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Hilbert space methods are used for the statement and solution of some problem
of elasticity theory. This problem is not classical in the sense that the boundary
differential operator is of the same order as the one which acts inside the domain.
The existence, the unicity and the continuous dependence on data of the solution is
proved. Some equivalent variational problems and dual problems are considered.
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JIJIs1 TOCTAHOBKY W PELIEHUsI ONMPEeIeIEHHON 3339 MEXaHUKU CILIOMIHON CpejIbl
B 9T0i1 paboTe NPUMEHSIOTCS METOAbl IUIbOEPTOBOrO IPOCTPAHCTBA. 3a/4a4a sABJIs-
eTCs HEKJIACCUYECKOH B TOM CMbICJe, YTO nuddEPEHINPOBAHNE B KPAEBBIX YCIOBUSIX
UMeeT TOT K€ HOPSAJIOK, YTO U B cucreMe audPepeHnuagbHbIX YPAaBHEHUH, ONHUCHI-
BAIOIUX COCTOSIHME CPEIbI BHYTPH 00JIaCTH.

JlOKa3BbIBAETCs CYINECTBOBAHNE, eJUHCTBEHHOCTD U HENPEPHIBHAS 3aBUCUMOCTH OT
JAHHBIX PEIIeHnsl YKA3aHHOM Kpaemoil 3amadu. PaccMaTpuBalOTCS TaK>Ke SKBUBA-
JIEHTHBbIE BapUAIIMOHHBIE U ABONCTBEHHBIE 33/1a4N.

This research was made to order of Ya. Pidstryhach who (in particular) directed
in Lviv investigations with boundary differentiation of higher order (see [1-3]).
Some our results have been announced in [4].

1. Variational statement of the problem. Let a continuous medium S fill
up a bounded domain 2 C R?® with a regular boundary ¥. Denote by u = u(zx)
the displacement of S at z € QU X. For x €  the derivative v/(x) is a linear
map R3> — R3. The corresponding strain tensor ¢ = eu(z) is defined as usual: ¢
is the real part of this map: ¢ = 3 (u/(z) + (v/(2))*). For z € ¥ the definition
is more complicated. Let uy be the restriction of u to ¥. Then the derivative
u's(z) is a linear map from the tangent manifold TS, to R3. Denote by ¢(x)

the orthoprojector R® — TS, and form the composite map u'st(z). Its real part

3 (uk (2)t(z) + (uk(2)t(x))*) is by definition the strain tensor ¢ = eu(z) for z € X.
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Use local coordinates &;,&2,&3 such that in a small neighborhood of x € ¥ the
equation of ¥ is & = 0. Then cu(z) has the following matrix

Jup  du Ouy  dug  Odug
1 061 062 1 061 061 0&
S| Quz Oux g | 42| Qu OQux  Dus (1.1)
2 251 252 2 0&2 0&2 082 ) :
u u
2 gee 0 0 0 0

We see that gu(a:) is the usual strain tensor which corresponds to the field v which
does not depend on &3.
The stressed state of the medium S will be described by two stress tensors o

o . . . . .
and o which are defined on () and ¥ respectively. There is a linear stress-strain
. . . o o o .
relation (the generalized Hooke law): o;; = aijricr in Q, 04 = aijpicr in X.

o) . . .

Here a;j11,a;j11 are bounded mesurable functions on « satisfying usual symmetry
. o o o . c e s o
conditions: a;jr = Gjiki = Qkiij, Qijkl = Qi = Gk1i;- Besides, ellipticity conditions

are assumed: )
tr(oe) > a - tr(e”) in Q,

[o}e) ¢} (1'2)
tr(oe) > a - tr(e?) on ¥

(tr 8 denotes the sum of the diagonal elements of the matrix of ().

Associate with medium S the energetic Hilbert space U := {u € H! : Tu €
G}, (ulv)y = (ulv)g + (Tu|Tv)gr. Here H! := (H'(Q))3, G' := (H'(%))? are
the corresponding Sobolev spaces, I is the trace operator H! — G (see [7]; roughly
speaking Tu(z) is the value of u € H! at x). Now introduce the bilinear forms of

virtual energy a and a:

(Vu,v e U) a(u,v) = / tr(ou - ov) dS2,
« (1.3)
a(u,v) = /Etr(gu - ov) dX.

