v-LINDELÖF SPACES

Abstract

Chang Il Kim

Chang Il Kim. v-Lindelöf spaces, Matematychni Studii, 9(1998) 199-204. The concept of v-Lindelöf space is introduced. It is shown that a space X is v Lindelöf if and only if every Wallman realcompactification of X is Lindelöf and that if $X \times Y$ is a z-embedded v-Lindelöf subspace of $v X \times v Y$, then $v(X \times Y)=v X \times v Y$.

0. Introduction

All topological spaces discused in this paper are assumed to be Tychonoff. For any space $X,\left(\beta X, \beta_{X}\right)\left(\left(v X, v_{X}\right)\right.$, resp.) denotes the Stone-Čech compactification (Hewitt realcompactification, resp.) of X.

An important open question in the theory of Hewitt realcompactifications of Tychonoff spaces concerns when the equality $v X \times v Y=v(X \times Y)$ is valid ([9]). Glicksberg ([8]) showed that for any infinite spaces X and $Y, \beta X \times \beta Y=\beta(X \times Y)$ if and only if $X \times Y$ is pseudocompact. Comfort ([6]) showed that if $X \times Y$ is C^{*} embedded in $v X \times v Y$, then $v X \times v Y=v(X \times Y)$ and that if $\operatorname{card}(X)$ or $\operatorname{card}(Y)$ is non-measurable and $X \times Y$ is C^{*}-embedded in $X \times \beta Y$, then $v X \times v Y=v(X \times Y)$. In [10], it is shown that $X \times Y$ is C^{*}-embedded in $X \times \beta Y$ if and only if the projection $\pi_{X}: X \times Y \rightarrow X$ is z-closed.

In this paper we introduce the concept of v-Lindelöf spaces. We first show that a space X is v-Lindelöf if and only if every Wallman realcompactification of X is Lindelöf and show that for any v-Lindelöf space $X,|v X \backslash X| \leq 1$ if and only if for any space T with $X \subset T, v X \subset v T$. Moreover, we will show that if $X \times Y$ is a z-embedded v-Lindelöf subspace of $v X \times v Y$, then $v(X \times Y)=v X \times v Y$ and that if $X \times Y$ is an v-Lindelöf space such that $\operatorname{card}(X)$ or $\operatorname{card}(Y)$ is non-measurable and X is a P-space, then $v(X \times Y)=v X \times v Y$ if and only if the projection $\pi_{X}: X \times Y \rightarrow X$ iz z-closed. For the terminology, we refer to [7] and [11].

1. Realcompactifications

Recall that a space (Y, j) or simply Y is called a compactification (realcompactification, resp.) of a space X if $j: X \hookrightarrow Y$ is a dense embedding and Y is a compact (realcompact, resp.) space.

The ring of real-valued continuous functions on a space X is denoted by $C(X)$ and $C^{*}(X)$ denotes the subring of bounded functions. A subspace S of a space X is said to be C-embedded in X if every function in $C(S)$ extends to a function in $C(X) . C^{*}$-embedding is defined analogously. For a space $X, \beta X$ is a unique

[^0]realcompactification of X in which X is densely C^{*}-embedded and $v X$ is a unique realcompactification of X in which X is densely C-embedded.

Definition 1.1 ([12]). Let X be a space and \mathcal{F} a family of closed sets in X. Then \mathcal{F} is called a separating nest generated intersection ring on X if
(i) for each closed set H in X and $x \notin H$, there are disjoint sets in \mathcal{F}, one containing H and the other containing x,
(ii) it is closed under finite unions and countable intersections, and
(iii) for any $F \in \mathcal{F}$, there are sequences $\left(F_{n}\right)$ and $\left(H_{n}\right)$ in \mathcal{F} such that for any $n \in \mathbb{N}$, $X \backslash H_{n+1} \subset F_{n+1} \subset X \backslash H_{n} \subset F_{n}$ and $F=\bigcap F_{n}$.
For a space $X, Z(X)$ denotes the set of zero-sets in $X, \mathcal{L}(X)$ the set of separating nest generated intersection rings on X and for any subspaces S of X and $\mathcal{F} \subset 2^{X}$, let $\mathcal{F}_{S}=\{F \cap S: F \in \mathcal{F}\}$. For a subspace S of a space X and $\mathcal{F} \in \mathcal{L}(X)$, $Z(X) \in \mathcal{L}(X)$ and $\mathcal{F}_{S} \in \mathcal{L}(S)$ ([12]).

