G)$. An analytic in G function $f(z)$ is of bounded l-index if and only if there exist $0<r_{1}<r_{2} \leq \beta$ and $P_{1}\left(r_{1}, r_{2}\right) \geq 1$ such that for all $z_{0} \in G$ inequality (7) holds.

4°. The third criterion. Maximum and minimum modulus.

Theorem 3. Let $\beta>1, l \in Q_{\beta}$. An analytic in G function $f(z)$ is of bounded l-index if and only if for all $0<R \leq \beta$ there exist $P_{2}(R) \geq 1$ and $\eta(R) \in(0, R)$ such that for all $z_{0} \in G$ there exists $r\left(z_{0}\right)=r \in[\eta(R), R]$ such that

$$
\begin{equation*}
\max \left\{|f(z)|:\left|z-z_{0}\right|=\frac{r}{l\left(z_{0}\right)}\right\} \leq P_{2} \min \left\{|f(z)|:\left|z-z_{0}\right|=\frac{r}{l\left(z_{0}\right)}\right\} . \tag{10}
\end{equation*}
$$

Proof. The necessity of condition (10) can be proved literally as in [4]. For the proof of the adequacy, according to Theorem 2^{\prime} we have to show that there exists a number P_{1} such that

$$
\begin{equation*}
\max \left\{|f(z)|:\left|z-z_{0}\right|=\frac{\beta+1}{2 l\left(z_{0}\right)}\right\} \leq P_{1} \max \left\{|f(z)|:\left|z-z_{0}\right|=\frac{\beta-1}{4 \beta l\left(z_{0}\right)}\right\} \tag{11}
\end{equation*}
$$

for all $z_{0} \in S$. Let $R=\frac{\beta-1}{4 \beta}$. Then there exist $P_{2}^{*}=P_{2}\left(\frac{\beta-1}{4 \beta}\right)$ and $\eta=\eta\left(\frac{\beta-1}{4 \beta}\right) \in$ $\left(0, \frac{\beta-1}{4 \beta}\right)$, such that for all $z^{*} \in G$ and some $r \in\left[\eta, \frac{\beta-1}{4 \beta}\right]$

$$
\begin{equation*}
\max \left\{|f(z)|:\left|z-z^{*}\right|=\frac{r}{l\left(z^{*}\right)}\right\} \leq P_{2}^{*} \min \left\{|f(z)|:\left|z-z^{*}\right|=\frac{r}{l\left(z^{*}\right)}\right\} . \tag{12}
\end{equation*}
$$

Let us denote $l^{*}=\max \left\{l(z):\left|z-z_{0}\right| \leq \frac{\beta}{l\left(z_{0}\right)}\right\}, \rho_{0}=\frac{\beta-1}{4 \beta l\left(z_{0}\right)}$ and $\rho_{k}=\rho_{0}+$ $\frac{k \eta}{l^{*}}, k \in \mathbb{Z}_{+}$. Since $\frac{\eta}{l^{*}}<\frac{\beta-1}{4 \beta l\left(z_{0}\right)}<\frac{\beta}{l\left(z_{0}\right)}-\frac{\beta+1}{2 l\left(z_{0}\right)}$, there exists $n^{*} \in \mathbb{N}$ that does not depend on z_{0} such that $\rho_{n-1}<\frac{\beta+1}{2 l\left(z_{0}\right)} \leq \rho_{n} \leq \frac{\beta}{l\left(z_{0}\right)}$ for some $n=n\left(z_{0}\right) \leq n^{*}$.

