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1
◦
. Introduction. Let at �rst l be a positive, continuous function in [0,+∞).

An entire function f is called of bounded l-index [1] if there exists N ∈ Z+ such
that

|f (n)(z)|
n!ln(|z|)

≤ max

{
|f (k)(z)|
k!lk(|z|)

: 0 ≤ k ≤ N

}
. (1)

for all n ∈ Z+ and z ∈ C The least such integer N is called the l-index of f .
If l(x) ≡ 1 then (1) gives the de�nition of the entire function of bounded in-

dex introduced by B. Lepson in 1969 [2]. The notion of the entire function of
bounded index (bounded l-index) turned out to be rather useful, because, �rstly,
the derivative of such a function is the function of bounded value distribution (of
l-bounded value distribution [1]). Besides, the entire solutions of ordinary di�eren-
tial equations of the speci�c structure are the functions of bounded index (l-index).
We note that together with this properties the entire functions of bounded index
(l-index) demonstrate some certain regularity in behaviour of maximum modulus,
logarithmic derivative, distribution of zeros ([3, 4, 6] and the bibliography in [3]).

Thereby, the problem of introducing a notion of bounded l-index of analytic in
an arbitrary complex domain function f and exploration the properties of such
functions arises. So, the aim of this paper is a de�nition of bounded l-index of
analytic in an arbitrary complex domain function f and to explore the properties
of analytic in an arbitrary �xed complex domain function f . We notice that in [5]
a concept of l-index was introduced in the class of analytic in the disc D = {z :
|z| < 1} functions and some analogues of theorems from [3, 4] were considered.
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Let G be an arbitrary complex domain, f be an analytic function in G  nd l be
positive, continuous function in G. We assume that there exists N ∈ Z+ such that

|f (n)(z)|
n!ln(z)

≤ max

{
|f (k)(z)|
k!lk(z)

: 0 ≤ k ≤ N

}
(2)

for all n ∈ Z+ and z ∈ G. We notice that the concepts introduced in [5] is obtained

with l(z) = l1

(
1

1−|z|

)
.

Let us expand the function f in the Taylor series f(w) =
∑∞

n=0 f
(n)(z)/n!(w −

z)n. Since from (2) it follows that |f (n)(z)|/n! ≤ K(z)ln(z), where K(z) =
max{|f (k)(z)|/(k!lk(z)) : 0 ≤ k ≤ N}, the radius of convergence of the series
R ≥ 1/l(z), and the function f is analytic in every disc {w : |w − z| < 1/l(z)}. If
now l(z) < (dist (z, ∂G))−1 for all z ∈ G, then it follows that f can be analytically
continued through ∂G. So, henceforth we will consider the case, where the function
f has the irregular points on ∂G (perhaps only one point, or perhaps ∂G is the
natural border for f),  nd we require that

l(z) >
β

dist (z, ∂G)
, z ∈ G, (3)

where β > 1 is a �xed number. So, for the continuous, positive in G function l
that satis�es condition (3), an analytic in G function f we will be called a function
of bounded l-index, if there exists N ∈ Z+ such that inequality (2) holds for all
n ∈ Z+ and z ∈ G. The least such integer N will be called the l-index of f and
denoted by N(f ; l).

Let us notice that if G = C and f is an entire function, then the validity of
inequality (3) for every positive function l(z) is obvious. From (3) it follows that if
z0 ∈ G, then {z : |z − z0| ≤ β/l(z0)} ⊂ G. We will often use this fact in the sequel.

For r ∈ [0, β] let

λ1(r) = inf

{
l(z)

l(z0)
: |z − z0| ≤

r

l(z0)
, z0 ∈ G

}
and

λ2(r) = sup

{
l(z)

l(z0)
: |z − z0| ≤

r

l(z0)
, z0 ∈ G

}
.