Let X be a space and $\mathcal{F} \in \mathcal{L}(X)$. Then \mathcal{F} is a normal base on X ([1]). Let $\left(w(X, \mathcal{F}), w_{X}\right)$ be the Wallman compactification of X associated with $\mathcal{F}([1])$. Then $\mathcal{F}=Z(w(X, \mathcal{F}))_{X}$ and if (Y, j) is a compactification of X such that $\mathcal{F}=Z(Y)_{X}$, then there is a continuous map $f: w(X, \mathcal{F}) \rightarrow Y$ with $f \circ w_{X}=j([12])$.

Let $v(X, \mathcal{F})=\{\alpha: \alpha$ is an \mathcal{F}-ultrafilter on X with the countable intersection property $\}$. Then the topology on $v(X, \mathcal{F})$, taking sets of the form $F^{*}=\{\alpha \in$ $v(X, \mathcal{F}): F \in \alpha\}$ as a base for the closed sets, coincides with the subspace topology on $v(X, \mathcal{F})$ of $w(X, \mathcal{F}), v(X, \mathcal{F})$ is a realcompactification of X (called Wallman realcompactification $)([12]), v(X, \mathcal{F})=v\left(X, \mathcal{F}^{t}\right)$ and $w\left(X, \mathcal{F}^{t}\right)=\beta\left(v\left(X, \mathcal{F}^{t}\right)\right)$, where $\mathcal{F}^{t}=Z(v(X, \mathcal{F}))_{X}([3])$.

In a space (X, τ), the family of G_{δ}-sets on X forms a base for a topology τ_{δ} on X and for $A \subset X, \aleph_{1}-\mathrm{cl}_{X}(A)$ denotes the closure of A in $\left(X, \tau_{\delta}\right)$.
Theorem 1.2. A realcompactification (Y, j) of a space X is Wallman if and only if for non-empty zero-set Z in $Y, Z \cap X \neq \varnothing$. In this case, $Y=v(X, \mathcal{F})$ and $\mathcal{F}=Z(Y)_{X}$.
Proof. (\Leftarrow) Let $\mathcal{F}=Z(Y)_{X}$, then $\mathcal{F} \in \mathcal{L}(X)$. Note that $Z(\beta Y)_{X}=Z(Y)_{X}=\mathcal{F}$. Hence, there is a continuous map $g: w(X, \mathcal{F}) \rightarrow \beta Y$ with $g \circ w_{X}=\beta_{Y} \circ j$. Let A and B be zero-sets in $w(X, \mathcal{F})$ with $A \cap B \cap X=\varnothing$, then $A \cap X, B \cap X \in \mathcal{F}$. Hence there are C, D in $Z(Y)$ with $A \cap X=C \cap X$ and $B \cap X=D \cap X$. Since $C \cap D \cap X=\varnothing$ and $C \cap D \in Z(Y), C \cap D=\varnothing$ and hence $\mathrm{cl}_{\beta Y}(C) \cap \mathrm{cl}_{\beta Y}(D)=$ \varnothing. So cl $\operatorname{cl}_{\beta Y}(A \cap X) \cap \mathrm{cl}_{\beta Y}(B \cap X)=\varnothing$. By Urysohn's extension theorem, there is a continuous map $h: \beta Y \rightarrow w(X, \mathcal{F})$ such that $w_{X}=h \circ \beta_{Y} \circ j$ and so h is a homeomorphism.

