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Hilbert space methods are used for the statement and solution of some problem
of elasticity theory. This problem is not classical in the sense that the boundary
di�erential operator is of the same order as the one which acts inside the domain.
The existence, the unicity and the continuous dependence on data of the solution is
proved. Some equivalent variational problems and dual problems are considered.

�.�. �ï­æ¥, �.�. �ã©ª®. �¡ ®¤­®© ­¥ª« áá¨ç¥çª®© § ¤ ç¥ â¥®à¨¨ ã¯àã£®áâ¨ //
� â¥¬ â¨ç­÷ �âã¤÷ù. { 1999. { �.11, ü 2. { C.177{188.

�«ï ¯®áâ ­®¢ª¨ ¨ à¥è¥­¨ï ®¯à¥¤¥«¥­­®© § ¤ ç¨ ¬¥å ­¨ª¨ á¯«®è­®© áà¥¤ë
¢ íâ®© à ¡®â¥ ¯à¨¬¥­ïîâáï ¬¥â®¤ë £¨«ì¡¥àâ®¢®£® ¯à®áâà ­áâ¢ . � ¤ ç  ï¢«ï-
¥âáï ­¥ª« áá¨ç¥áª®© ¢ â®¬ á¬ëá«¥, çâ® ¤¨ää¥à¥­æ¨à®¢ ­¨¥ ¢ ªà ¥¢ëå ãá«®¢¨ïå
¨¬¥¥â â®â ¦¥ ¯®àï¤®ª, çâ® ¨ ¢ á¨áâ¥¬¥ ¤¨ää¥à¥­æ¨ «ì­ëå ãà ¢­¥­¨©, ®¯¨áë-
¢ îé¨å á®áâ®ï­¨¥ áà¥¤ë ¢­ãâà¨ ®¡« áâ¨.

�®ª §ë¢ ¥âáï áãé¥áâ¢®¢ ­¨¥, ¥¤¨­áâ¢¥­­®áâì ¨ ­¥¯à¥àë¢­ ï § ¢¨á¨¬®áâì ®â
¤ ­­ëå à¥è¥­¨ï ãª § ­­®© ªà ¥¢®© § ¤ ç¨. � áá¬ âà¨¢ îâáï â ª¦¥ íª¢¨¢ -
«¥­â­ë¥ ¢ à¨ æ¨®­­ë¥ ¨ ¤¢®©áâ¢¥­­ë¥ § ¤ ç¨.

This research was made to order of Ya. Pidstryhach who (in particular) directed
in Lviv investigations with boundary di�erentiation of higher order (see [1{3]).
Some our results have been announced in [4].
1. Variational statement of the problem. Let a continuous medium S �ll

up a bounded domain 
 ⊂ R3 with a regular boundary �. Denote by u = u(x)
the displacement of S at x ∈ 
 ∪ �. For x ∈ 
 the derivative u′(x) is a linear
map R3 → R3. The corresponding strain tensor ε = εu(x) is de�ned as usual: ε
is the real part of this map: ε = 1

2

(
u′(x) + (u′(x))∗

)
. For x ∈ � the de�nition

is more complicated. Let u� be the restriction of u to �. Then the derivative
u′�(x) is a linear map from the tangent manifold T�x to R3. Denote by t(x)
the orthoprojector R3 → T�x and form the composite map u′�t(x). Its real part
1

2

(
u′
�
(x)t(x) + (u′

�
(x)t(x))∗

)
is by de�nition the strain tensor

◦
ε =

◦
εu(x) for x ∈ �.
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Use local coordinates ξ1, ξ2, ξ3 such that in a small neighborhood of x ∈ � the

equation of � is ξ3 = 0. Then
◦
εu(x) has the following matrix

1

2


∂u1
∂ξ1

∂u1
∂ξ2

0
∂u2
∂ξ1

∂u2
∂ξ2

0
∂u3
∂ξ1

∂u3
∂ξ2

0

+
1

2


∂u1
∂ξ1

∂u2
∂ξ1

∂u3
∂ξ1

∂u1
∂ξ2

∂u2
∂ξ2

∂u3
∂ξ2

0 0 0

 . (1.1)

We see that
◦
εu(x) is the usual strain tensor which corresponds to the �eld u which

does not depend on ξ3.
The stressed state of the medium S will be described by two stress tensors σ

and
◦
σ which are de�ned on 
 and � respectively. There is a linear stress-strain

relation (the generalized Hooke law): σij = aijklεkl in 
,
◦
σij =

◦
aijkl

◦
εkl in �.

