УДК 512.664.4

PARTIAL COHOMOLOGIES AND CANONIC ROOTS IN SEMIGROUPS

B.V. Novikov

B.V. Novikov. Partial cohomologies and canonic roots in semigroups, Matematychni Studii, **12**(1999) 7–14.

A result of the author (MR 90a:20135) on an isomorphism between partial and classical cohomologies of a semigroup with a canonic root is generalized. As an application, the cohomology is calculated for the case when a semigroup is defined by a single relation of the form aP = Q or Pa = Q, where the words P and Q don't contain the letter a.

Б.В. Новиков. *Частичные когомологии и канонические корни в полугруппах* // Математичні Студії. – 1999. – Т.12, № 1. – С.7–14.

Обобщается результат автора (РЖМат, 1989, 6А317) об изоморфизме частичных и классических когомологий полугрупп с каноническим корнем. В качестве приложения вычислены когомологии для полугрупп с одним определяющим соотношением вида aP=Q или Pa=Q, где слова P и Q не содержат буквы a.

Partial cohomologies are used, in particular, for calculating the classic semigroup cohomology of Eilenberg-McLane (further we shall call it EM-cohomology). Examples of such using were shown in [7] and [8] as a consequence of results obtained there. In this article we generalize Theorem 3.2 from [7] which allows us to describe EM-cohomology for a more wide class of semigroups.

1. Prelminaries

In this section necessary properties of cotriple [2, 3] and partial [7, 8] cohomologies are given for the convenience of reading.

In the sequel the notation $S = \langle X | R \rangle$ means that the semigroup S is generated by the set X with the defining relation set R. We write $S = \langle X \rangle$ if the type of R is not important at this moment.

Let S be a semigroup. A subset $X \subset S$ is called a root of S if $S = \langle X|R\rangle$, where all relations from R are of the form xy = z for some $x, y, z \in X$. E. g., for every presentation

$$S = \langle a_1, \dots, a_m | P_1 = Q_1, \dots, P_n = Q_n \rangle$$

the subset consisting of all generators a_1, \ldots, a_m and all subwords of the words P_i and Q_i $(1 \le i \le n)$ is a root (it is easy to see that every root can be obtained in such a way).

¹⁹⁹¹ Mathematics Subject Classification. 20M50.

Now we pass to the definition of partial cohomologies.

Let X be a root of a semigroup S, A a (left) S-module. We denote by X_n the set of all n-tuples (x_1, \ldots, x_n) such that $x_i x_{i+1} \cdot \ldots \cdot x_j \in X$ for all $i, j, 1 \leq i \leq j \leq n$. A map $f: X_n \to A$ is called a partial n-dimensional cochain of X, or an X-cochain, with values in A. The n-dimensional X-cochains form an Abelian group $C^n(S, X, A)$. We set $C^0(S, X, A) = A$ and if $X_n = \emptyset$ then $C^n(S, X, A) = 0$.

A coboundary operator $\partial^n: C^n(S,X,A) \to C^{n+1}(S,X,A)$ is given in the usual way: $\partial^0 a(x) = xa - a$ and for $n \ge 1$,

$$\partial^{n} f(x_{1}, ..., x_{n+1}) = x_{1} f(x_{2}, ..., x_{n+1}) + \sum_{i=1}^{n} (-1)^{i} f(x_{1}, ..., x_{i} x_{i+1}, ..., x_{n+1}) +$$

$$+ (-1)^{n+1} f(x_{1}, ..., x_{n}).$$

$$(1)$$

It can be checked straightforward that $\partial^{n+1}\partial^n = 0$.

The quotient group $\operatorname{Ker} \partial^n / \operatorname{Im} \partial^{n-1}$ is called the *n*-dimensional *X*-cohomology group and is denoted by $H^n(S, X, A)$. The *X*-cocycles and *X*-coboundaries are defined and denoted analogously.

The embedding $X \to S$ induces a homomorphism $\theta_X^n: H^n(S,A) \longrightarrow H^n(S,X,A)$. It was shown in [7] that θ_X^n turned out to be an isomorphism for n < 2 and a monomorphism for n = 2. Besides, the map $\Theta: Z^1(S,A) \longrightarrow Z^1(S,X,A)$, induced by $X \to S$ is a monomorphism too.