Note that $\aleph_{1}-\mathrm{cl}_{\beta Y}(X) \subset \aleph_{1}-\mathrm{cl}_{\beta Y}(Y)$. Let $x \notin \aleph_{1}-\mathrm{cl}_{\beta Y}(X)$. Then there is a zero-set Z in βY such that $x \in Z$ and $Z \cap X=\varnothing$. Since $(S \cap Y) \cap X=\varnothing$, $Z \cap Y=\varnothing$. So $x \notin \aleph_{1}-\mathrm{cl}_{\beta Y}(Y)$. Hence $\aleph_{1}-\mathrm{cl}_{\beta Y}(X)=\aleph_{1}-\mathrm{cl}_{\beta Y}(Y)$. It is well-known that $v(X, \mathcal{F})=\aleph_{1}-\mathrm{cl}_{w(X, \mathcal{F})}(X)([1])$. Since $w(X, \mathcal{F})$ and βY are homeomorphic, $\aleph_{1}-\mathrm{cl}_{\beta Y}(Y)=v(X, \mathcal{F})$ and since Y is a realcompact space, $\aleph_{1}-\mathrm{cl}_{\beta Y}(Y)=Y$. So $Y=v(X, \mathcal{F})$.
(\Rightarrow) Since Y is a Wallman realcompactification of $X, Y=v(X, \mathcal{G})$ for some $\mathcal{G} \in \mathcal{L}(X)$. Then $v(X, \mathcal{G})=v\left(X, \mathcal{G}^{t}\right)$ and $\beta\left(v\left(X, \mathcal{G}^{t}\right)\right)=w\left(X, \mathcal{G}^{t}\right)$, where $\mathcal{G}^{t}=$ $Z(v(X, \mathcal{G}))_{X}([3])$. Hence there is a continuous map $f: w\left(X, \mathcal{G}^{t}\right) \rightarrow w(X, \mathcal{G})$ with $f \circ l=k \circ h$, where $h: v\left(X, \mathcal{G}^{t}\right) \rightarrow v(X, \mathcal{G})$ is a homeomorphism and $l: v\left(X, \mathcal{G}^{t}\right) \hookrightarrow$ $w\left(X, \mathcal{G}^{t}\right)$ and $k: v(X, \mathcal{G}) \hookrightarrow w(X, \mathcal{G})$ are dense embeddings. Take any non-empty zero-set Z in Y. Since $h^{-1}(Z)$ is a zero-set in $v\left(X, \mathcal{G}^{t}\right)$, there is a zero-set A in
$\beta\left(v\left(X, \mathcal{G}^{t}\right)\right)=w\left(X, \mathcal{G}^{t}\right)$ with $h^{-1}(Z)=A \cap v\left(X, \mathcal{G}^{t}\right)$. Since $h^{-1}(Z) \neq 0$, pick $\alpha \in A \cap v\left(X, \mathcal{G}^{t}\right)$. Then there is a countable family $\left\{Z_{n}: n \in \mathbb{N}\right\}$ of zero-set neighborhoods of α in $w\left(X, \mathcal{G}^{t}\right)$ such that $A=\bigcap Z_{n}$. For any $n \in \mathbb{N}, Z_{n} \cap X \in \mathcal{G}^{t}$ and hence $Z_{n} \cap X \in \alpha$. Since α has the countable intersection property, $A \cap X=$ $\left(\cap Z_{n}\right) \cap X \neq \varnothing$. Thus $h^{-1}(Z) \cap X=Z \cap X \neq \varnothing$.

2. v-LINDELÖF SPACES

Recall that a separating nest generated intersection ring \mathcal{F} on a space X is called complete if $Z(v(X, \mathcal{F}))_{X}=\mathcal{F}$. For a space $X, Z(X)$ is complete and $v(X, Z(X))=$ $v X$. For a paracompact (or separable) space $X, v X$ is Lindelöf if and only if every separating nest generated intersection ring on X is complete ([4], [5]).