Here aijkl,
◦
aijkl are bounded mesurable functions on x satisfying usual symmetry

conditions: aijkl = ajikl = aklij ,
◦
aijkl =

◦
ajikl =

◦
aklij . Besides, ellipticity conditions

are assumed:
tr(σε) ≥ α · tr(ε2) in 
,

tr(
◦
σ
◦
ε) ≥ α · tr(◦ε2) on �

(1.2)

(trβ denotes the sum of the diagonal elements of the matrix of β).
Associate with medium S the energetic Hilbert space U := {u ∈ H1 : �u ∈

G1}, (u|v)U := (u|v)H1 + (�u|�v)G1 . Here H1 := (H1(
))3, G1 := (H1(�))3 are
the corresponding Sobolev spaces, � is the trace operator H1 → G1 (see [7]; roughly
speaking �u(x) is the value of u ∈ H1 at x). Now introduce the bilinear forms of

virtual energy a and
◦
a:

(∀u, v ∈ U) a(u, v) =

∫



tr(σu · σv) d
,

◦
a(u, v) =

∫
�

tr(
◦
σu · ◦

σv) d�.

(1.3)

Observe that this forms are symmetric and continuous on U .
We assume that an external force with volume density f ∈ H = (L2(
))

3 and
an external force with surface density g ∈ G = (L2(�N ))

3 act at S. Here �N

denotes some part of �. Suppose that on �� := � \ �N the displacement h ∈ H
is given. Then the potential energy I(v) of the medium S which is caused by its
displacement v is:

I(v) = 1

2
c[v]−

∫



(f |v)R3 d
−
∫
�N

(g|v)R3 d�, (1.4)

where c[v] = c(v, v); c(u, v) = a(u, v) +
◦
a(u, v).

The quadratic functional I(v) is also continuous on U .
According to the minimum principle of potential energy the medium S attains

the equilibrium state for such a displacement u which is a solution of the following
(conditional) extremum problem

I(v) −→ inf, v ∈ Uh, (1.5)

where Uh := {v ∈ U : v = h on ��}.
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Theorem 1.1. Let mes�� > 0. Then problem (1.5) has a unique solution (i.e.
(∃!u ∈ Uh)(∀v ∈ Uh) (I(u) ≤ I(v))).
Proof. It is easy to show that Uh is a closed a�ne manifold in U . Therefore it is
su�cient to prove that the form c(u, v) is coercive on the subspace U0 := {v ∈ U :
v = 0 on ��}, which is parallel to Uh.

Let

ε(v)
2
:=

∫



tr(εv)2 d
+

∫
�

tr(
◦
εv)2 d�. (1.6)

Recall that for a symmetric operator γ we have tr γ2 = 0 ⇒ γ = 0. So ε(v)2 = 0
implies εv = 0, which means that the displacement v is rigid. Now for v ∈ U0 we
have ε(v)2 = 0 ⇐⇒ v = 0, because the condition mes�� > 0 implies that the solid
body is unmoved.

We need the following statement:

(∃c1 > 0)(∀v ∈ U0) (ε(v)2 ≥ c1
(
∥v∥2H + ∥�v∥2G)

)
. (1.7)

Let us prove it. Suppose the contrary: there exists vn ∈ U0 such that ∥vn∥2H +
∥�vn∥2G = 1, but ε(vn)

2 → 0 for n → ∞. According to Corn's inequalities [5], we
have

(∃c2 > 0)(∀v ∈ U)
∫



(tr(εv)2 + ∥v∥2R3) d
 ≥ c2∥v∥2H1 ,∫
�

(tr(
◦
εv)2 + ∥v∥2R3) d� ≥ c2∥�v∥2G1 ,

(1.8)

hence
(∀v ∈ U) ε(v)2 + ∥v∥H2

+ ∥�v∥G2 ≥ c2∥v∥2U . (1.9)

From (1.9) we conclude that the sequence (vn) is bounded in U0 and without loss
of generality one can assume that vn → v weakly in U0. Using the Bunyakovsky
inequality we get lim ε(vn)

2 ≥ ε(v) and therefore ε(v)2 = 0, whence v = 0. The
boundedness of the sequence (vn) in U means that (vn) is bounded in H1 and (�vn)
is bounded in G1. The embeddings H1 → H and G1 → G are compact. Therefore
it is possible to consider that vn → v = 0 strongly in H and �vn → �v = 0 strongly

in G. This contradicts to the condition ∥vn∥H2
+∥�vn∥G2 = 1, and (1.7) is proved.

Now from (1.3), (1.4) we get c[v] ≥ αε(v)2, v ∈ U , and (1.7) implies

(∀v ∈ U) c[v] ≥ β
(
ε(v)2 + ∥v∥2H + ∥�v∥2G

)
,

where β = min(1
2
α, 1

2
αc1). Using (1.9) we �nd (∀v ∈ U0) c[v] ≥ γ∥v∥2U , where

γ = c2β.