It is obvious that λ1(r) ≤ 1 ≤ λ2(r). We denote by Qβ(G) the class of positive
continuous inG functions satisfying (3) and the conditions 0 < λ1(r) ≤ λ2(r) < +∞
for all r ∈ [0, β].

Let us notice that if l ∈ Qβ(G) and z0 ∈ G, then from the inequality |z − z0| ≤
r

l(z0)
it follows

λ1(r)l(z0) ≤ l(z) ≤ λ2(r)l(z0) (4)

for all r ∈ [0, β].
Here we prove the analogues of three main criteria of boundedness of l-ûndex

which were obtained for the entire functions in [4].

2
◦
. The �rst criterion. Let us begin with the following theorem that points to

the behaviour of the derivatives of the analytic in G function of bounded l-ûndex
and is essentially used in the proofs of other theorems.
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�h¥®r¥m 1. Let β > 1 and l ∈ Qβ(G). An analytic in G function f(z) is of
bounded l-index if and only if for all 0 < η ≤ β there exist numbers n0 ∈ Z+ and
P0 ≥ 1 such that for all z0 ∈ S there exists k0 = k0(z0) ∈ Z+, 0 ≤ k0 ≤ n0 such
that

max

{
|f (k0)(z)| : |z − z0| ≤

η

l(z0)

}
≤ P0|f (k0)(z0)|. (5)

Proof. Let f have l-indexN(f ; l) = N < ∞. Let q(η) = [2η(N+1)λN+1
2 (η)λ−N

1 (η)]+
1, and for z0 ∈ G and n ∈ {0, 1, . . . , q(η)} let

Rn(z0, η) = max

{
|f (k)(z)|
k!lk(z)

: |z − z0| ≤
nη

q(η)l(z0)
, 0 ≤ k ≤ N

}
,

R∗
n(z0, η) = max

{
|f (k)(z)|
k!lk(z0)

: |z − z0| ≤
nη

q(η)l(z0)
, 0 ≤ k ≤ N

}
.

Since |z − z0| ≤ nη
q(η)l(z0)

≤ η
l(z0)

≤ β
l(z0)

, in virtue of condition (3), the val-

ues Rn(z0, η) and R∗
n(z0, η) are de�ned, and in virtue of (4) we have Rn(z0, η) ≤

R∗
n(z0, η)λ

−N
1 (η) and R∗

n(z0, η) ≤ Rn(z0, η)λ
N
2 (η). Further, repeating literally the

reasoning from [4], it is possible to show that R∗
n(z0, η) ≤ 2R∗

n−1(z0, η). From

the last three inequalities it follows that Rn(z0, η) ≤ 2λN
2 (η)λ

−N
1 (η)Rn−1(z0, η).

Therefore,

max

{
|f (k)(z)|
k!lk(z)

: |z − z0| ≤
η

l(z0)
, 0 ≤ k ≤ N

}
= Rq(η)(z0, η) ≤

≤ 2λN
2 (η)λ

−N
1 (η)Rq(η)−1(z0, η) ≤ (2λN

2 (η)λ
−N
1 (η))2Rq(η)−2(z0, η) ≤ . . .

≤ P1R0(z0, η) = P1max

{
|f (k)(z0)|
k!lk(z0)

: 0 ≤ k ≤ N

}
, P1 = (2λN

2 (η)λ
−N
1 (η))q(η).

Further, the proof of the necessity is the same as that of the similar statement in [4].
Now suppose that for all η, 0 < η ≤ β there exist numbers n0 ∈ Z+ and P0 ≥ 1

such that for all z0 ∈ G there exists k0, 0 ≤ k0 ≤ n0 such that (5) holds. Let
η = β and choose j0 such that P0 ≤ βj0 . Since, in virtue of condition (3), we have
{z : |z − z0| ≤ β/l(z0)} ⊂ G for all z ∈ G, hence in virtue of (5) for all z0 ∈ G and
corresponding k0 = k0(z0)

|f (k0+j)(z0)|
j!