Definition 2.1. A space X is called v-Lindelöf if $v X$ is Lindelöf.
A z-ultrafilter on a space X is called real if it has the countable intersection porperty.

Proposition 2.2. Let X be a space. Then the following are equivalent:
(a) X is an v-Lindelöf space,
(b) every z-filter on X with the countable intersection property is contained in a real z-ultrafilter on X, and
(c) every Wallman realcompactification of X is Lindelöf.

Proof. (a) \Rightarrow (b) Let \mathcal{F} be a z-filter on X with the countable intersection property, then $\mathcal{G}=\{Z \in Z(v X): Z \cap X \in \mathcal{G}\}$ is a z-filter on $v X$ with the countable intersection property. Since X is a v-Lindelöf space, $\bigcap \mathcal{G} \neq \varnothing$. Pick $\alpha \in \bigcap \mathcal{G}$. Then α is a real z-ultrafilter on X with $\mathcal{F} \subset \alpha$.
$(\mathrm{b}) \Rightarrow(\mathrm{c})$ Let (Y, j) be a Wallman realcompactification of X and \mathcal{F} a z-filter on Y with the countable intersection property. Let $f: v X \rightarrow Y$ be the continuous map with $f \circ v_{X}=j$. Since Y is a Wallman realcompactification of X, by Theorem 1.2, for any $F \in \mathcal{F}, F \cap \mathcal{F} \neq \varnothing$. Hence \mathcal{F}_{X} is a z-filter base on X with the countable intersection property. By (b), there is a real z-ultrafilter α on X with $\mathcal{F}_{X} \subset \alpha$. So for any $F \in \mathcal{F}, \alpha \in \operatorname{cl}_{v X}(F \cap X)$. Hence for any $F \in \mathcal{F}, f(\alpha) \in f\left(\mathrm{cl}_{v X}(F \cap X)\right) \subset$ $\operatorname{cl}_{Y}(f(F \cap X))=\operatorname{cl}_{Y}(F \cap X) \subset F$. So Y is Lindelöf.
(c) \Rightarrow (a) is trivial.

Every Lindelöf space is v-Lindelöf. If X is a pseudocompact space, then $v X=$ βX and hence X is a v-Lindelöf space. v-Lindelöf spaces are not productive and v-Lindelöf spaces are C-embedded hereditary.

Example 2.3. Let ω_{1} be the first uncountable ordinal and $D\left(\omega_{1}\right)$ the discrete space of cardinality ω_{1}. Let $S=D\left(\omega_{1}\right) \cup\{p\}$, topologized as follows. Each point of $D\left(\omega_{1}\right)$ is isolated and a subset G of S that contains p is open in S if and only if $|S \backslash G| \leq \aleph_{0}$. Then S is a zerodimensional Hausdorff space and hence Tychonoff. Let $\mathbb{N}^{*}=\mathbb{N} \cup\{\omega\}$ denote the one-point compactification of \mathbb{N} and $X=S \times \mathbb{N}^{*} \backslash\{(p, w)\}$. Then X is called Dieudonneé plank and $v X=S \times \mathbb{N}^{*}$ ([11]). Since S is Lindelöf, X is v-Lindelöf. But X is neither v-Lindelöf nor pseudocompact.

It is well-kmowm that for any $f \in C(X), \operatorname{cl}_{v X}(Z(f))=Z\left(f^{v}\right)$, where f^{v} is the extension of f to $v X([7])$.
Proposition 2.4. Let X be a v-Lindelöf space and A a zero-set in X. Then A is closed in $v X$ if and only if A is Lindelöf.