2. Characterization of the solution. The solution u of problem (1.5) can be
described by a variational equality and as a solution of a boundary-value problem.

Theorem 2.1. Under the assumptions of Theorem 1.1, there exists a unique �eld
u ∈ Uh satisfying the condition

(∀v ∈ Uh) c(u, v − u) =

∫



(f |v − u)R3 d
+

∫
�N

(g|v − u)R3 d�. (2.1)

This �eld coincides with the solution of problem (1.5).
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Proof follows from equality (2.1) with the Euler equation for extremum prob-
lem (1.5). Note, that (2.1) expresses the principle of virtual displacements for the
medium S.

Now we need some preparations.

Remark 2.1. Let X, Y be Banach spaces, T ∈ B(X;Y ), imT = Y , Z := X/ ker T

and T̃ :Z → Y , T̃ ~x := Tx, ~x ∈ Z, x ∈ ~x. Then T̃ is an algebraic and topological

isomorphism Z → Y . So, if we denote |y| := ∥T̃−1y∥Z , then (∀y ∈ Y ) ∥T̃−1∥−1|y| ≤
∥y∥Y ≤ ∥T̃∥ · |y|, i.e. the norms ∥ · ∥Y and | · | are equivalent on Y .

Corollary 2.2. Let (H1,H,H−1), (G1, G,G−1) be equipped Hilbert spaces, � the trace

operator (� ∈ B(H1, G1/2), im� = G1/2, cl ker � = H). Let us de�ne

(∀p ∈ G1/2) |p| := inf{∥v∥H1 ; v ∈ H1,�v = p}. (2.2)

The norms ∥ · ∥G1/2 and | · | are equivalent on G1/2.

Proof. Denote by Z := H1/ ker �, then ~v ∈ Z ⇐⇒ (∃p ∈ G1/2) (~v = {v ∈ H1; �v =

p}). Let us de�ne (∀~v ∈ Z) (∀p ∈ G1/2)~�~v = p ⇐⇒ (∃v ∈ ~v)(�v = p). So we can
rewrite de�nition (2.2) in the following way:

(∀p ∈ G1/2) |p| = ∥~�−1p∥Z .

Now the corollary follows from Remark 2.1.

Remark 2.3. For every u ∈ H1 the vector �eld div(σu) satis�es (in the distribution
sense) the condition

(∀φ ∈ C∞
0 (
)3) −

∫



(div(σu)|φ)R3 d� = a(u, φ). (2.3)

Indeed, by (1.3),

a(u, φ) =

∫



(σu)ij(εφ)ji d
 =

∫



(σu)ijφi,j d
 = −
∫



(σu)ij,jφi d
.

Now it su�ces to recall that (div σ)i = σij,i. (We use the usual notation: φi,j :=
∂φi

∂xj
.)

Proposition 2.4. Let u ∈ H1 and σ = σu be the stress tensor corresponding to
the displacement u. Then the formula

(∀v ∈ H1) (σn|�v) = a(u, v) +

∫



(div σ|v)R3 d
 (2.4)

de�nes the action of the operator σ on the unit vector n = n(x) of the external

normal to � in the point x as an element of the space G−1/2.

Proof. According to (2.3), the right part of (2.4) depends on �v (but not on v).
Considering (2.4) as a de�nition of a linear functional σn, we have

(∀v ∈ H1) |(σn|�v)| ≤ C
(
∥u∥H1∥v∥H1 + ∥div σ∥H∥v∥H

)
,
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where C = const. Hence, the functional σn is bounded in norm (2.2), therefore it

is bounded in the norm ∥ · ∥1/2G (see Corollary 2.2).

Remark 2.5. Let u ∈ U , ◦
σ :=

◦
σu, then the vector �eld div

◦
σ satis�es (in the

distribution sense) the condition

(∀v ∈ U) −
∫
�

(div
◦
σ|v)R3 d� =

◦
a(u, v). (2.5)

Therefore the following version of the Green-Betty formula holds for u, v ∈ U :

c(u, v) = −
∫



(div σu|v)R3 d
+

∫
�

(σ
◦
σu|v)R3 d�, (2.6)

where u→ σ
◦
σu is the di�erential operator of the second order acting at x ∈ � and

de�ned by

σ
◦
σu := − div(

◦
σu) + (σu)n. (2.7)

Note that we understand the integral on � in (2.6) as a duality between G1/2 and
G−1/2.

Remark 2.6. Formula (2.6) shows that under the displacement u of the medium S

the elasticity forces with volume-density − div(σu) in 
 and surface density σ
◦
σu in

� appear.