Let $C_{k}=\left\{z:\left|z-z_{0}\right|=\rho_{k}\right\},\left|f\left(z_{k}^{* *}\right)\right|=\max \left\{|f(z)|: z \in C_{k}\right\}$, and z_{k}^{*} be the point of intersection of the segment $\left[z_{0}, z_{k}^{* *}\right]$ with the circle C_{k-1}. Then for $r<\eta$ $\left|z_{k}^{* *}-z_{k}^{*}\right|=\eta l^{*} \leq \operatorname{rl}\left(z_{k}^{*}\right)$ and taking into consideration (12) there exists $r \in\left[\eta, \frac{\beta-1}{4 \beta}\right]$ such that

$$
\begin{gathered}
\left|f\left(z_{k}^{* *}\right)\right| \leq \max \left\{|f(z)|:\left|z-z_{k}^{*}\right|=\frac{r}{l\left(z_{k}^{*}\right)}\right\} \leq \\
\leq P_{2}^{*} \min \left\{|f(z)|:\left|z-z_{k}^{*}\right|=\frac{r}{l\left(z_{k}^{*}\right)}\right\} \leq P_{2}^{*} \max \left\{|f(z)|: z \in C_{k-1}\right\} .
\end{gathered}
$$

Hence

$$
\begin{gathered}
\max \left\{|f(z)|:\left|z-z_{0}\right|=\frac{\beta+1}{2 l\left(z_{0}\right)}\right\} \leq \max \left\{|f(z)|: z \in C_{n}\right\} \leq \\
\leq P_{2}^{*} \max \left\{|f(z)|: z \in C_{n-1}\right\} \leq \cdots \leq\left(P_{2}^{*}\right)^{n} \max \left\{|f(z)|: z \in C_{0}\right\} \leq \\
\leq\left(P_{2}^{*}\right)^{n^{*}} \max \left\{|f(z)|:\left|z-z_{0}\right|=\frac{\beta-1}{4 \beta l\left(z_{0}\right)}\right\},
\end{gathered}
$$

i. e. (11) holds with $P_{1}^{*}=\left(P_{2}^{*}\right)^{n^{*}}$.
5°. The fifth criterion. The bounded zeros distribution of function of bounded l-index. Let a_{k} be the zeros of the function f analytic in G,

$$
n\left(r, z_{0}, 1 / f\right)=\sum_{\left|a_{k}-z_{0}\right| \leq r, a_{k} \in G} 1, \quad G_{r}=\bigcup_{k}\left\{z:\left|z-a_{k}\right| \leq r / l\left(a_{k}\right)\right\} .
$$

Theorem 4. Let $\beta>1, l \in Q_{\beta(G)}$ and $G \backslash G_{r} \neq \varnothing$. A function f is of bounded l-index if and only if

1) for all $r \in(0, \beta]$ there exists $P=P(r)$ such that $\left|f^{\prime}\left(z_{0}\right) / f\left(z_{0}\right)\right| \leq P l\left(z_{0}\right)$ for all $z_{0} \in G \backslash G_{r} ;$ 2) for all $r \in(0, \beta]$ there exists $\tilde{n}=\tilde{n}(r) \in Z_{+}$such that $n\left(r / l\left(z_{0}\right), z_{0}, 1 / f\right) \leq$ \tilde{n} for all $z_{0} \in G$.
Proof. We prove the necessity of conditions 1) and 2). Firstly, we show that if f is of bounded l-index then for all $z_{0} \in G \backslash G_{r}(r \in(0, \beta])$ and for all $k \in Z_{+}$

$$
\begin{equation*}
\left|z_{0}-a_{k}\right|>\frac{r}{2 \lambda_{2}(r) l\left(z_{0}\right)} . \tag{13}
\end{equation*}
$$

Let us assume, on the contrary, that there exist $z_{0} \in G \backslash G_{r}$ and $k \in Z_{+}$such that $\left|z_{0}-a_{k}\right| \leq r /\left(2 \lambda_{2}(r) l\left(z_{0}\right)\right)<r / l\left(z_{0}\right)$. Then from (4) it follows that $l\left(a_{k}\right) \leq$ $\lambda_{2}(r) l\left(z_{0}\right)$, hence $\left|z_{0}-a_{k}\right| \leq r /\left(2 l\left(a_{k}\right)\right)<r / l\left(a_{k}\right)$ that contradicts to the condition $z_{0} \in G \backslash G_{r}$.