Proof. Suppose that A is Lindelöf. Let $p \in v X \backslash A$. If $p \in X$, then $p \notin \operatorname{cl}_{v X}(A)$. Suppose that $p \notin X$. For any $a \in A$, there is a cozero-sets neighborhood C_{a} of a in $v X$ such that $p \notin C_{a}$. Since A is Lindelöf, there is a countable subfamily \mathcal{U} of $\left\{C_{a}: a \in A\right\}$ with $A \subset \bigcup \mathcal{U}$. Let $C=\bigcup \mathcal{U}$ and $Z=v X \backslash C$. Then $p \in Z, Z$ is a zeroset in $v X$ and $A \cap Z=\varnothing$. Since X is C-embedded in $v X, \operatorname{cl}_{v X}(A) \cap \operatorname{cl}_{v X}(Z \cap X)=\varnothing$ and since $\operatorname{cl}_{v X}(Z \cap X)=Z, p \notin \operatorname{cl}_{v X}(A)$ and hence $A=\operatorname{cl}_{v X}(A)$. The converse is trivial.

Definition 2.5. Let X be a dense subspace of a space T, \mathcal{F} a z-filter on X and $p \in T$. Then \mathcal{F} converges to the limit p if every neighborhoods of p in T contains a member of \mathcal{F}.

Lemma 2.6 ([7]). Let X be a dense subspace of T. Then X is C-embedded in T if and only if every point of T is the limit of a unique real z-ultrafilter on X.

For any space X and $\mathcal{F} \subset 2^{X}$ let $\bigcap \operatorname{cl}_{X}(\mathcal{F})=\bigcap\left\{\mathrm{cl}_{X}(F): F \in \mathcal{F}\right\}$.
Theorem 2.7. Let X be a v-Lindelöf space. Then the following are equivalent:
(a) for any two disjoint zero-points in X, at least one of them is Lindelöf,
(b) $|v X \backslash X| \leq 1$, and
(c) for any space T with $X \subset T$, there is an embedding $f: v X \rightarrow v T$ such that $f(x)=x$ for all $x \in X$.

Proof. (a) \Rightarrow (b) Suppose that $2 \leq|v X \backslash X|$. Pick $p, q \in v X \backslash X$ with $p \neq q$. Since p and q are z-ultrafilters on X, there are disjoint zero-sets A, B in X such that $A \in p$ and $B \in q$. We may assume that A is Lindelöf. By Proposition 2.4, A is closed in $v X$. Note that $p \in \operatorname{cl}_{v X}(A) \backslash A$. This is a contradiction.
(b) \Rightarrow (a) Suppose that $v X \backslash X=\{p\}$. Take any disjoint zero-sets A, B in X. Then $\operatorname{cl}_{v X}(A) \cap \operatorname{cl}_{v X}(B)=\varnothing$ and hence $p \notin \operatorname{cl}_{v X}(A)$ or $p \notin \operatorname{cl}_{v X}(B)$. So $\mathrm{cl}_{v X}(A)=A$ or $\operatorname{cl}_{v X}(B)=B$. Hence A is Lindelöf or B is Lindelöf.
(b) \Rightarrow (c) Suppose that $v X \backslash X=\{p\}$. Take any space T with $X \subset T$. Then there is a continuous map $f: v X \rightarrow v T$ such that $f(x)=x$ for all $x \in X$ ([7]). Let $q=f(p)$ and $Y=X \cup\{q\}$. Then X is a dense subspace of Y. Let g be the corestriction of f to Y, then $g: v X \rightarrow Y$ is one-to-one, onto, and continuous.