Theorem 2.7. Under the assumptions of Theorem 1.1, there exists a unique func-
tion u ∈ U satisfying the conditions:

− div(σu) = f in 
, σ
◦
σu = g on �N , u = h on ��, (2.8)

or in coordinate notations (i=1,2,3):

−(σu)ij,j = fi in 
, −(◦σu)ij,j + (σu)ijnj = gi on �N , ui = hi on ��. (2.8′)

The solution u of boundary-value problem (2.8) coincides with the solution u of
variational problem (1.5) and therefore with the solution u of variational equality
(2.1).

We obtain the proof of this theorem in a usual way applying Green's formula (2.6)
to variational equality (2.1) and taking into account that U is dense in H and
�U = G1 is dense in G.

We call boundary-value problem (2.8) a nonclassical problem, because its bound-
ary conditions contain di�erentiations of the second order exactly so as equations
in the domain.

3. Dual statement of problem. In this part the unknown will be not the
vector �eld of displacements, but the tensor �eld of stresses.

By H and
◦
H we denote Hilbert spaces of symmetrical tensor �elds de�ned on 


and � respectively such that

H = {τ : τij = τji ∈ L2(
), i, j = 1, 2, 3}, (∀σ, τ ∈ H) (σ|τ)H =

∫



tr(στ) d
,

◦
H = {◦

τ :
◦
τ ij =

◦
τ ji ∈ L2(�), i, j = 1, 2, 3}, (∀◦

σ,
◦
τ ∈

◦
H) (

◦
σ|◦τ)◦

H
=

∫
�

tr(
◦
σ
◦
τ) d�.

(3.1)
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For τ ∈ H,
◦
τ ∈

◦
H we determine div τ and div

◦
τ in the sense of the distribution

theory, namely

(∀φ ∈ C0
∞(
)3)

∫



(div τ |φ)R3 d
 = −
∫



tr(τ · εφ) d
,

(∀p ∈ C0
∞(�)3)

∫
�

(div
◦
τ |p)R3 d� = −

∫
�

tr(
◦
τ · ◦εp) d�,

(3.2)

where εφ = 1

2
(φ+ φ′∗),

◦
εp = 1

2
(p′t+ tp′

∗
).

We understand the integrals in the left-hand of (3.2) as the action of functionals

div τ , div
◦
τ on φ and p respectively.

Proposition 3.1. Let (τ,
◦
τ) ∈ H×

◦
H, then the formula

(∀v ∈ U) (τ
◦
τ |�v) =

∫



(
(div τ |v)R3 + tr(τ · εv)

)
d
+

∫
�

tr(
◦
τ · ◦ε�v) d� (3.3)

determines uniquely τ
◦
τ as an element of G−1.

Proof. The �rst integral in (3.3) can be evaluated by const ·∥v∥H1 and according
to Corollary 2.2 it represents an element of G−1/2. The second integral in (3.3) is
dominated by const ·∥�v∥G1 and therefore it represents an element of G−1.

We rewrite formula (3.3) in such a way:∫



(
(div τ |v)R3 + tr(τ · εv)

)
d
 =

=

∫
�

(
(
◦
τ |�v)R3 − tr(τ

◦
τ · ◦εv)

)
d�, (τ,

◦
τ) ∈ H×

◦
H, v ∈ U . (3.3′)

Proposition 3.2. Let f ∈ H, g ∈ G,

Kf,g :=
{
(τ,

◦
τ) ∈ H×

◦
H : − div τ = f on 
, τ

◦
τ = g on �N

}
. (3.4)

Then the a�ne manifold Kf,g is closed in the Hilbert space H×
◦
H.

Proof. The operator H ×
◦
H ∋ (τ,

◦
τ) 7→ (div τ, τ

◦
τ) ∈ L2(
)

3 × L2(�)
3 is de�ned as

the adjoint operator to the operator C0
∞(
)3×C0∞(�)3 ∋ (v, p) 7→ (εv,

◦
εp) ∈ H×

◦
H

and therefore is closed. Hence the manifold Kf,g is closed as a shift of the kernel of
a closed operator.

In order to introduce the dual forms of virtual energy, we remark that the formula
of the generalized Hooke law can be inverted (this follows from symmetry and
ellipticity conditions (1.2)):

εij = Aijklσkl in 
,
◦
εij =

◦
Aijkl

◦
σkl on �, (3.5)

or brie
y:

ε = Aσ in 
,
◦
ε =

◦
A

◦
σ on �. (3.5′)
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Now for σ, τ ∈ H,
◦
σ,

◦
τ ∈

◦
H put

A(σ, τ) =
∫



tr(Aσ · τ) d
,
◦
A(◦σ, ◦τ) =

∫
�

tr(
◦
A

◦
σ · ◦

τ) d�,

C(σ, ◦σ; τ, ◦τ) = A(σ, τ) +
◦
A(◦σ, ◦τ), C[τ, ◦τ ] = C(τ, ◦τ ; τ, ◦τ).