Let us put in Theorem $3 R=r /\left(2 \lambda_{2}(r)\right)$. Then there exist $P_{2} \geq 1$ and $\eta \in$ $\left(0, r / 2 \lambda_{2}(r)\right)$ such that for all $z_{0} \in G$ and some $r^{*} \in\left[\eta, r / 2 \lambda_{2}(r)\right]$ (10) holds with r^{*} instead of r. Therefore, according to the Cauchy inequality

$$
\begin{aligned}
& \left|f^{\prime}\left(z_{0}\right)\right| \leq\left(l\left(z_{0}\right) / r^{*}\right) \max \left\{|f(z)|:\left|z-z_{0}\right|=r^{*} / l\left(z_{0}\right)\right\} \leq \\
& \quad \leq\left(l\left(z_{0}\right) / \eta\right) P_{2} \min \left\{|f(z)|:\left|z-z_{0}\right|=r^{*} / l\left(z_{0}\right)\right\} .
\end{aligned}
$$

But according to inequality (13) for all $z_{0} \in G \backslash G_{r}$ the disc $\left\{z:\left|z-z_{0}\right| \leq\right.$ $\left.r /\left(2 \lambda_{2}(r) l\left(z_{0}\right)\right)\right\}$ does not contain the zeros of function f. So, applying to the function $1 / f$ the maximum modulus principle we obtain $\left|f\left(z_{0}\right)\right| \geq \min \{|f(z)|$: $\left.\left|z-z_{0}\right|=r^{*} / l\left(z_{0}\right)\right\}$ so $\left|f^{\prime}\left(z_{0}\right) / f\left(z_{0}\right)\right| \leq\left(P_{2} / \eta\right) l\left(z_{0}\right)$, i. e. property 1$)$ is proved with $P_{3}=P_{2} / \eta$.

Now we show that if f is of bounded l-index then there exists $P_{4}>0$ such that for all $z_{0} \in G$ and $r \in(0,1]$

$$
\begin{gather*}
n\left(r / l\left(z_{0}\right), z_{0}, 1 / f\right) \min \left\{|f(z)|:\left|z-z_{0}\right|=r / l\left(z_{0}\right)\right\} \leq \\
\leq P_{4} \max \left\{|f(z)|:\left|z-z_{0}\right|=1 / l\left(z_{0}\right)\right\} . \tag{14}
\end{gather*}
$$

Indeed, according to the Cauchy inequality for all $z,\left|z-z_{0}\right|=1 / l\left(z_{0}\right)$. Using Theorem 2 we obtain

$$
\begin{gathered}
\left|f^{\prime}(z)\right| \leq\left(l\left(z_{0}\right) /(\beta-1)\right) \max \left\{|f(\tau)|:|\tau-z|=(\beta-1) / l\left(z_{0}\right)\right\} \leq \\
\leq\left(l\left(z_{0}\right) /(\beta-1)\right) \max \left\{|f(z)|:\left|z-z_{0}\right|=\beta / l\left(z_{0}\right)\right\} \leq \\
\leq\left(P_{1}(1, \beta-1) l\left(z_{0}\right) /(\beta-1)\right) \max \left\{|f(z)|:\left|z-z_{0}\right|=1 / l\left(z_{0}\right)\right\} .
\end{gathered}
$$

If $f(z) \neq 0$ on the circumference $\left\{z:\left|z-z_{0}\right|=r / l\left(z_{0}\right)\right\}$ then

$$
\begin{gathered}
n\left(\frac{r}{l\left(z_{0}\right)}, z_{0}, \frac{1}{f}\right)=\left|\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=r / l\left(z_{0}\right)} \frac{f^{\prime}(z)}{f(z)} d z\right| \leq \\
\leq \frac{r}{l\left(z_{0}\right)} \max \left\{\left|f^{\prime}(z)\right|:\left|z-z_{0}\right|=\frac{r}{l\left(z_{0}\right)}\right\} / \min \left\{|f(z)|:\left|z-z_{0}\right|=\frac{r}{l\left(z_{0}\right)}\right\} .
\end{gathered}
$$