We will show that g is a homeomorphism. Since $v X$ is Lindelöf, Y is a Lindelöf space and hence Y is a realcompactification of X. Since X is C-embedded in $v X$, there is a unique real z-ultrafilter \mathcal{A}^{p} on X such that p is a limit point of \mathcal{A}^{p}. Take any neighborhood V of q in Y. Then $g^{-1}(V)$ is a neighborhood of p in $v X$. Since p is a limit point of \mathcal{A}^{p}, there is $A \in \mathcal{A}^{p}$ with $A \subset g^{-1}(V)$ and so $g(A)=A \subset V$. Hence q is a limit point of \mathcal{A}^{p}. Suppose that \mathcal{F} is a real z-ultrafilter on X such that q is a limit point of \mathcal{F}. If $\bigcap \mathcal{F} \neq \varnothing$, then $\bigcap \mathcal{F}=\{x\}$ for some $x \in X$. Since $x \neq q$, there are disjoint zero-set neighborhoods C and D of x and q in Y, respectively. Then $C \cap X \in \mathcal{F}$ and $C \cap D \cap X=\varnothing$. Hence q is not a limit point of \mathcal{F} and so $\bigcap \mathcal{F}=\varnothing$. Since \mathcal{F} is real, $\mathrm{cl}_{v X}(\mathcal{F})=\left\{\mathrm{c}_{v X}(F): F \in \mathcal{F}\right\}$ is a z-filter on $v X$ with countable intersection property and since $v X$ is Lindelöf, $\bigcap \operatorname{cl}_{v X}(\mathcal{F}) \neq \varnothing$. Hence $\bigcap \mathrm{cl}_{v X}(\mathcal{F})=\{p\}$ and so $\mathcal{F}=\mathcal{A}^{p}$. Thus every point of Y is the limit of a unique real z-ultrafilter on X. By Lemma 2.6, X is C-embedded in Y and therefore, g is a homeomorphism.
$(\mathrm{c}) \Rightarrow(\mathrm{b})$ Suppose that there are $p, q \in v X \backslash X$ with $p \neq q$. Let $Y=X \cup\{p, q\}$ and $R=\{(x, x): x \in Y\} \cup\{(p, q),(q, p)\}$. Then R is an equivalence relation on Y. Let K be the quotient space Y / R and $\pi: Y \rightarrow K$ the quotient map. Clearly, K is a Tychonoff space and X is a dense subspace of K. By the assumption, there is an embedding $f: v X \rightarrow v K$ such that $f(x)=x$ for all $x \in X$. Since X is dense in Y
and $\left.\left(v_{K} \circ \pi\right)\right|_{X}=\left.f\right|_{X}, v_{K} \circ \pi=\left.f\right|_{Y}$. Since f is one-to-one and $p \neq q, f(p) \neq f(q)$ but $v_{K}(\pi(p))=\pi(p)=[p]=[q]=\pi(q)=v_{K}(\pi(q))$. This is a contradiction.

A subspace Y of a space X is z-embedded in X if for any zero-set A in Y, there is a zero-set Z in X with $A=Z \cap Y$. It is known that a space X is z-embedded in each of its compactifications if and only if for any two disjoint zero-sets in X, one of them is Lindelöf ([2]). Using this, we have the following:
Corollary 2.8. Let X be a v-Lindelöf space. Then $|v X \backslash X| \leq 1$ if and only if X is z-embedded in each of its compactifications.

3. Hewitt realcompactification of product spaces

The equality $v(X \times Y)=v X \times v Y$ is to be interpreted to mean that $X \times Y$ is C-embedded in $v X \times v Y$.