≤ lj(z0)

βj
max

{
|f (k0)(z)| : |z − z0| =

β

l(z0)

}
≤ P0

lj(z0)

βj
|f (k0)(z0)|,

so

|f (k0+j)(z0)|
(k0 + j)!lk0+j(z0)

≤ j!k0!

(j + k0)!

P0
βj

|f (k0)(z0)|
k0!lk0(z0)

≤

≤ βj0−j |f (k0)(z0)|
k0!lk0(z0)

≤ |f (k0)(z0)|
k0!lk0(z0)

, j ≥ j0. (6)

Since k0 ≤ n0, and the numbers n0 = n0(β) and j0 = j0(β) do not depend on
z0, inequality (6) means that N(f ; l) ≤ n0 + j0. □
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The Fricke technique [6] is used in the proofs of two following theorems similarly
as in [4].

3
◦
. The second criterion. Maximum modulus of function of bounded

l-index.

Theorem 2. Let β > 1 and l ∈ Qβ(G). An analytic in G function f(z) is of
bounded l-index if and only if for all 0 < r1 < r2 ≤ β there exists P1(r1, r2) ≥ 1,
such that for all z0 ∈ G

max

{
|f(z)| : |z − z0| =

r2
l(z0)

}
≤ P1(r1, r2)max

{
|f(z)| : |z − z0| =

r1
l(z0)

}
. (7)

Proof. Using Theorem 1 we prove the necessity of condition (7). An analogous
statements are proved like in [4] and [6]. Let us prove the adequacy of condition (7).
Let z0 ∈ G be an arbitrary point. We expand the function f into the power series
f(z) =

∑∞
m=0 bm(z−z0)

m, bm = f (m)(z0)/m!, in the circle {z : |z−z0| ≤ β/l(z0)} ⊂
G. For r ≤ β/l(z0) we denote M(r, z0, f) = max{|f(z)| : |z − z0| = r}, and let
µ(r, z0, F ) = max{|bm|rm : m ≥ 0} be the maximum term of series (18),  nd
ν(r, z0, f) = max{|bm|rm : |bm|rm = µ(r, z0, f)} be its central index. According to
the Cauchy inequality µ(r, z0, f) ≤ M(r, z0, f). On the other hand, if r ≤ 1/l(z0)

then M(r, z0, f) ≤
∑∞

m=0 |bm|(βr)m2−m ≤ β
β−1µ(βr, z0, f) and lnµ(βr, z0, f) −

lnµ(r, z0, f) =
∫ βr

r
ν(t, z0, f)t

−1dt ≥ ν(r, z0, f) lnβ, so

ν(r, z0, f) ≤
1

lnβ
(lnµ(βr, z0, f)− lnµ(r, z0, f)) ≤

≤ 1

lnβ

{
lnM(βr, z0, f)− ln

(β − 1

β
M(r/β, z0, f)

)}
=

=
lnβ − ln(β − 1)

lnβ
+

1

lnβ
{lnM(βr, z0, f)− lnM(r/β, z0, f)}. (9)

Let N(f ; l, z0) be the l-index of function f in z0, i.e. the least of numbers N
for which inequality (2) holds under z = z0. It is easy to see that N(f ; l, z0) ≤
ν(1/l(z0), z0, f). On the other hand, putting r2 = β and r1 = 1/β in (7) we obtain
M(β/l(z0), z0, f) ≤ P ∗

1M(1/βl(z0), z0, f), where P ∗
1 = P1(1/β, β). Thus from (9)

we obtain the inequality

N(f ; l, z0) ≤ N(β) =
lnβ − ln (β − 1)

lnβ
+

lnP ∗
1

lnβ

for all z0 ∈ G, hence N(f ; l) ≤ N(β). □
From the proof of Theorem 2 we can easily see that the following theorem is

valid.

Theorem 2
′
. Let β > 1 and l ∈ Qβ(G). An analytic in G function f(z) is of

bounded l-index if and only if there exist 0 < r1 < r2 ≤ β and P1(r1, r2) ≥ 1 such
that for all z0 ∈ G inequality (7) holds.