Generally speaking, partial cohomology is not a derived functor. However, it allows a presentation as a cotriple one which allows us to obtain an additional information about homomorphisms θ_X^n .

Previously we cite some information about cotriple (co)homology [2, 3]. We follow [3] as to definitions and notations, but as against [3] we choose the contravariant version, which is necessary for construction of cohomology.

Further on \mathcal{I}_{C} denotes the identity functor of a given category CC and $\iota_{\mathcal{G}}$ denotes the identity natural transformation of a functor \mathcal{G} (we shall delete the subscript at ι if it is clear what functor is considered).

Let C be a category, $(\mathcal{G}, \varepsilon, \delta)$ be a cotriple on C, i. e. $\mathcal{G}: C \longrightarrow C$ is an endofunctor, $\varepsilon: \mathcal{G} \longrightarrow \mathcal{I}_C$ and $\delta: \mathcal{G} \longrightarrow \mathcal{G}^2$ are natural transformations satisfying the equations

$$\delta \cdot \varepsilon \mathcal{G} = \delta \cdot \mathcal{G} \varepsilon = \iota_{\mathcal{G}^2}, \qquad \delta \cdot \delta \mathcal{G} = \delta \cdot \mathcal{G} \delta.$$

Then it is possible to construct an augmented simplicial object \mathcal{G}^*X (called a standard resolution of X with respect to \mathcal{G}) for every object $X \in C$:

$$X \longleftarrow \mathcal{G}X \rightleftharpoons \mathcal{G}^2X \rightleftharpoons \mathcal{G}^3X \dots$$

Here n arrows from $\mathcal{G}^n X$ to $\mathcal{G}^{n-1} X$ denote the morphisms corresponding to the natural transformations $\varepsilon_i^{(n-1)} = \mathcal{G}^i \varepsilon \mathcal{G}^{n-i-1} \colon \mathcal{G}^n \longrightarrow \mathcal{G}^{n-1}, \ 0 \leq i \leq n-1.$

If A is an Abelian category, $\mathcal{K}: C \longrightarrow \mathsf{A}$ a contravariant functor, we can construct a chain complex

$$0 \longrightarrow \mathcal{KG}X \xrightarrow{d^1} \mathcal{KG}^2X \xrightarrow{d^2} \dots,$$

where $d^n = \sum_{i \leq n-1} (-1)^i \mathcal{K} \varepsilon_i^{(n)}(X)$. Its cohomology is denoted by $H^n(X, \mathcal{K})_{\mathcal{G}}$ and called the cotriple one, or the Barr-Beck cohomology.

Cotriple theory deals with chain complexes of functors in which natural transformations are used as boundary operators. For example, instead of (2) one must consider the complex

$$0 \longrightarrow \mathcal{KG} \longrightarrow \mathcal{KG}^2 \longrightarrow \dots$$

with the natural transformations of the form $\sum_{i\leq n-1}(-1)^i\mathcal{K}\varepsilon_i^{(n)}$. In general, let \mathcal{L}_n : $\mathsf{C}\to\mathsf{A}$ $(n\geq -1)$ be contravariant functors into an Abelian category A and $\delta^n\colon\mathcal{L}_n\longrightarrow\mathcal{L}_{n+1}$ be natural transformations such that $\delta^{n+1}\delta^n=0$. Then the sequence

$$0 \longrightarrow \mathcal{L}_{-1} \xrightarrow{\delta^{-1}} \mathcal{L}_0 \xrightarrow{\delta^0} \mathcal{L}_1 \xrightarrow{\delta^1} \dots$$
 (3)

is a chain complex of functors. The cohomology of complex (3) are denoted by $H^n(\mathcal{L}_{*-})$.

Complex (3) is called \mathcal{G} -representable, if there are natural transformations τ^n : $\mathcal{L}_n\mathcal{G} \to \mathcal{L}_n$ such that $\tau^n \cdot \mathcal{L}_n\varepsilon = \iota_{\mathcal{L}_n}$. Complex (3) is called \mathcal{G} -contractible if the complex $\{\mathcal{L}_n\mathcal{G}\}_{n\geq -1}$ has a (natural) contracting homotopy $\sigma^n \colon \mathcal{L}_n\mathcal{G} \longrightarrow \mathcal{L}_{n-1}\mathcal{G}$ (the latter means that $\sigma^0\delta^{-1}\mathcal{G} = \iota$ and $\delta^{n-1}\mathcal{G}\sigma^n + \sigma^{n+1}\delta^n\mathcal{G} = \iota$).