Observe that this forms are symmetric and continuous on U .

We assume that an external force with volume density f € H = (Ly(9))? and
an external force with surface density ¢ € G = (L3(Xn))? act at S. Here Xy
denotes some part of ¥.. Suppose that on X := X \ X the displacement h € H
is given. Then the potential energy Z(v) of the medium S which is caused by its
displacement v is:

T(v) = %c[v]—/g(ﬂv)w dﬂ—/ (glv)gs dS, (1.4)

XN

o
where c[v] = ¢(v,v); c(u,v) = a(u,v) + a(u,v).
The quadratic functional Z(v) is also continuous on U.
According to the minimum principle of potential energy the medium S attains
the equilibrium state for such a displacement v which is a solution of the following
(conditional) extremum problem

Z(v) — inf, v € Uy, (1.5)

where Uy, :={v el :v=~hon X}
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Theorem 1.1. Let mes Xy > 0. Then problem (1.5) has a unique solution (i.e.
(Flu € Up) (Vv € Up) (Z(u) < I(v))).

Proof. Tt is easy to show that U}, is a closed affine manifold in . Therefore it is
sufficient to prove that the form c(u,v) is coercive on the subspace Uy := {v € U :
v =0 on X}, which is parallel to Uj,.

Let

e(v)? ::/Qtr(sv)2 dQ—i—/Etr(gv)Q dx. (1.6)

Recall that for a symmetric operator v we have try? =0 = v =10. So g(v)? =0
implies ev = 0, which means that the displacement v is rigid. Now for v € Uy we
have £(v)? = 0 <= v = 0, because the condition mes X > 0 implies that the solid
body is unmoved.

We need the following statement:

(Fer > 0) (Vv €Up)  (e(v)* = cr([[vllz + IT0[IE)). (1.7)

Let us prove it. Suppose the contrary: there exists v, € Uy such that ||v,||% +
|Tv,||% = 1, but e(v,)? — 0 for n — oco. According to Corn’s inequalities [5], we

have
(s > 0)(Wo € U) /(tr(sv)2 +11o]12s) dQ > ool

Q
(1.8)
[ @ C? + [olB) a2 = calITul,
>

hence ‘ ) )
(Vo eU) e@)® +lvlla” + [Tvlle” > ellvllz. (1.9)

From (1.9) we conclude that the sequence (v,) is bounded in Uy and without loss
of generality one can assume that v,, — v weakly in Uy. Using the Bunyakovsky
inequality we get lime(v,)? > e(v) and therefore (v)? = 0, whence v = 0. The
boundedness of the sequence (vy,) in U means that (v,,) is bounded in H! and (T'v,,)

is bounded in G'. The embeddings H! — H and G' — G are compact. Therefore
it is possible to consider that v, = v = 0 strongly in A and I'v,, = I'v = 0 strongly

in G. This contradicts to the condition ||v, || z#> + |[Tvn|l¢® = 1, and (1.7) is proved.
Now from (1.3), (1.4) we get c[v] > as(v)?, v €U, and (1.7) implies

(Vo el) cfv] = B(e(v)® + |lvlF + |IT0]1Z),

where 8 = min(ia,sac;). Using (1.9) we find (Vo € Up) c[v] > 7|v||7, where
v = 2.

2. Characterization of the solution. The solution u of problem (1.5) can be
described by a variational equality and as a solution of a boundary-value problem.

Theorem 2.1. Under the assumptions of Theorem 1.1, there exists a unique field
u € Uy, satisfying the condition

(Vv ely) clu,v—u)= /Q(f|v — u)gs d) + /2 (glv — u)gs dX. (2.1)

N

This field coincides with the solution of problem (1.5).
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Proof follows from equality (2.1) with the Euler equation for extremum prob-
lem (1.5). Note, that (2.1) expresses the principle of virtual displacements for the

medium S.
Now we need some preparations.