4
◦
. The third criterion. Maximum and minimum modulus.
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Theorem 3. Let β > 1, l ∈ Qβ. An analytic in G function f(z) is of bounded
l-index if and only if for all 0 < R ≤ β there exist P2(R) ≥ 1 and η(R) ∈ (0, R)
such that for all z0 ∈ G there exists r(z0) = r ∈ [η(R), R] such that

max

{
|f(z)| : |z − z0| =

r

l(z0)

}
≤ P2min

{
|f(z)| : |z − z0| =

r

l(z0)

}
. (10)

Proof. The necessity of condition (10) can be proved literally as in [4]. For the
proof of the adequacy, according to Theorem 2′ we have to show that there exists
a number P1 such that

max

{
|f(z)| : |z − z0| =

β + 1

2l(z0)

}
≤ P1max

{
|f(z)| : |z − z0| =

β − 1

4βl(z0)

}
(11)

for all z0 ∈ S. Let R = β−1
4β . Then there exist P ∗

2 = P2

(
β−1
4β

)
and η = η

(
β−1
4β

)
∈(

0, β−1
4β

)
, such that for all z∗ ∈ G and some r ∈

[
η, β−1

4β

]
max

{
|f(z)| : |z − z∗| = r

l(z∗)

}
≤ P ∗

2 min

{
|f(z)| : |z − z∗| = r

l(z∗)

}
. (12)

Let us denote l∗ = max
{
l(z) : |z − z0| ≤ β

l(z0)

}
, ρ0 = β−1

4βl(z0)
and ρk = ρ0 +

kη
l∗ , k ∈ Z+. Since η

l∗ < β−1
4βl(z0)

< β
l(z0)

− β+1
2l(z0)

, there exists n∗ ∈ N that does not

depend on z0 such that ρn−1 <
β+1
2l(z0)

≤ ρn ≤ β
l(z0)

for some n = n(z0) ≤ n∗.

Let Ck = {z : |z − z0| = ρk}, |f(z∗∗k )| = max{|f(z)| : z ∈ Ck}, and z∗k be the
point of intersection of the segment [z0, z

∗∗
k ] with the circle Ck−1. Then for r < η

|z∗∗k −z∗k| = ηl∗ ≤ rl(z∗k) and taking into consideration (12) there exists r ∈
[
η, β−1

4β

]
such that

|f(z∗∗k )| ≤ max

{
|f(z)| : |z − z∗k| =

r

l(z∗k)

}
≤

≤ P ∗
2 min

{
|f(z)| : |z − z∗k| =

r

l(z∗k)

}
≤ P ∗

2 max {|f(z)| : z ∈ Ck−1} .

Hence

max

{
|f(z)| : |z − z0| =

β + 1

2l(z0)

}
≤ max {|f(z)| : z ∈ Cn} ≤

≤ P ∗
2 max {|f(z)| : z ∈ Cn−1} ≤ · · · ≤ (P ∗

2 )
nmax {|f(z)| : z ∈ C0} ≤

≤ (P ∗
2 )

n∗
max

{
|f(z)| : |z − z0| =

β − 1

4βl(z0)

}
,

i. e. (11) holds with P ∗
1 = (P ∗

2 )
n∗
. □

5
◦
. The �fth criterion. The bounded zeros distribution of function of

bounded l-index. Let ak be the zeros of the function f analytic in G,

n(r, z0, 1/f) =
∑

|ak−z0|≤r,ak∈G

1, Gr =
∪
k

{z : |z − ak| ≤ r/l(ak)}.
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Theorem 4. Let β > 1, l ∈ Qβ(G) and G \ Gr ̸= ∅. A function f is of bounded
l-index if and only if

1) for all r ∈ (0, β] there exists P = P (r) such that |f ′(z0)/f(z0)| ≤ Pl(z0) for all
z0 ∈ G\Gr; 2) for all r ∈ (0, β] there exists ~n = ~n(r) ∈ Z+ such that n(r/l(z0), z0, 1/f) ≤
~n for all z0 ∈ G.