Further on we need a result about the comparison of cohomologies which is a special case of Proposition 11.2 from [3]:

Theorem 1.1. Suppose that complex (3) is \mathcal{G} -representable and its cohomology is

$$H^{n}(\mathcal{L}_{n}\mathcal{G}X) = \begin{cases} \mathcal{L}_{*}\mathcal{G}X, & \text{if } n = 0, \\ 0, & \text{if } n > 0 \end{cases}$$

$$\tag{4}$$

for every $X \in C$. Then $H^n(\mathcal{L}_{*-}) \cong H^n(-, \mathcal{L}_{-1})_{\mathcal{G}}$ for all $n \geq 0$.

A category PSem was constructed in [8] to present partial cohomology by cotriple one. Its objects were all pairs (S,X) where $X\subseteq S$ and a morphism $\alpha\colon (S,X)\longrightarrow (T,Y)$ was defined as a semigroup homomorphism $\alpha\colon S\longrightarrow T$ with $\alpha(X)\subseteq Y$. An object (S,X) of PSem will be denoted by S too if it doesn't lead to a confusion. For a fixed object S from PSem the notation PSem $\downarrow S$ is used for the comma-category: its objects are morphisms $T\longrightarrow S$ of PSem and its morphisms are commutative diagrams of the form

Let $X \subseteq S$, X be the set of symbols of the form x which are in 1-1 correspondence with elements $x \in X$, F_X be a free semigroup generated by X and $\tilde{X} = \{x_1 \dots x_n \mid (x_1, \dots, x_n) \in X_n\}$ (X_n has been defined above). In particular, $X \subseteq \tilde{X}$. It is easy seen that the mapping $\mathcal{G}: (S, X) \longrightarrow (F_X, \tilde{X})$ gives an endofunctor of PSem. We define natural transformations $\delta: \mathcal{G} \longrightarrow \mathcal{G}^2$ and $\varepsilon: \mathcal{G} \longrightarrow \mathcal{I}_{\mathsf{PSem}}$ by the formulae: $\delta(S): x \longrightarrow x$, $\varepsilon(S): x \longrightarrow x$ ($x \in X$). Then $(\mathcal{G}, \varepsilon, \delta)$ is a cotriple in PSem which induces the cotriple $(\overline{\mathcal{G}}, \overline{\varepsilon}, \overline{\delta})$ in PSem $\downarrow S$.

 PSem $\downarrow S$ to the category of Abelian groups. This enables us to construct a cotriple complex of functors $\mathcal{K}_* = \{\mathcal{K}_n = \operatorname{Der}(\overline{\mathcal{G}}^{n+1} \bot, A)\}_{n \geq -1}$, where $\mathcal{K}_{-1} = \operatorname{Der}(\bot, A)$. The cohomology of this complex (more exactly, the values of the cohomology functors of the complex) will be denoted by $H^n(T, Y, A)_{\mathcal{G}}$.

On the other hand, since S-module A turns into T-module by stepping back along the homomorphism $T \longrightarrow S$, a contravariant functor $C^n(\underline{\ },A)$ is defined. This functor compares the Abelian group of the partial cochains $C^n(T,Y,A)$ to the object $T \longrightarrow S$. By the boundary homomorphisms ∂^n we obtain the augmented complex of functors $\mathcal{L}_* = \{\mathcal{L}_n = C^{n+1}(\underline{\ },A)\}_{n\geq -1}$, where $\mathcal{L}_{-1} = \operatorname{Der}(\underline{\ },A)$. The boundary natural transformations of this complex will be denoted by ∂^n too.