Remark 2.1. Let X, Y be Banach spaces, T € B(X;Y), imT =Y, Z := X/ker T
and 12 Z — Y, Tt :=Tx, ¥ € Z, x € . Then T is an algebraic and topological
isomorphism Z — Y. So, if we denote |y| := |7 'y||z, then (Vy € V) [T || y| <

lylly < |||l - |yl, i.e. the norms || - ||y and |- | are equivalent on Y.
Corollary 2.2. Let (H',H,H™ '), (G}, G,G™1) be equipped Hilbert spaces, I the trace
operator (I' € B(H',G'/?), imT = G'/2, clkerT' = H). Let us define

(Vp € GY?) |p| := inf{||v||gr;v € H',Tv = p}. (2.2)

The norms || - ||gi/2 and | - | are equivalent on G'/2.

Proof. Denote by Z := H' /kerT', then 9 € Z <= (Ip € G'/2) (
p}). Let us define (Vi € Z) (Vp € GV/*)I'd = p <= (Jv € 0)(T
rewrite definition (2.2) in the following way:

t={ve H,;Tv =
v = p). So we can

(Vp € GY?) |p| = [T 1p| 2.

Now the corollary follows from Remark 2.1.

Remark 2.8. For every u € H' the vector field div(ou) satisfies (in the distribution
sense) the condition

(Vo e CF(R)) - /Q (div(ow)|p)ss dE = alu, ). (2.3)

Indeed, by (1.3),

a(u, p) = /Q(Uu)ij(ESO)ji dfl = /Q(Uu)ijSOiJ dQd = —/Q(Uu)z'j,j% Q.

Now it suffices to recall that (divo); = 0;;,. (We use the usual notation: ¢; ; :=

Op;
ge. )

Proposition 2.4. Let u € H! and 0 = ou be the stress tensor corresponding to
the displacement uw. Then the formula

(Vv e HY) (on|lv) = a(u,v) + /Q(div o|v)rs dQ (2.4)

defines the action of the operator o on the unit vector n = n(x) of the external
normal to ¥ in the point x as an element of the space G~1/?,

Proof. According to (2.3), the right part of (2.4) depends on I'v (but not on v).
Considering (2.4) as a definition of a linear functional on, we have

(Vo e H') [(on[Tv)| < C(llullgllvllas + [[divelmlvlm),
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where C' = const. Hence, the functional on is bounded in norm (2.2), therefore it
is bounded in the norm || - ||é/2 (see Corollary 2.2).

Remark 2.5. Let u € U, o o= S'u, then the vector field diveo satisfies (in the
distribution sense) the condition

(oel) - / (div & |v)gs 45 = o, v). (2.5)
by
Therefore the following version of the Green-Betty formula holds for u,v € U:

c(u,v) = — /Q(div ou|v)gs d§) + /E(@ulfu)ﬂ@ dx, (2.6)

where u — o_gu is the differential operator of the second order acting at x € 3 and
defined by

oou := —div(ou) + (ou)n. (2.7)
Note that we understand the integral on ¥ in (2.6) as a duality between G'/2 and
G2,
Remark 2.6. Formula (2.6) shows that under the displacement u of the medium S

the elasticity forces with volume-density — div(cu) in © and surface density cou in
Y appear.

Theorem 2.7. Under the assumptions of Theorem 1.1, there exists a unique func-
tion u € U satisfying the conditions:

—div(ou) = finQ, ocou=gonSy, u=hon3y, (2.8)
or in coordinate notations (i=1,2,8):
—(ou)ij; = fiin €, —(gu)im + (ou)ijn; = gi on En, u; = h; onXy. (2.8')

The solution u of boundary-value problem (2.8) coincides with the solution u of
variational problem (1.5) and therefore with the solution u of variational equality

(2.1).
We obtain the proof of this theorem in a usual way applying Green’s formula (2.6)

to variational equality (2.1) and taking into account that U is dense in H and

T'd = G! is dense in G.

We call boundary-value problem (2.8) a nonclassical problem, because its bound-
ary conditions contain differentiations of the second order exactly so as equations
in the domain.

3. Dual statement of problem. In this part the unknown will be not the
vector field of displacements, but the tensor field of stresses.