From the last two inequalities we obtain

$$
\begin{gathered}
n\left(r / l\left(z_{0}\right), z_{0}, 1 / f\right) \min \left\{|f(z)|:\left|z-z_{0}\right|=r / l\left(z_{0}\right)\right\} \leq \\
\leq\left(1 / l\left(z_{0}\right)\right) \max \left\{\left|f^{\prime}(z)\right|:\left|z-z_{0}\right|=1 / l\left(z_{0}\right)\right\} \leq \\
\leq\left(P_{1}(1, \beta-1) /(\beta-1)\right) \max \left\{|f(z)|:\left|z-z_{0}\right|=1 / l\left(z_{0}\right)\right\},
\end{gathered}
$$

i. e. (14) with $P_{4}=P_{1}(1, \beta-1) /(\beta-1)$. If there are zeros of f on the circle $\left\{z:\left|z-z_{0}\right|=r / l\left(z_{0}\right)\right\}$ then inequality (14) is obvious.

Now let us choose $R=1$ in Theorem 3. Then there exist $P_{2}=P_{2}(1) \geq 1$ and $\eta \in(0,1)$ such that for all $z_{0} \in G$ and some $r^{*} \in(\eta, 1)$

$$
\max \left\{|f(z)|:\left|z-z_{0}\right|=\frac{r^{*}}{l\left(z_{0}\right)}\right\} \leq P_{2} \min \left\{|f(z)|:\left|z-z_{0}\right|=\frac{r^{*}}{l\left(z_{0}\right)}\right\} .
$$

Therefore, according to Theorem 2 there exists $P_{1}(1, \eta)$ such that

$$
\begin{gathered}
\max \left\{|f(z)|:\left|z-z_{0}\right|=\frac{1}{l\left(z_{0}\right)}\right\} \leq P_{1}(1, \eta) \max \left\{|f(z)|:\left|z-z_{0}\right|=\frac{\eta}{l\left(z_{0}\right)}\right\} \leq \\
\leq P_{1}(1, \eta) \max \left\{|f(z)|:\left|z-z_{0}\right|=\frac{r^{*}}{l\left(z_{0}\right)}\right\} \leq P_{1}(1, \eta) P_{2} \min \left\{|f(z)|:\left|z-z_{0}\right|=\frac{r^{*}}{l\left(z_{0}\right)}\right\}
\end{gathered}
$$

and according to (14),

$$
\begin{aligned}
& n\left(r^{*} / l\left(z_{0}\right), z_{0}, 1 / f\right) \min \left\{|f(z)|:\left|z-z_{0}\right|=r^{*} / l\left(z_{0}\right)\right\} \leq \\
& \quad \leq P_{1}(1, \eta) P_{2} P_{4} \max \left\{|f(z)|:\left|z-z_{0}\right|=1 / l\left(z_{0}\right)\right\},
\end{aligned}
$$

i. e.

$$
\begin{gathered}
n\left(\frac{\eta}{l\left(z_{0}\right)}, z_{0}, \frac{1}{f}\right) \leq n\left(\frac{r^{*}}{l\left(z_{0}\right)}, z_{0}, \frac{1}{f}\right) \leq P_{5}= \\
=P_{1}(1, \eta) P_{2} P_{4}=P_{1}(1, \eta) P_{2}(1) P_{1}(1, \beta-1) /(\beta-1) .
\end{gathered}
$$

Now let $r \in(\eta, \beta]$ be an arbitrary number and $l_{*}=\max \left\{l(z):\left|z-z_{0}\right|=r / l\left(z_{0}\right)\right\}$. Then $l_{*} \leq \lambda_{2}(r) l\left(z_{0}\right)$. Let $\rho=r /\left(\lambda_{2}(r) l\left(z_{0}\right)\right)$ and $R=r / l\left(z_{0}\right)$. An arbitrary closed disc \bar{K} of radius R can be covered with a finite quantity m of closed discs $\overline{K_{j}}$ of radius ρ with the centers in \bar{K}. Since $\eta / l\left(z_{j}\right) \geq \eta / l_{*} \geq \eta /\left(\lambda_{2}(r) l\left(z_{0}\right)\right)$, in every $\overline{K_{j}}$ are no more then P_{5} zeros of function f. Therefore there are no more then $m P_{5}$ zeros of f in \bar{K}. Hence, $n\left(r / l\left(z_{0}\right), z_{0}, 1 / f\right) \leq \tilde{n}(r)=\left[m P_{5}\right]+1$, and property 2) is proved.