It was shown in [8] (Theorem 2.1) that $H^n(T,Y,A)_{\mathcal{G}} \cong H^{n+1}(T,Y,A)$ for n>0. In particular, in the case T=S we obtain the required presentation of the partial cohomology by the Barr-Beck one. Besides, for X=S we have obtained an analogous result for EM-cohomology: $H^{n+1}(T,A) \cong H^n(T,T,A)_{\mathcal{G}}$ in the category $\mathsf{PSem} \downarrow (S,S)$ for every S-module A.

Moreover, let B be a $\overline{\mathcal{G}}$ -closed subcategory of PSem $\downarrow S$ (i.e. a full subcategory closed with respect to action of $\overline{\mathcal{G}}$ on its objects) and $H^n(T,Y,A)_{\mathcal{G}}^{\mathsf{B}}$ be the groups of cotriple cohomology which are constructed in B. Then $H^{n+1}(T,Y,A) \cong H^n(T,Y,A)_{\mathcal{G}}^{\mathsf{B}}$ if B contains the objects $(S,X) \longrightarrow (S,X)$ (the identity morphism) and $(T,Y) \longrightarrow (S,X)$ (Theorem 2.2 [8]).

2. Comparison with EM-cohomology

Let S be a semigroup, X be its root. A decomposition $x = x_1 \dots x_n$ $(x_i \in X)$ of an element $x \in S \setminus X$ is called reduced if $x_i x_{i+1} \dots x_j \notin X$ for each $i, j, 1 \le i < j \le n$. We mean that a reduced decomposition of an element $x \in X$ is its decomposition into product of one multiplier. A root X is said to be canonic if each element $x \in S$ has a unique reduced decomposition.

For example, the set of all element of S is a canonic root.

A root X is called a J-root if xy = x, yz = z implies $xz \in X$ for all $x, y, z \in X$. Further on we shall need a result from [5]. Theorem 1 of that article being applied to our case is formulated as follows:

Lemma 2.1. Let X be a root of a semigroup $U = \langle X \rangle$ satisfying the following condition: $uv, vw \in X$ implies $uvw \in X$ for all $u, v, w \in U$. Then X is canonic.

As above we consider the category $\mathsf{PSem} \downarrow (S,X)$ and set for each its object $(T,Y) \to (S,X)$ (the latter one will be also denoted by $T \to S$) $\mathcal{K}_n(T \to S) = \mathrm{Der}(\overline{\mathcal{G}}^{n+1}(T \to S),A)$, $\mathcal{M}_{-1}(T \to S) = \mathrm{Der}(T,A)$ and $\mathcal{M}_n(T \to S) = C^{n+1}(T,A)$, the group of EM-cochains. Here S-module A is considered as a T-module with the evident action of T.

Since $H^n(\mathcal{M}_*\overline{\mathcal{G}}(T\to S))=H^{n+1}(F_Y,A)$ and F_Y is a free semigroup, condition (4) carries out evidently (see, e.g., [4]).

In what follows we have to refer to Lemma 3.2 from [8]:

Lemma 2.2. Let B be a $\overline{\mathcal{G}}$ -closed subcategory of PSem $\downarrow (S, X)$. If there is a collection of maps $\{\rho_{T\to S}: T \longrightarrow F_Y\}_{(T\to S)\in \mathsf{B}}$ such that:

1) $\varepsilon(T)\rho_{T\to S}$ is the identity map;

2) for each morphism $\varphi: (T,Y) \longrightarrow (U,Z)$ from B the diagram

$$T \xrightarrow{\varphi} U$$

$$\downarrow^{\rho_{T \to S}} \qquad \downarrow^{\rho_{U \to S}}$$

$$F_{Y} \xrightarrow{\overline{\mathcal{G}}_{\varphi}} F_{U}$$

is commutative, then the complex \mathcal{M} is $\overline{\mathcal{G}}$ -representable in the category B .

Let X be a canonic J-root of a semigroup S. Denote by B the full subcategory in $\mathsf{PSem} \downarrow (S,X)$ whose objects are the morphisms $\varphi \colon (T,Y) \to (S,X)$, where Y is a canonic J-root in T.

Lemma 2.3. The subcategory B is $\overline{\mathcal{G}}$ -closed.

Proof. Show that for every object $\varphi(T,Y) \to (S,X)$ from B the object $\overline{\varphi}(F_Y,\tilde{Y}) \to (S,X)$ is in B too. Evidently, \tilde{Y} is a root. Moreover, F_Y is a free semigroup and the equalities xy = x, yz = z don't hold in it; therefore \tilde{Y} is a J-root.