By $ and $ we denote Hilbert spaces of symmetrical tensor fields defined on €2
and ¥ respectively such that

H={r:7m;=1€ L), 1,7 =1,2,3}, (No,7€9) (o|1)g = / tr(oT) dQ,

G={r:7 =75 € La(X), 1,7 =1,2,3}, (Yo,7 € H) (81?)% = / tr(o7) dY.
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0]
For 7 € 9, = £ we determine div T and div 7 in the sense of the distribution
theory, namely

(Vo € Co™(02)?) /Q(div T|)rs dQ = —/QtI‘(T - e) dS,
(3.2)

(Vp € Cy™ (D)%) /(div7o'|p)R3 s = —/ tr(7 - £p) d¥,
b 3

where ep = L(p+ @), ep = ('t + ).
We understand the integrals in the left-hand of (3.2) as the action of functionals

div 7, div 7 on @ and p respectively.

Proposition 3.1. Let (T, 70') € H X 9, then the formula

(Vo eld) (r7|Tv) = /Q((div Tlv)gs + tr(7 - €v)) dQ + /Etr(; eTv)dY  (3.3)

. . ] _
determines uniquely 7T as an element of G,

Proof. The first integral in (3.3) can be evaluated by const -||v||g1 and according
to Corollary 2.2 it represents an element of G~'/2. The second integral in (3.3) is
dominated by const -||[Tv||g1 and therefore it represents an element of G~1.

We rewrite formula (3.3) in such a way:

/Q((div Tlv)gs + tr(7 - ev)) dQ =
= /E((ﬂrv)Rs —tr(r7 - €v)) dZ,  (1,7) € H ¥ H,0eU. (3.3)
Proposition 3.2. Let f € H, g € G,
Ksg:= {(T,’?‘)Ef)Xﬁ%:—diVT:f onfQ, 1T=g on Iy} (3.4)

Then the affine manifold Ky 4 is closed in the Hilbert space $ x .

Proof. The operator § x $ 5 (1,7) — (div7,77) € L2(Q)3 x Ly(T)? is defined as

the adjoint operator to the operator Co™°(Q)3 x Co™° ()3 3 (v, p) — (ev,ep) € HXH
and therefore is closed. Hence the manifold Ky , is closed as a shift of the kernel of
a closed operator.

In order to introduce the dual forms of virtual energy, we remark that the formula
of the generalized Hooke law can be inverted (this follows from symmetry and
ellipticity conditions (1.2)):

. o
5ij:Aijklo'kl m Q, 5ij:Aijkl0kzl on E, (35)

or briefly:
e=Aoc in Q, £=A¢ on X. (3.5")
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o
m
o
ko)
=
=

Now for 0,7 € 9, 3,

Let h € G' = H'(X)?; determine the dual functional of the potential energy J by
the formula:

e}

J(r,7) = =C[r, 7] +/2 (ﬁ|h)R3 ax, (r, ;)') EHXHN (3.7)

(here ¥y = X\ Xn).
The problem dual to (1.5) can be formulated as follows:

J (T, ?’) — inf, (7, ?’) €y, (3.8)

Theorem 3.3. Let mesX > 0, then problem (3.8) has a unique solution, i.e.
((0,0) € Kyg)(V(7,7) € Ky g)(T (0,0) < T(7,7)).
Proof. Immediately from (3.6) we see that the form C is symmetric and continuous
on £ x $. Since the rigidity coefficients A;jxi, Aijr satisfy the conditions

(3a > 0)(Vr € 9) tr(A7-7) > atr(r?) in Q,

o © ¢ o o (39)
(Vr €9) tr(A7-7) > atr(7?) on X,

the form C is coercive on $) X ). Now the theorem follows directly from Proposition
3.2.

Consider the connection between the solutions of problem (1.5) and the dual
problem (3.8).

Theorem 3.4. Let (0,0) be the solution of problem (3.8). Then the equations

ceu=Ao in Q, etu=As on ¥ (3.10)
with the boundary condition
u=h on Xp (3.11)

uniquely determine the solution u of problem (1.5).