(3.6)

Let h ∈ G1 = H1(�)3; determine the dual functional of the potential energy J by
the formula:

J (τ,
◦
τ) =

1

2
C[τ, ◦τ ] +

∫
��

(τ
◦
τ |h)R3 d�, (τ,

◦
τ) ∈ H×

◦
H (3.7)

(here �� = � \ �N ).
The problem dual to (1.5) can be formulated as follows:

J (τ,
◦
τ) −→ inf, (τ,

◦
τ) ∈ Kf,g. (3.8)

Theorem 3.3. Let mes�� > 0, then problem (3.8) has a unique solution, i.e.

(∃!(σ, ◦σ) ∈ Kf,g)(∀(τ,
◦
τ) ∈ Kf,g)(J (σ,

◦
σ) ≤ J (τ,

◦
τ)).

Proof. Immediately from (3.6) we see that the form C is symmetric and continuous

on H×
◦
H. Since the rigidity coe�cients Aijkl,

◦
Aijkl satisfy the conditions

(∃α > 0)(∀τ ∈ H) tr(Aτ · τ) ≥ α tr(τ2) in 
,

(∀◦
τ ∈

◦
H) tr(

◦
A

◦
τ · ◦
τ) ≥ α tr(

◦
τ2) on �,

(3.9)

the form C is coercive on H×
◦
H. Now the theorem follows directly from Proposition

3.2.

Consider the connection between the solutions of problem (1.5) and the dual
problem (3.8).

Theorem 3.4. Let (σ,
◦
σ) be the solution of problem (3.8). Then the equations

εu = Aσ in 
,
◦
εu =

◦
A

◦
σ on � (3.10)

with the boundary condition
u = h on �� (3.11)

uniquely determine the solution u of problem (1.5).

Proof. Let u be the solution of problem (1.5). Put σ = aεu in 
,
◦
σ =

◦
a
◦
εu on

� , then (σ,
◦
σ) is a solution of problem (3.8). Indeed, Theorem 2.8 implies that

(σ,
◦
σ) ∈ Kf,g. So it is su�cient to check that the variational equality

(∀(τ, ◦τ) ∈ Kf,g) C(σ, ◦σ; τ − σ,
◦
τ − ◦

σ) = −
∫
��

(h|τ ◦
τ − σ

◦
σ)R3 d�

holds.
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Let (τ,
◦
τ) ∈ Kf,g, then due to (3.10) and (3.3′)

C(σ, ◦σ; τ − σ,
◦
τ − ◦

σ) =

∫



tr(εu · (τ − σ)) d
+

∫
�

tr(
◦
εu · (◦τ − ◦

σ)) d� =

= −
∫



(div(τ − σ)|u)R3 d
−
∫
�

(τ
◦
τ − σ

◦
σ|�u)R3 d� = −

∫
��

(h|τ ◦
τ − σ

◦
σ)R3 d�,

since div(τ − σ) = 0 in 
, τ
◦
τ − σ

◦
σ = 0 on �N and u = h on �� (see (2.8)). So,

(σ,
◦
σ) is a solution of problem (3.8). The uniqueness of the solutions of problems

(1.5) and (3.8) completes the proof.

4. The Lagrange multipliers method. Following the Duvaut-Lions method [5],
let us consider the variational problem (1.5) as a conditional extremum problem.
To this aim instead of one independent variable v ∈ U let us introduce the triple

of independent variables (v, τ,
◦
τ) ∈ U ×H×

◦
H satisfying the conditions (the Hooke

law):

τ = aεv in 
,
◦
τ =

◦
a
◦
εv on � (4.1)

and take the Lagrange multipliers q ∈ H,
◦
q ∈

◦
H.

Put

Ĩ(v, τ, ◦τ) = 1

2
C[τ, ◦τ ]−

∫



(f |v)R3 d
−
∫
�N

(g|v)R3 d� (4.2)

and note that for conditions (4.1)

Ĩ(v, τ, ◦τ) = I(v), (4.2′)

where I is the functional of potential energy (1.4). Indeed, due to (1.3), (3.5), (3.6)

conditions (4.1) imply the equality c[v] = C[τ, ◦τ ]. Thus the Lagrange functional
corresponding to problem (1.5) can be taken in a natural way

I(v, τ, ◦τ , q, ◦q) = Ĩ(v, τ, ◦τ)−
∫



tr
(
q(τ − aεv)

)
d
−

∫
�

tr
(◦
q(

◦
τ − ◦

a
◦
εv)

)
d�, (4.3)

where (v, τ,
◦
τ , q,

◦
q) ∈ Uh × H ×

◦
H × H ×

◦
H, Uh is an a�ne manifold; remark that

there is no Lagrange's multiplier for the condition \v = h on ��".