Let $ab, bc \in Y$, where

$$a = x_1 \dots x_m, \ b = y_1 \dots y_n, \ c = z_1 \dots z_p.$$

To prove that $abc \in Y$ it is enough to check that $x_i \dots x_m y_1 \dots y_n z_1 \dots z_j \in Y$ for $1 \le i \le m, 1 \le j \le n$. Denote

$$u = x_i \dots x_m, \ v = y_1 \dots y_n, \ w = z_1 \dots z_j.$$

It follows from $ab, bc \in \tilde{Y}$ that $u, v, w, uv, vw \in Y$. If $uvw \notin Y$, there are two reduced decompositions: (uv)w = u(vw). Hence uv = u, vw = w, from where $uvw \in Y$ and $abc \in \tilde{Y}$. Now Lemma 2.1 implies that \tilde{Y} is canonic. \square

Theorem 2.1. If X is a canonic J-root of S then θ_X^n are isomorphisms for all $n \geq 0$.

Proof. Let B be the category defined above, $\varphi:(T,Y) \to (S,X)$ be its object, $t = y_1 \dots y_r$ $(y_i \in Y)$ be a reduced decomposition of an element $t \in T$. Set $\rho_{T \to S} t = y_1 \dots y_r$. Then $\varepsilon(T)\rho_{T \to S} t = y_1 \dots y_r = t$. Besides, if

is a morphism from B, then $\mu y_1 \dots \mu y_r$ is a reduced decomposition of μt ; hence $\rho_{U\to S}\mu t = \mu y_1 \dots \mu y_r = (\overline{\mathcal{G}}\mu)\rho_{T\to S}t$, i.e. conditions 1) and 2) of Lemma 2.2 hold and the complex \mathcal{M} is $\overline{\mathcal{G}}$ -representable.

Evidently, $\mathcal{K}_{-1}(T \to S) = Z^1(T, Y, A)$ and $\mathcal{M}_{-1}(T \to S) = Z^1(T, A)$. The embedding $X \to S$ induces a homomorphism $\Theta: Z^1(T, A) \to Z^1(T, Y, A)$. The injectivity of Θ follows from the equality $f(s_1 \dots s_r) = \sum_{i=0}^{r-1} s_1 \dots s_i f(s_{i+1})$, which holds for every 1-dimensional partial cocycle f, if $f(s_1 \dots s_i)$ and $f(s_i)$ are defined at $1 \le i \le r$. The surjectivity of Θ is proved in [7] (Proposition 2.1). It follows from here that the functors \mathcal{K}_{-1} and \mathcal{M}_{-1} are isomorphic. Now Theorem 1.1 implies an isomorphism of the cohomology functors of complexes \mathcal{K} and \mathcal{M} . Since Theorem 2.2 [8] is valid for a $\overline{\mathcal{G}}$ -closed subcategory (see the remark in the end of the preceding section), $H^n(S, A) \cong H^n(S, X, A)$. According to Proposition 11.1 from [3] this isomorphism coincides with θ_X^n , because θ_X^n is induced by the map $C^n(S, A) \to C^n(S, X, A)$. \square

3. Application: Calculating EM-Cohomology

Theorem 2.1 enables us to use a partial cohomology for calculating EM-cohomology of semigroups in the case that succeeds in finding a "good" root in a given semigroup. For instance, if S = T * U is the free product of semigroups T and U, then $X = T \cup U$ is its canonic J-root and $X_n = T_n \cup U_n$. Thus, employing Theorem 2.1 we get

$$H^n(S,A) \cong H^n(S,X,A) \cong H^n(T,A) \bigoplus H^n(U,A)$$

for every S-module A. Below we consider less trivial examples.

Let $S = \langle a, b_1, b_2, \dots | aP = Q \rangle$ be such a semigroup that the defining words P and Q don't contain the letter a. According to [10] (see also [9]) the subsemigroup $F = \langle b_1, b_2, \dots \rangle$ is free. Denote $X = F \cup \{a\}$. Evidently, X is a root: one can take the multiplication table of the semigroup F and the equality $P \cdot a = Q$ as defining relations. It is easy to see that $X_2 = (F \times F) \cup (\{a\} \times PF^1)$ and $X_3 = (F \times F \times F) \cup (\{a\} \times PF^1 \times F)$. We are going now to calculate the 2-dimensional X-cohomology of S.