Proof. We prove the necessity of conditions 1) and 2). Firstly, we show that if f is
of bounded l-index then for all z0 ∈ G \Gr (r ∈ (0, β]) and for all k ∈ Z+

|z0 − ak| >
r

2λ2(r)l(z0)
. (13)

Let us assume, on the contrary, that there exist z0 ∈ G \ Gr and k ∈ Z+ such
that |z0 − ak| ≤ r/(2λ2(r)l(z0)) < r/l(z0). Then from (4) it follows that l(ak) ≤
λ2(r)l(z0), hence |z0 − ak| ≤ r/(2l(ak)) < r/l(ak) that contradicts to the condition
z0 ∈ G \Gr.

Let us put in Theorem 3 R = r/(2λ2(r)). Then there exist P2 ≥ 1 and η ∈
(0, r/2λ2(r)) such that for all z0 ∈ G and some r∗ ∈ [η, r/2λ2(r)] (10) holds with
r∗ instead of r. Therefore, according to the Cauchy inequality

|f ′(z0)| ≤ (l(z0)/r
∗)max{|f(z)| : |z − z0| = r∗/l(z0)} ≤

≤ (l(z0)/η)P2min{|f(z)| : |z − z0| = r∗/l(z0)}.

But according to inequality (13) for all z0 ∈ G \ Gr the disc {z : |z − z0| ≤
r/(2λ2(r)l(z0))} does not contain the zeros of function f . So, applying to the
function 1/f the maximum modulus principle we obtain |f(z0)| ≥ min{|f(z)| :
|z− z0| = r∗/l(z0)} so |f ′(z0)/f(z0)| ≤ (P2/η)l(z0), i. e. property 1) is proved with
P3 = P2/η.

Now we show that if f is of bounded l-index then there exists P4 > 0 such that
for all z0 ∈ G and r ∈ (0, 1]

n(r/l(z0), z0, 1/f)min{|f(z)| : |z − z0| = r/l(z0)} ≤
≤ P4max{|f(z)| : |z − z0| = 1/l(z0)}. (14)

Indeed, according to the Cauchy inequality for all z, |z − z0| = 1/l(z0). Using
Theorem 2 we obtain

|f ′(z)| ≤ (l(z0)/(β − 1))max{|f(τ)| : |τ − z| = (β − 1)/l(z0)} ≤
≤ (l(z0)/(β − 1))max{|f(z)| : |z − z0| = β/l(z0)} ≤

≤ (P1(1, β − 1)l(z0)/(β − 1))max{|f(z)| : |z − z0| = 1/l(z0)}.

If f(z) ̸= 0 on the circumference {z : |z − z0| = r/l(z0)} then

n

(
r

l(z0)
, z0,

1

f

)
=

∣∣∣∣ 1

2πi

∫
|z−z0|=r/l(z0)

f ′(z)

f(z)
dz

∣∣∣∣ ≤
≤ r

l(z0)
max

{
|f ′(z)| : |z − z0| =

r

l(z0)

}/
min

{
|f(z)| : |z − z0| =

r

l(z0)

}
.
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From the last two inequalities we obtain

n(r/l(z0), z0, 1/f)min{|f(z)| : |z − z0| = r/l(z0)} ≤
≤ (1/l(z0))max{|f ′(z)| : |z − z0| = 1/l(z0)} ≤

≤ (P1(1, β − 1)/(β − 1))max{|f(z)| : |z − z0| = 1/l(z0)},

i. e. (14) with P4 = P1(1, β − 1)/(β − 1). If there are zeros of f on the circle
{z : |z − z0| = r/l(z0)} then inequality (14) is obvious.