Theorem 4.1. Let u be the solution of problem (1.5). Then

sup inf{I(v, τ, ◦τ , q, ◦q) : e(v, τ, ◦τ) ∈ Uh × H×
◦
H} = I(u),

where sup is taken on the set H×
◦
H.

Proof. Let I(q, ◦q) = inf{I(v, τ, ◦τ , q, ◦q) : (v, τ,
◦
τ) ∈ Uh × H ×

◦
H}, then I(q, ◦q) ≤

inf{I(v, τ, ◦τ , q, ◦q) : (v, τ,
◦
τ) ∈ Q}, where Q = {(v, τ, ◦τ) ∈ Uh × H ×

◦
H : (v, τ,

◦
τ)

satis�es (4.1)}. But if (v, τ,
◦
τ) ∈ Q, then I(v, τ, ◦τ , q, ◦q) = I(v) and therefore

I(q, ◦q) ≤ I(v) for v ∈ Uh. Hence

sup{I(q, ◦q) : (q, ◦q) ∈ H×
◦
H} ≤ I(u). (4.4)
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It is su�cient to prove the opposite inequality. Let Q
τ,

◦
τ
= {(q, ◦q∈H ×

◦
H : q =

Aτ,
◦
q =

◦
A

◦
τ , (τ,

◦
τ) ∈ Kf,g}. We want to prove that

I(q, ◦q) =

{
−1

2
C[τ, ◦τ ] +

∫
��

(τ
◦
τ |h)R3 d�, if (q,

◦
q) ∈ Q

τ,
◦
τ
,

−∞, in other cases.
(4.5)

To this aim note that I(v, τ, ◦τ , q, ◦q) = I1(τ,
◦
τ , q,

◦
q) + I2(v, q,

◦
q), where

I1(τ,
◦
τ , q,

◦
q) =

1

2
C[τ, ◦τ ]−

∫



tr(q · τ) d
−
∫
�

tr(
◦
q · ◦
τ) d�,

I2(v, q,
◦
q) = −

∫



(f |v)R3 d
−
∫
�N

(g|v)R3 d�+

∫



tr(q · aεv) d
+

∫
�

tr(
◦
q · ◦a◦εv) d�.

Now the symmetricity of the operators
◦
a and a and Green's formula (2.6) imply:

I2(v, q,
◦
q) = −

∫



(f |v)R3 d
−
∫
�N

(g|v)R3 d�−
∫



(div aq|v)R3 d
−
∫
�

(aq · ◦a◦q|v)R3 d�.

It is easy to see that for �xed (q,
◦
q) ∈ H×

◦
H the functional I1 reaches the in�mum at

Aτ = q,
◦
A

◦
τ =

◦
q (see (3.6)). Therefore inf{I1(τ,

◦
τ , q,

◦
q) : (τ,

◦
τ) ∈ H×

◦
H} = −1

2
C[τ, ◦τ ],

where τ = aq,
◦
τ =

◦
a
◦
q. But for such τ,

◦
τ and (q,

◦
q) ∈ Q

τ,
◦
τ
, v ∈ Uh we have

I2(v, q,
◦
q) = −

∫
��

(τ
◦
τ |h)R3 d�. So, (4.5) is proved. From (4.5) we conclude that

sup{I(q, ◦q) : (q, ◦q) ∈ H×
◦
H} =

= sup
{
−1

2
C[τ, ◦τ ]−

∫
��

(τ
◦
τ |h)R3 d� : (q,

◦
q) ∈ Q

τ,
◦
τ

}
≥ −1

2
C[σ, ◦σ]−

∫
��

(σ
◦
σ|h)R3 d�,

where σ = σu,
◦
σ =

◦
σu and u is the solution of problem (1.5). However, −1

2
C[σ, ◦σ]−∫

��
(σ

◦
σ|h)R3 d� = I(u), so the inequality opposite to (4.4) is proved.

Remark 4.2. From Theorem 4.1 and (4.5) we get inf
{
1

2
C[τ, ◦τ ] +

∫
��

(τ
◦
τ |h)R3 d� :

(τ,
◦
τ) ∈ Kf,g

}
+ I(u) = 0. Due to (3.7) this implies inf{J (τ,

◦
τ) : (τ,

◦
τ) ∈ Kf,g} +

inf{I(v) : v ∈ Uh} = 0, which proves Theorem 3.4 once again.