On the contrary, let conditions 1) and 2) hold. According to 2$)$ for any $R \in(0, \beta]$ there exists $\tilde{n}(R) \in \mathbb{Z}_{+}$such that there are no more than $\tilde{n}(R)$ zeros of f in an arbitrary disc $\bar{K}=\left\{z:\left|z-z_{0}\right| \leq R / l\left(z_{0}\right)\right\}$. Let $a=a(R)=R \lambda_{1}(R) /(2(\tilde{n}(R)+1))$. According to condition 1) there exists $P=P(R) \geq 1$ such that $\left|f^{\prime}(z) / f(z)\right| \leq P l(z)$ for all $z \in G \backslash G_{a}$, i.e. for all z that does not lie in the discs $\left\{z:\left|z-a_{n}\right| \leq a(R) / l\left(a_{n}\right)\right\}$ with the centers $a_{n} \in \bar{K}$. But $\lambda_{1}(R) l\left(z_{0}\right) \leq l\left(a_{n}\right)$. Therefore, $\left|f^{\prime}(z) / f(z)\right| \leq$ $P l(z)$ for all z that does not lie in the discs $\left\{z:\left|z-a_{n}\right| \leq a(R) /\left(\lambda_{1}(R) l\left(z_{0}\right)\right)=\right.$ $R /\left(2(\tilde{n}(R)+1) l\left(z_{0}\right)\right)$. The total length of the diameters of these discs does not
exceed $R \tilde{n}(R) /\left((\tilde{n}(R)+1) l\left(z_{0}\right)\right)<R / l\left(z_{0}\right)$. So there exists the circle $\left\{z:\left|z-z_{0}\right|=\right.$ $\left.r / l\left(z_{0}\right)\right\}$ with $R \lambda_{1}(R)(4(\tilde{n}(R)+1))=\eta(R)<r<R$, on which $\left|f^{\prime}(z) / f(z)\right| \leq$ $P l(z) \leq P \lambda_{2}(R) l\left(z_{0}\right)$. For the arbitrary points z_{1} and z_{2} that lie on this circle

$$
\ln \left|\frac{f\left(z_{1}\right)}{f\left(z_{2}\right)}\right| \leq \int_{z_{1}}^{z_{2}}\left|\frac{f^{\prime}(z)}{f(z)}\right||d z| \leq P \lambda_{2}(R) l\left(z_{0}\right) \frac{2 r}{l\left(z_{0}\right)} \leq 2 R \lambda_{2}(R) P(R) .
$$

Hence

$$
\max \left\{|f(z)|:\left|z-z_{0}\right|=r / l\left(z_{0}\right)\right\} \leq P_{2} \min \left\{|f(z)|:\left|z-z_{0}\right|=r / l\left(z_{0}\right)\right\}
$$

where $P_{2}=\exp \left\{2 R \lambda_{2}(R) P(R)\right\}$, and according to Theorem 2 the function f is of bounded l-index.

REFERENCES

[1] Кузык А.Д., Шеремета, Целые функиии ограниченного l-распределения значений, Мат. заметки. 39 (1986), no. 1, 3-13.
[2] Lepson B., Differential equations of infinite order, hyperdirichlet series and entire functions of bounded index, Proc. Sympos. Pure Math., Amer. Math. Soc., Providence. 11 (1968), 298-307.
[3] Shah S.M., Entire function of bounded index, Lect. Notes in Math. 589 (1977), 117-145.
[4] Шеремета М.Н., Кузык А.Д., О логарифмической производной и нулях щелой функиии ограниченного l-индекса, Сиб. мат. журн. 33 (1992), no. 2, 142-150.
[5] Строчик С.М., Шеремета М.М., Аналітичні в крузі функиії обмеженого l-індексу, Доп. НАН України 1 (1993), 19-22.
[6] Fricke G.H., A characterization of functions of bounded index, Indian J. Math. 14 (1972), no. 3, 207-212.

Department of Mechanics and Mathematics, Lviv State University

[^0]: 1991 Mathematics Subject Classification. 30D35.