Lemma 3.1. $H^2(S, X, A) = 0$ for every X-module A.

Proof. Let $f \in Z^2(S, X, A)$. Since F is free, one can assume that the restriction of f on F equals zero: f(x, y) = 0 for all $x, y \in F$. Applying the equality $\partial f(a, P, x) = 0$ we obtain f(a, Px) = f(a, P) for $x \in F$.

Set $\varphi(x) \equiv 0$, $\varphi(a) = f(a, P)$. Then

$$\partial \varphi(a, Px) = \varphi(a) = f(a, P) = f(a, Px),$$

i. e. $f = \partial \varphi$. \square

Lemma 3.1 and the injectivity of θ_X^2 imply $H^2(S, A) = 0$ for every S-module A. So the following assertion has been proved:

Theorem 3.1. $H^n(S,A) = 0$ for every S-module A and for all $n \geq 2$.

As another example we consider the semigroup $T = \langle a, b_1, b_2, \dots | Pa = Q \rangle$, antiisomorphic to S. As for S, the subset $X = F \cup \{a\}$ is a root; in addition $X_2 = (F \times F) \cup (F^1P \times \{a\})$ and $X_3 = (F \times F \times F) \cup (F \times F^1P \times \{a\})$.

We recall the definition of the Fox' derivative [6] adapted to semigroups in [8].

Let $F = \langle b_1, b_2, \dots | \varnothing \rangle$ be a free semigroup, $x = x_1 b_i x_2 b_i \dots x_{n-1} b_i x_n \in F$, where the words $x_k \in F$ don't contain the letter b_i . We define a derivative of the word x with respect to b_i to be an element of the semigroup algebra $\mathbb{Z}F^1$:

$$\frac{\partial x}{\partial b_i} = \sum_{k=1}^{n-1} x_1 b_i \dots x_{k-1} b_i x_k;$$

moreover, if $x_1 = \emptyset$ then the first summand in $\frac{\partial x}{\partial b_i}$ equals 1; if the letter b_i doesn't occur in x then we set $\frac{\partial x}{\partial b_i} = 0$.

Lemma 3.2. For every X-module A

- a) $H^2(T, X, A) \cong A/B$, where $B = PA + \sum_i \left(\frac{\partial P}{\partial b_i} \frac{\partial Q}{\partial b_i}\right) A$;
- b) $H^3(T, X, A) = 0$.

Proof. a) Let $f \in \mathbb{Z}^2(T, X, A)$. As above one can set

$$f(x,y) = 0 \quad (x,y \in F). \tag{5}$$

The equality $\partial f(x, P, a) = 0$ implies

$$f(xP,a) = xf(P,a). (6)$$

Conversely, if an X-cochain $f \in C^2(T, X, A)$ satisfies (5) and (6) then $f \in Z^2(T, X, A)$. Hence, instead of $Z^2(T, X, A)$ it is enough to treat with the subgroup Z_0 of X-cocycles yielding to equalities (5), (6). Each of these X-cocycles is defined by its value f(P, a), i. e. $Z_0 \cong A$.

Now we find the coboundaries from Z_0 . The condition $f = \partial \varphi$ is equivalent to the system of equations

$$x\varphi(y) - \varphi(xy) + \varphi(x) = 0 \ (x, y \in F), \quad P\varphi(a) - \varphi(Q) + \varphi(P) = f(P, a).$$

It follows from the first equation that

$$\varphi(x) = \sum_{i} \frac{\partial x}{\partial b_i} \varphi(b_i),$$

and from the second one

$$f(P, a) = \sum_{i} \left(\frac{\partial P}{\partial b_i} - \frac{\partial Q}{\partial b_i} \right) \varphi(b_i) + P\varphi(a).$$

As one can choose the values $\varphi(b_i)$ and $\varphi(a)$ arbitrarily, we have:

$$f \sim 0 \iff f(P, a) \in PA + \sum_{i} \left(\frac{\partial P}{\partial b_i} - \frac{\partial Q}{\partial b_i} \right) A.$$

b) Let $f \in Z^3(T, X, A)$. We suppose again that f(x, y, z) = 0 $(x, y, z \in F)$. Define the X-cochain φ by the following way:

$$\varphi(x,y)=\varphi(P,a)=0,\quad \varphi(xP,a)=-f(x,P,a).$$

It is easy to see that $f = \partial \varphi$. \square

Lemma 3.3. X is a canonic J-root of T.