5. Nonclassical problem with friction. In this problem on �N the normal
component gn of the surface density of external forces is given only. Besides, on �N

the surface density gt of the friction force is given. We suppose that gn, gt ∈ L2(�N ).
The energy of the friction force under the displacement v we determine by formula

(∀v ∈ H1(
)3) j(v) =

∫
�N

gt∥tv∥R3 d�, (5.1)

where t = t(x), x ∈ �, t is an orthoprojector R3 → T�x (T�x is the tangent
manifold to � in the point x); here and in what follows we understand the value
v ∈ H1(
)3 on � = ∂
 in the sense of the theorem of traces [7]. The functional of
potential energy is given by the formula (v ∈ U):
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I(v) = 1

2
c[v] + j(v)−

∫



(f |v)R3 d
−
∫
�N

gn(v|n)R3 d�, (5.2)

where f ∈ L2(
)
3 is a volume density of external forces acting on S, n = n(x)

is a unit vector of external normal in the point x ∈ �. The medium S reaches
the equilibrium state for such a displacement u ∈ Uh = {v ∈ U : v = h on ��},
�� = � \ �N , which gives the minimum to the functional I. So, it is necessary to
research the problem

I(v) −→ inf, v ∈ Uh. (5.3)

Theorem 5.1. Problem (5.3) has a unique solution.

Proof. The functional j is not di�erentiable, but it is convex on H1(
)3. So the
functional v 7→ I(v)− j(v) is di�erentiable, strictly convex and coercive on U0 (see
the proof of Theorem 1.1). Therefore Theorem 1.1 [6, part 1] can be applied.

The solution u of problem (5.3) can be characterized by a variational inequality.

Theorem 5.2. The displacement �eld u ∈ Uh is a solution of variational prob-
lem (5.3) i�

c(u, v − u) + j(v)− j(u) ≥
∫



(f |v − u)R3 d
+

∫
�N

gn(v − u|n)R3 d�. (5.4)

The proof immediately follows from Theorem 1.6 [6, part 1].
Now we will formulate the boundary-value problem whose solution coincides

with a solution of variational problem (5.3) and hence with a solution of variational
inequality (5.4).To simplify the notations let us denote:

σ = σu,
◦
σ =

◦
σu, σ

◦
σ = − div

◦
σ + σn. (5.5)

Observe, that u 7→ σ
◦
σ is a di�erential operator of the second order, and σ

◦
σ is a

surface density of stresses on �. As before we understand the di�erentiation in the
sense of distribution theory.

Theorem 5.3. The �eld u ∈ U is a solution of variational problem (5.3) (and
hence of variational inequality (5.4)) i�

−div σ = f in 
, (5.6)

(σ
◦
σ|n)R3 = gn on �N , (5.7)

∥tσ ◦
σ∥R3 < gt =⇒ tu = 0 on �N , (5.8)

∥tσ ◦
σ∥R3 = gt =⇒ ∃λ ≥ 0 tu = −λtσ ◦

σ on �N , (5.9)

u = h on ��. (5.10)

The proof of Theorem 5.3 needs some preparation. Remark that according to
implication (5.8) the tangent component tu of a displacement u is equal to zero

until the tangent component tσ
◦
σ of a stress is less (by norm) than some critical

value gt. As soon as this critical value has been reached, the vectors tu and tσ
◦
σ

become collinear and have opposite direction.

Lemma 5.4. If
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∥tσ ◦
σ∥R3 ≤ gt on �N (5.11)

and
(tσ

◦
σ|tu)R3 + gt∥tu∥R3 = 0 on �N (5.12)

then implications (5.8), (5.9) hold.

Proof. Let z = tσ
◦
σ. Suppose, that ∥z∥ < gt, and, hence gt > 0. If tu = 0, then

according to (5.12) gt∥tu∥ ≤ z∥tu∥ < gt∥tu∥, i.e. gt < gt, and therefore tu = 0. If
∥z∥ = gt, then according to (5.12) (z|tu)+ ∥z∥ · ∥tu∥ = 0, and therefore the vectors
z and tu are collinear. Putting tu = −λz in (5.12) we get (z| − λz) + gt∥tu∥ = 0
and hence λ ≥ 0.

Lemma 5.5. Let implications (5.8), (5.9) hold, then ∀v ∈ U
(tσ

◦
σ|tu− tv)R3 + gt(∥tv∥R3 − ∥tu∥R3) ≥ 0 on �N . (5.13)

Proof. If ∥tσ ◦
σ∥ ≤ gt and tu = 0, then (5.13) follows from the Bunyakovsky inequal-

ity. If ∥tσ ◦
σ∥ = gt and λ > 0, then ∥tu∥ = λgt and left-hand of (5.13) is equal to

(− 1

λ tu|tv − tu) + 1

λ∥tu∥(∥tv∥ − ∥tu∥) = 1

λ (∥tu∥ · ∥tv∥ − (tu|tv∥)) ≥ 0.