[eXe)

Proof. Let u be the solution of problem (1.5). Put 0 = aeu in €, 0 = acu on
Y., then (0,0) is a solution of problem (3.8). Indeed, Theorem 2.8 implies that
(0,0) € K f,9- S0 it is sufficient to check that the variational equality

(V(r, 70') €kygy) Clo,057 —0,7—0)= —/ (h|7'_$' — ﬁ)RS dy
Y

holds.
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Let (7,7) € Ky 4, then due to (3.10) and (3.3')

C(U,S;T—a}—é}):/Qtr(gu-(T—a))d9+/2tr(§u.($—8))dz:

=— / (div(T — 0)|u)gs dQ — / (17 — 00 |Tu)gs Y = —/ (h|7T — 00)gs dS,
Q > X

since div(t —0) =0in Q, 77 — 00 = 0 on Sy and u = h on Iy (see (2.8)). So,

(0,0) is a solution of problem (3.8). The uniqueness of the solutions of problems
(1.5) and (3.8) completes the proof.

4. The Lagrange multipliers method. Following the Duvaut-Lions method [5],
let us consider the variational problem (1.5) as a conditional extremum problem.
To this aim instead of one independent varlable v € U let us introduce the triple

of independent variables (v,7,7) € U x § X 55 satisfying the conditions (the Hooke
law):

T=acv in Q, T=av on X% (4.1)

and take the Lagrange multipliers q € 9, a € 9.

Put
I(v,7,7) = %C[T,?’]—/Q(f\v)Rs dQ—/E (g]v)pa dS (4.2)

and note that for conditions (4.1)

Z(v,7,7) = I(v), (4.2')

where Z is the functional of potential energy (1.4). Indeed, due to (1.3), (3.5), (3.6)

conditions (4.1) imply the equality c[v] = C[r,7]. Thus the Lagrange functional
corresponding to problem (1.5) can be taken in a natural way

I(v,7,7,¢,q) = L(v,7,7) — /Q tr(q(r — agv)) dQ — /2 tr(?](;)' — agv)) dx, (4.3)

where (v, T, 7 ,q,q ) e U, X H x 53 X ) X 55 Uy, is an affine manifold; remark that
there is no Lagrange s multiplier for the condition “v = h on X1”.

Theorem 4.1. Let u be the solution of problem (1.5). Then
supinf{Z(v,7,7,¢,q) : e(v,7,7) € Up X ><5§} Z(u),

where sup s taken on the set $ X 9.

Proof. Let I(q,&) = inf{Z(v, T, 7 q,a) : (v, T, 7') c U, X H X 55}, then Z(q, ) <

inf{Z(v,7,7,¢,q) : (v,7,7) € Q} where Q = {(v,7,7) € U X H X .6 (v, 7,7)
satisfies (4.1)}. But if (v,7,7) € Q, then Z(v,7,7,q,q) = Z(v) and therefore
Z(q,q) < Z(v) for v € Uy,. Hence

sup{Z(g,) : (0, 7) € H x H} < T(u). (4.4)
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[®)
It is sufficient to prove the opposite inequality. Let }:273 = {(q,gje.ﬁ X$H:q=

AT, q = AT, (1,7) € K4}t We want to prove that

(q,q) =

0 {—%C[T}]uzn(ﬁ\h)mz, if (¢,9) €Q ., 45)
.,

in other cases.
To this aim note that Z(v, T T.q, E}) =7, (T, 7.4, 5) + I (v, q, E}), where

T(rF.0.8) = 500 = [ wta-r)dn— [ u(G- Pz
by

Tr(v,q,q) = — / (flv)grs dQ2 — / (glv)rs d¥ + / tr(q - acv) dQ) + / tr(q - agv) d3.
Q SN Q b
Now the symmetricity of the operators a and a and Green’s formula (2.6) imply:

To(0,4,§) = — /Q (Flo)gs A0 /E (glv)zs dE— /Q (div aglv)zs - / (aq - 85Jv)zs d.

X

It is easy to see that for fixed (q, ) € HX 53 the functional Z; reaches the infimum at
At = q, A3 = q (see (3.6)). Therefore inf{Z (1, 7,q,q) : (1,7) € Sﬁxfj} = —3C[r, 7],

where 7 = aq,7 = aq. But for such 7,7 and (¢, o) € Q B € U, we have

Io(v,q,q) = — fz (77|h)gs dE. So, (4.5) is proved. From (4. 5) we conclude that

sup{Z(q.q) : (¢.q) € H x N} =
(H)es 4 (0. €Q o} = ~3Cl0.8)~ | (ol dx

X

= sup{—%C[T, 7] — /2

where o = ou, & = ou and u is the solution of problem (1.5). However, —3Clo, 3] -

II

fz (o0|h)gs dX = Z(u), so the inequality opposite to (4.4) is proved.