Lemma 3.1 ([6]). Let X and Y be spaces. Then $v(X \times Y)=v X \times v Y$ if and only if $X \times Y$ is C^{*}-embedded in $v X \times v Y$.
Theorem 3.2. Let X and Y be spaces such that $X \times Y$ is a v-Lindelöf spaces. Then $X \times Y$ is z-embedded in $v X \times v Y$ if and only if $v(X \times Y)=v X \times v Y$.
Proof. Suppose that $X \times Y$ is z-embedded in $v X \times v Y$. Since $v X \times v Y$ is a realcompact space, there is a continuous map $f: v(X \times Y) \rightarrow v X \times v Y$ such that $f((x, y))=(x, y)$ for all $(x, y) \in X \times Y$. Take any $(p, q) \in(v X \times v Y) \backslash(X \times Y)$. Then $\{(p, q)\}=\left(\bigcap \operatorname{cl}_{v X}(p)\right) \times\left(\bigcap \operatorname{cl}_{v X}(q)\right)$. Let \mathcal{F} be the z-filter on $X \times Y$ generated by $\{A \times B: A \in p, B \in q\}$. Then \mathcal{F} has the countable intersection property and $\bigcap \mathcal{F}=$ \varnothing. Since $X \times Y$ is v-Lindelöf, $\bigcap \operatorname{cl}_{v(X \times Y)}(\mathcal{F}) \neq \varnothing$. Pick $x \in \bigcap \operatorname{cl}_{v(X \times Y)}(\mathcal{F})$. Then for any $A \in p$ and $B \in q, f(x) \in f\left(\operatorname{cl}_{v(X \times Y)}(A \times B)\right) \subset \operatorname{cl}_{(v X \times v Y)}(f(A \times B))=$ $\mathrm{cl}_{(v X \times v Y)}(A \times B)=\operatorname{cl}_{v X}(A) \times \operatorname{cl}_{v Y}(B)$. Hence $f(x) \in\left(\bigcap \mathrm{cl}_{v X}(p)\right) \times\left(\bigcap \mathrm{cl}_{v X}(q)\right)$. So $f(x)=(p, q)$. Thus f is onto.

Take any zero-sets E, F in $X \times Y$ with $E \cap F=\varnothing$. Since $X \times Y$ is z-embedded in $v X \times v Y$, there are zero-sets C, D in $v X \times v Y$ with $E=C \cap(X \times Y)$ and $F=D \cap(X \times Y)$. Since $f^{-1}(C \cap D) \cap(X \times Y)=\varnothing$ and $f^{-1}(C \cap D)$ is a zero-set in $v(X \times Y), f^{-1}(C \cap D)=\varnothing$ and since f is onto, $C \cap D=\varnothing$. So $\operatorname{cl}_{(v X \times v Y)}(E) \cap$ $\operatorname{cl}_{(v X \times v Y)}(F)=\varnothing$. By Urysohn's extension theorem, $X \times Y$ is C^{*}-embedded in $v X \times v Y$. By Lemma 3.1, $v(X \times Y)=v X \times v Y$. The converse is trivial.
Definition 3.3. Let X and Y be spaces. Then $f: X \rightarrow Y$ is called z-closed if for any zero-set Z in $X, f(Z)$ is closed in Y.

Recall that a space X is called a P-space if every G_{δ}-set in X is open in X.
Remark 3.4. (1) If the projection $\pi_{X}: X \times Y \rightarrow X$ is z-closed, then X is a P-space or Y is a pseudocompact space ([11]). (2) The projection $\pi_{X}: X \times Y \rightarrow X$ is z-closed if and only if $X \times Y$ is C^{*}-embedded in $X \times \beta Y$ ([6]). (3) If $\operatorname{card}(X)$ or $\operatorname{card}(Y)$ is non-measurable and $X \times Y$ is C^{*}-embedded in $X \times \beta Y$, then $v(X \times Y)=v X \times v Y$ ([6]).
Theorem 3.5. Let X be a P-space and $X \times Y$ a v-Lindelöf space. If $v(X \times Y)=$ $v X \times v Y$, then the projection $\pi_{X}: X \times Y \rightarrow X$ is z-closed.