Remark 5.6. Condition (5.12) rewriting in a form(
tσ

◦
σ| tu

∥tu∥

)
= −gt (5.12′)

shows what is the orthoprojection of the tangent component of a stress in the
direction of the tangent component of a displacement.

Proof of Theorem 5.3. We will show that the solution u of variational problem
(5.3) is a solution of boundary-value problem (5.6){(5.10). To this aim note that
if the �eld u gives the minimum to the functional (5.2) on the manifold Uh, then u
satis�es the variational inequality (5.4). Putting in (5.4) v = u ± φ, φ ∈ C∞

0 (
)3

and observing that in this case j(v) = j(u), we obtain a(u, φ) ≥ ±
∫


(f |g)R3 d
,

what implies equality (5.6) immediately. Now applying Green's formula (2.6) we

get from (5.4)
∫
�N

(σ
◦
σ|v − u)R3 d� + j(v) − j(u) ≥

∫
�N

gn(v − u) d�. Using (5.1)

and the formula tz = z − (z|n)R3 · n, (z ∈ R3), we get∫
�N

(
(tσ

◦
σ|t(v−u))R3 + gt(∥tu∥−∥tv∥)

)
d�+

∫
�N

(σ
◦
σ− gn ·n|n)R3(v−u|n) d� ≥ 0.

(5.14)In particular, if tu = tv on �N ,∫
�N

(σ
◦
σ − gn · n|n)(v − u|n) d� ≥ 0. (5.15)

If v runs on H1(
)3 so, that tu = tv on �N , then (v|h)R3 covers the space
H1/2(�), in particular, the set of functions φ with suppφ ⊂ �N and (5.15) implies
that the boundary condition (5.7) holds. Now (5.14) means

(∀v ∈ Uh)

∫
�N

(tσ
◦
σ|tv − tu) + gt(∥tv∥ − ∥tu∥) d� ≥ 0. (5.16)

Let 	 = {ψ ∈ H1/2(�)3 : suppψ ⊂ �N}. Applying (5.16) to the function
v ∈ Uh such that tv = tψ on �N , and taking into account that ∥tψ∥ ≤ ∥ψ∥, gt > 0,
t2 = t = t∗ we obtain∫

�N

(
(tσ

◦
σ|ψ) + gt∥ψ∥

)
d� ≥

∫
�N

(
(tσ

◦
σ|tu) + gt∥tu∥

)
d�.

Changing ψ into ±λψ we get: (∀λ ≥ 0)

λ

∫
�N

(
±(tσ ◦

σ|ψ) + gt∥ψ∥
)
d� ≥

∫
�N

(
(tσ

◦
σ|tu) + gt∥tu∥

)
d�.

This implies

(∀ψ ∈ 	)

∫
�N

(tσ
◦
σ|ψ) d� ≤

∫
�N

gt∥ψ∥ d�, (5.17)
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and ∫
�N

(
(tσ

◦
σ|tu) + gt∥tu|

)
d� ≤ 0. (5.18)

Inequality (5.17) implies that the functional gtψ 7→
∫
�N

(tσ
◦
σ|ψ) d� =

∫
�N

(
1

gt
tσ

◦
σ|gtψ

)
d�

is continuous on the set gt	 which we consider as a subspace of L1(�N )
3, and its

norm is equal or less than 1. Since gt	 is dense in L1(�N )
3, vraimax{ 1

gt
∥tσ ◦

σ∥ ≤ 1}
(vraimax is taken on the set �N ), i.e. (5.11) holds.

Therefore (tσ
◦
σ|tu)+ gt∥tu∥ ≥ 0 and (5.18) imply that (tσ

◦
σ|tu)+ gt∥tu∥ = 0, i.e.

(5.12) holds, so one can apply Lemma 5.4.
Finally we will show that the solution u of boundary-value problem (5.6){(5.10)

is a solution of variational problem (5.3). To this aim observe that equation (5.6)
and the Green's formula imply:∫




(f |v − u)R3 d
 = −
∫



(div σ|v − u)R3d
 = c(u, v − u)−
∫
�

(σ
◦
σ|v − u)R3 d�.

But if u, v ∈ Uh, then
∫
�
(σ

◦
σ|v − u)R3 d� =

∫
�N

(σ
◦
σ|v − u)R3 d�.

Using tz = z − (z|n)n and the boundary condition (5.7) we get:

c(u, v − u) + j(v)− j(u) =

=

∫



(f |v − u) d
+

∫
�N

gn(n|v − u)d�+

∫
�N

((tσ
◦
σ|v − u) + gt(∥tv∥ − ∥tu∥)) d�.

Applying Lemma 5.5 we conclude that variational inequality (5.4) holds. Now
it is su�cient to use Theorem 5.2.
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