Remark 4.2. From Theorem 4.1 and (4.5) we get inf{$C[r, 7] + fz (77]h)gs dE

(1,7) € Kfg} 4+ Z(w) = 0. Due to (3.7) this implies inf{J (7, 7): (1, 7) € Ko} +
inf{Z(v) :vel,} = 0, which proves Theorem 3.4 once again.

5. Nonclassical problem with friction. In this problem on ¥y the normal
component g,, of the surface density of external forces is given only. Besides, on ¥
the surface density g; of the friction force is given. We suppose that g,,, g € La(2n).
The energy of the friction force under the displacement v we determine by formula

(Vo e H(Q)?®) jw)= [ glltvlps dZ, (5.1)

where t = t(x), v € X,t is an orthoprojectzol\f R3 — TX, (TY, is the tangent
manifold to ¥ in the point x); here and in what follows we understand the value
v € HY(Q)? on ¥ = 9 in the sense of the theorem of traces [7]. The functional of
potential energy is given by the formula (v € U):
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1(0) = el +30) - [ (o) a2~ [ gn(elm dx (5.2)

where f € Ly(Q)3 is a volume der?sity of external forces acting on S, n = n(x)
is a unit vector of external normal in the point x € ¥. The medium S reaches
the equilibrium state for such a displacement v € U, = {v € U : v = h on X},
Yn =X\ Xu, which gives the minimum to the functional Z. So, it is necessary to

research the problem i
Z(v) — inf, v EU,,. (5.3)
Theorem 5.1. Problem (5.3) has a unique solution.

Proof. The functional j is not differentiable, but it is convex on H'(Q)3. So the
functional v — Z(v) — j(v) is differentiable, strictly convex and coercive on Uy (see
the proof of Theorem 1.1). Therefore Theorem 1.1 [6, part 1] can be applied.

The solution u of problem (5.3) can be characterized by a variational inequality.

Theorem 5.2. The displacement field uw € Uy, is a solution of variational prob-

lem (5.3) iff

c(u,v —u) + j(v) — jlu) > /Q(f|v — u)gs dQ + /2 gn(v — uln)gs dX. (5.4)

N

The proof immediately follows from Theorem 1.6 [6, part 1].

Now we will formulate the boundary-value problem whose solution coincides
with a solution of variational problem (5.3) and hence with a solution of variational
inequality (5.4).To simplify the notations let us denote:

o o o .o
oc=ou, o©=ou, o00c=—divo+on. (5.5)

Observe, that u — O’_g is a differential operator of the second order, and ﬁ is a
surface density of stresses on X. As before we understand the differentiation in the
sense of distribution theory.

Theorem 5.3. The field u € U is a solution of variational problem (5.8) (and
hence of variational inequality (5.4)) iff

“dive=f in Q, (5.6)

(co|n)gs = gn on Sy, (5.7)

|too|lps < gt = tu=0 on Sy, (5.8)
ltoc|lps = g¢ = IAN>0 tu=—Aog on Sy, (5.9)
u=h on Y. (5.10)

The proof of Theorem 5.3 needs some preparation. Remark that according to
implication (5.8) the tangent component tu of a displacement u is equal to zero

until the tangent component too of a stress is less (by norm) than some critical

value g;. As soon as this critical value has been reached, the vectors tu and too
become collinear and have opposite direction.

Lemma 5.4. If
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[too|lzs < gr on Sy (5.11)

(too|tu)gs + gel|tullgs =0 on Ty (5.12)
then implications (5.8), (5.9) hold.

and

Proof. Let z = too. Suppose, that llz|| < g¢, and, hence g > 0. If tu = 0, then
according to (5.12) g¢|[tul| < z||tul| < g¢l[tu], i-e. g+ < g¢, and therefore tu = 0. If
|z|| = g+, then according to (5.12) (z|tu) + ||z|| - ||tu|| = 0, and therefore the vectors
z and tu are collinear. Putting tu = —Az in (5.12) we get (2| — Az) + g¢||tul]| =0
and hence A > 0.