Now let us choose R = 1 in Theorem 3. Then there exist P2 = P2(1) ≥ 1 and
η ∈ (0, 1) such that for all z0 ∈ G and some r∗ ∈ (η, 1)

max

{
|f(z)| : |z − z0| =

r∗

l(z0)

}
≤ P2min

{
|f(z)| : |z − z0| =

r∗

l(z0)

}
.

Therefore, according to Theorem 2 there exists P1(1, η) such that

max

{
|f(z)| : |z − z0| =

1

l(z0)

}
≤ P1(1, η)max

{
|f(z)| : |z − z0| =

η

l(z0)

}
≤

≤ P1(1, η)max

{
|f(z)| : |z − z0| =

r∗

l(z0)

}
≤ P1(1, η)P2min

{
|f(z)| : |z − z0| =

r∗

l(z0)

}
and according to (14),

n(r∗/l(z0), z0, 1/f)min{|f(z)| : |z − z0| = r∗/l(z0)} ≤
≤ P1(1, η)P2P4max{|f(z)| : |z − z0| = 1/l(z0)},

i. e.

n

(
η

l(z0)
, z0,

1

f

)
≤ n

(
r∗

l(z0)
, z0,

1

f

)
≤ P5 =

= P1(1, η)P2P4 = P1(1, η)P2(1)P1(1, β − 1)/(β − 1).

Now let r ∈ (η, β] be an arbitrary number and l∗ = max{l(z) : |z−z0| = r/l(z0)}.
Then l∗ ≤ λ2(r)l(z0). Let ρ = r/(λ2(r)l(z0)) and R = r/l(z0). An arbitrary closed
disc K of radius R can be covered with a �nite quantity m of closed discs Kj of

radius ρ with the centers in K. Since η/l(zj) ≥ η/l∗ ≥ η/(λ2(r)l(z0)), in every Kj

are no more then P5 zeros of function f . Therefore there are no more then mP5
zeros of f in K. Hence, n(r/l(z0), z0, 1/f) ≤ ~n(r) = [mP5] + 1, and property 2) is
proved.

On the contrary, let conditions 1) and 2) hold. According to 2) for any R ∈ (0, β]
there exists ~n(R) ∈ Z+ such that there are no more than ~n(R) zeros of f in an
arbitrary disc K = {z : |z−z0| ≤ R/l(z0)}. Let a = a(R) = Rλ1(R)/(2(~n(R)+1)).
According to condition 1) there exists P = P (R) ≥ 1 such that |f ′(z)/f(z)| ≤ Pl(z)
for all z ∈ G\Ga, i.e. for all z that does not lie in the discs {z : |z−an| ≤ a(R)/l(an)}
with the centers an ∈ K. But λ1(R)l(z0) ≤ l(an). Therefore, |f ′(z)/f(z)| ≤
Pl(z) for all z that does not lie in the discs {z : |z − an| ≤ a(R)/(λ1(R)l(z0)) =
R/(2(~n(R) + 1)l(z0)). The total length of the diameters of these discs does not
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exceed R~n(R)/((~n(R)+1)l(z0)) < R/l(z0). So there exists the circle {z : |z−z0| =
r/l(z0)} with Rλ1(R)(4(~n(R) + 1)) = η(R) < r < R, on which |f ′(z)/f(z)| ≤
Pl(z) ≤ Pλ2(R)l(z0). For the arbitrary points z1 and z2 that lie on this circle

ln

∣∣∣∣f(z1)f(z2)

∣∣∣∣ ≤ ∫ z2

z1

∣∣∣∣f ′(z)

f(z)

∣∣∣∣ |dz| ≤ Pλ2(R)l(z0)
2r

l(z0)
≤ 2Rλ2(R)P (R).

Hence

max {|f(z)| : |z − z0| = r/l(z0)} ≤ P2min {|f(z)| : |z − z0| = r/l(z0)} ,

where P2 = exp{2Rλ2(R)P (R)}, and according to Theorem 2 the function f is of
bounded l-index. □
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