Proof. Take any zero-set A in $X \times Y$ and $x \notin \pi_{X}(A)$. Then $(\{x\} \times Y) \cap A=\varnothing$. We will show that $\{x\} \times Y$ is C-embedded in $X \times Y$. Take any continuous map $f:\{x\} \times Y \rightarrow \mathbb{R}$. Note that the map $h: Y \rightarrow\{x\} \times Y$, defined by $h(y)=(x, y)$, is a homeomorphism. Let $k=f \circ h$ and define a map $\underline{0}: X \rightarrow \mathbb{R}$ by $\underline{0}(x)=0$
for all $x \in X$. Then the map $l: X \times Y \rightarrow \mathbb{R}$, defined $l((z, y))=\underline{0}(z)+k(y)$, is continuous and $\left.l\right|_{\{x\} \times Y}=f$. Hence $\{x\} \times Y$ is C-embedded in $X \times Y$. Thus $\{x\} \times Y$ and A are completely separated in $X \times Y([7])$. Since $v(X \times Y)=v X \times v Y$, $(\{x\} \times v Y) \cap \mathrm{cl}_{v X \times v Y}(A)=\varnothing$. For any $y \in v Y$, there are open neighborhoods C_{y}, D_{y} of x, y in X, Y, respectively such that $\left(C_{y} \times D_{y}\right) \cap A=\varnothing$. Since $v Y$ is Lindelöf, there is a sequence $\left(y_{n}\right)$ in $v Y$ with $\{x\} \times v Y \subset \bigcup\left\{C_{y_{n}} \times D_{y_{n}}: n \in \mathbb{N}\right\}$. Let $Z=\bigcap\left\{C_{y_{n}}: n \in \mathbb{N}\right\}$. Since X is a P-space, Z is open in X and $\{x\} \times v Y \subset$ $Z \times\left(\bigcup\left(D_{y_{n}}: n \in \mathbb{N}\right\}\right)$. Moreover, $(Z \times v Y) \cap A=\varnothing$. Thus $Z \cap \pi_{X}(A)=\varnothing$ and so $x \notin \mathrm{cl}_{X}\left(\pi_{X}(A)\right)$. Therefore $\pi_{X}(A)$ is closed in X.
Corollary 3.6. Suppose that $X \times Y$ is a v-Lindelöf space such that $\operatorname{card}(X)$ or $\operatorname{card}(Y)$ is non-measurable and X is a P-space. Then π_{X} is z-closed if and only if $v(X \times Y)=v X \times v Y$.

REFERENCES

[1] R.A. Aló and H.L. Shapiro, Z-realcompactifications and normal bases, J. Austral. Math. Soc. 9 (1966), 489-495.
[2] R. Blair, Spaces in which special sets are Z-embedded, Canadian J. Math. 28 (1976), 673-690.
[3] J.L. Blasko, Complete bases and Wallman realcompactifications, Proc. Amer. Math. Soc. 75 (1979), 114-118.
[4] J.L. Blasko, Complete bases in topological spaces, Studia Sci. Math. Hung. 20 (1985), 49-54.
[5] J.L. Blasko, Complete bases in topological spaces, II, Studia Sci. Math. Hung. 24 (1989), 447-452.
[6] W.W. Comfort, On Hewitt realcompactification of a product space, Trans. Amer. Soc. 181 (1968), 107-118.
[7] L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, New York, 1960.
[8] Irving Glicksberg, Stone-Čech compactification of products, Trans. Amer. Math. Soc. 90 (1959), 369-382.
[9] H. Herrlich and M. Hušek, Some open categorical problems in TOP, Applied Categorical Structure 1 (1993), 1-19.
[10] W.G. Mcarthur, Hewitt realcompactifications of products, Canadian J. Math. 22 (1970), no. 3, 645-656.
[11] J. Porter and R.G. Woods, Extensions and absolutes of Hausdorff spaces, Springer, Berlin, 1988.
[12] A.K. Steiner and E.F. Steiner, Nested generated intersection rings in Tychonoff spaces, Trans. Amer. Math. Soc. 303 (1970), 779-804.

Department of Math. Education, Dankook University,
Seoul 140-714, Korea

[^0]: 1991 Mathematics Subject Classification. 54B10, 54C20, 54C45, 54D35, 54D60.