Lemma 5.5. Let implications (5.8), (5.9) hold, then Vv € U

(too|tu — tv)gs + gi(|[tv]|ps — HtuHR3) >0onXy. (5.13)
Proof. If |[tog]|| < g¢ and tu = 0, then (5.13) follows from the Bunyakovsky inequal-
ity. If |[too|| = g¢ and A > 0, then ||[tu]| = Ag; and left-hand of (5.13) is equal to
(—xtuftv —tu) + ltull([tol] — tull) = S (tull - o]l = (tult])) > 0

Remark 5.6. Condition (5.12) rewrltm% in a form
= —gt (5.12)

shows what is the orthoprojection of thwe tangent component of a stress in the
direction of the tangent component of a displacement.

aa||

Proof of Theorem 5.3. We will show that the solution w of variational problem
(5.3) is a solution of boundary-value problem (5.6)—(5.10). To this aim note that
if the field u gives the minimum to the functional (5.2) on the manifold U}, then u
satisfies the variational inequality (5.4). Putting in (5.4) v = u £ ¢, p € C§°(0)?
and observing that in this case j(v) = j(u), we obtain a(u,¢) > % [,(f|g)rs d2,
what implies equality (5.6) immediately. Now applying Green’s formula (2.6) we
get from (5.4) [, (o0|v — wps dS + j(v) — j(u) >[5, gn(v — u)dS. Using (5.1)

and the formula tz = z — (z|n)rs - n, (z € R3), we get

[ (tebito —u)ms +gileall = 0]} a+ [ (26 g nlm)ss o= uln) d5 =0,

ZN z:N

In particular, if tu = tp on Xy, (5.14)
(60 — gn - n|n) (v — uln) dS > 0. (5.15)
If v runs on H!() Esj(\;, that tu = tv on Xy, then (v|h)rs covers the space

H'/2(%), in particular, the set of functions ¢ with supp ¢ C ¥ and (5.15) implies
that the boundary conditipn (5.7) holds. Now (5.14) means

(Vv € Up) (too|tv — tu) + ge(||tv]| — ||tu])) dE > 0. (5.16)
Let ¥ = {¢ € Hl/Q(EEJj\é : suppt¢ C Xn}. Applying (5.16) to the function
v € Uy, such that tv = t1p on X, and taking into account that |[ty|| < |||, g+ > 0,
t? =t = t* we pbtain
((t0510) + g0l a= = | ((t0ltw) + giltul)) d2
Changing wzi’ﬂto +A we get: (VA > 0) N
3 [ toso) +alol) ez [ (ol + gl ds
This implies ™ =N
wew) [ oswas< [ gl (5.17)
N

N
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and
/ ((taa|tu) + gi||tul) dE < 0. (5.18)
)

Inequality (5.17) implies tﬁat the functional g;1) fEN (toa|ih) dE = fEN (ita_&gt@b) s
is continuous on the set g; ¥ which we consider as a subspace of Li(Xx)3, and its
norm is equal or less than 1. Since ¢; ¥ is dense in L, (Zx)?, vraimax{i”tﬁ” <1}
(vraimax is taken on the set X ), i.e. (5.11) holds.

Therefore (too|tu) + g¢||tu]| > 0 and (5.18) imply that (tog|tu) + g ||tul| = 0, i.e.
(5.12) holds, so one can apply Lemma 5.4.

Finally we will show that the solution u of boundary-value problem (5.6)—(5.10)

is a solution of variational problem (5.3). To this aim observe that equation (5.6)
and the Green’s formula imply:

/Q(fyv — w)ga d) = — /Q(diva|v — w)padQ = c(u,v — u) — / (o&]v — u)gs dX.

)
But if u, v € Uy, then [;.(00]v — u)gs d¥ = fEN(ﬁhJ — u)gs dX.
Using tz = z — (z|n)n and the boundary condition (5.7) we get:

(v — ) + §(0) — j(u) =
- / (flo — ) d92 + / gn(nlo ) + / (gl — ) + gu(v] — ul)) 4

Applying Lemma 5.5 we conclude that variational inequality (5.4) holds. Now
it is sufficient to use Theorem 5.2.
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