Proof. As T has no right cycles in Adyan's sense [1], it is right cancellative. Therefore, the equality yz = z is impossible in it and X turns out to be a J-root.

Every element of T can be written in the form

$$u = x_1 a x_2 \dots a x_n$$
, where $n \ge 1, x_i \in F \setminus PF^1 \ (i < n)$, (7)

where the words x_1 and x_n for n > 1 can be empty. We show that $u \notin F$ if n > 1. Indeed, in the opposite case there exists a sequence $u \longrightarrow u^{(1)} \longrightarrow \ldots \longrightarrow u^{(r)}$ consisting of words in the alphabet $\{a, b_1, b_2, \ldots\}$ such that every word is obtained from the preceding one by applying the equality Pa = Q and besides the last word $u^{(r)}$ doesn't contain the letter a. Since on some step the first of the letters a in

the word u must disappear, so the word x_1 must be transformed into a word of the form yP, $(y \in F)$ before this step; moreover, this transformation is realized independently on the other ones. Therefore $x_1 = yP$ in the semigroup T and so in F. However the semigroup F is free and we have got a contradiction with $x_1 \in F \setminus PF^1$.

Let $u, v \in T$ and $uv \in F$. Show that $u \in F$ in this case. Indeed, if it doesn't hold, then after writing u and v as (7) and substituting in uv the expressions Pa (which can arise on the border of the words u and v) by Q we obtain a reduced decomposition $uv = x_1 a \dots$ Since $x_1 \notin PF^1$, it turns out that $uv \notin F$, according to the above.

We can use now Lemma 2.1 to prove the canonicity. If $uv, vw \in X$, then evidently $uv, vw \in F$. It implies that $u \in F$ and $u(vw) \in F$, as we have shown. \square

Applying Theorem 2.1, we conclude from here:

Theorem 3.2. For every T-module A

- a) $H^2(T,A) \cong A/B$, where $B = PA + \sum_i \left(\frac{\partial P}{\partial b_i} \frac{\partial Q}{\partial b_i} \right) A$;
- b) $H^n(T, A) = 0$ for all $n \ge 3$.

REFERENCES

- [1] С. И. Адян, Определяющие соотношения и алгоритмические проблемы для групп и полугрупп, Тр. матем. ин-та им. В.А. Стеклова 85 (1996).
- [2] M. Barr, J. Beck, Acyclic models and triples, "Proc. Conf. Cat. Algebra (La Jolla, 1965)", Springer, 1966, pp. 336–343.
- [3] M. Barr, J. Beck, Homology and standard construction, Lect. Notes in Math. 80 (1969), 245–335.
- [4] А. Картан, С. Эйленберг, Гомологическая алгебра, М., ИЛ, 1960.
- [5] O.S. Kashcheeva, B.V. Novikov, Canonic subsets in semigroups, Filomat (Yugosl.) 12 (1998).
- [6] Р. Кроуэлл, Р. Фокс, Введение в теорию узлов, Мир, М., 1967.
- [7] B.V. Novikov, On partial cohomologies of semigroups, Semigroup Forum 28 (1984), no. 1–3, 355–364.
- [8] Б.В. Новиков, *Частичные когомологии полугрупп и их приложения*, Изв. вузов. Матем. (1988), 2, 25–32.
- [9] Л.М. Шнеерсон, О свободных подполугруппах конечно определенных полугрупп, Сиб. мат. журн. **15** (1974), 2, 450–454.
- [10] C. Squier, C. Wrathall, The Freiheitssatz for one-relation monoids, Proc. Amer. Math. Soc. 89 (1983), no. 3, 423–424.

Kharkiv State University

boris.v.novikov@univer.kharkov.ua