УДК 515.12

v-LINDELÖF SPACES

CHANG IL KIM

Chang Il Kim. v-Lindelöf spaces, Matematychni Studii, 9(1998) 199-204.

The concept of v-Lindelöf space is introduced. It is shown that a space X is v-Lindelöf if and only if every Wallman realcompactification of X is Lindelöf and that if $X \times Y$ is a z-embedded v-Lindelöf subspace of $vX \times vY$, then $v(X \times Y) = vX \times vY$.

0. INTRODUCTION

All topological spaces discused in this paper are assumed to be Tychonoff. For any space X, $(\beta X, \beta_X)$ ((vX, v_X) , resp.) denotes the Stone-Čech compactification (Hewitt realcompactification, resp.) of X.

An important open question in the theory of Hewitt realcompactifications of Tychonoff spaces concerns when the equality $vX \times vY = v(X \times Y)$ is valid ([9]). Glicksberg ([8]) showed that for any infinite spaces X and Y, $\beta X \times \beta Y = \beta (X \times Y)$ if and only if $X \times Y$ is pseudocompact. Comfort ([6]) showed that if $X \times Y$ is C^* -embedded in $vX \times vY$, then $vX \times vY = v(X \times Y)$ and that if card(X) or card(Y) is non-measurable and $X \times Y$ is C^* -embedded in $X \times \beta Y$, then $vX \times vY = v(X \times Y)$. In [10], it is shown that $X \times Y$ is C^* -embedded in $X \times \beta Y$ if and only if the projection $\pi_X: X \times Y \to X$ is z-closed.

In this paper we introduce the concept of v-Lindelöf spaces. We first show that a space X is v-Lindelöf if and only if every Wallman realcompactification of X is Lindelöf and show that for any v-Lindelöf space X, $|vX \setminus X| \leq 1$ if and only if for any space T with $X \subset T$, $vX \subset vT$. Moreover, we will show that if $X \times Y$ is a z-embedded v-Lindelöf subspace of $vX \times vY$, then $v(X \times Y) = vX \times vY$ and that if $X \times Y$ is an v-Lindelöf space such that card(X) or card(Y) is non-measurable and X is a P-space, then $v(X \times Y) = vX \times vY$ if and only if the projection $\pi_X: X \times Y \to X$ iz z-closed. For the terminology, we refer to [7] and [11].

1. Realcompactifications

Recall that a space (Y, j) or simply Y is called a *compactification* (realcompactification, resp.) of a space X if $j: X \hookrightarrow Y$ is a dense embedding and Y is a compact (realcompact, resp.) space.

The ring of real-valued continuous functions on a space X is denoted by C(X)and $C^*(X)$ denotes the subring of bounded functions. A subspace S of a space X is said to be C-embedded in X if every function in C(S) extends to a function in C(X). C*-embedding is defined analogously. For a space X, βX is a unique

¹⁹⁹¹ Mathematics Subject Classification. 54B10, 54C20, 54C45, 54D35, 54D60.

CHANG IL KIM

realcompactification of X in which X is densely C^* -embedded and vX is a unique realcompactification of X in which X is densely C-embedded.

Definition 1.1 ([12]). Let X be a space and \mathcal{F} a family of closed sets in X. Then \mathcal{F} is called a separating nest generated intersection ring on X if

- (i) for each closed set H in X and $x \notin H$, there are disjoint sets in \mathcal{F} , one containing H and the other containing x,
- (ii) it is closed under finite unions and countable intersections, and
- (iii) for any $F \in \mathcal{F}$, there are sequences (F_n) and (H_n) in \mathcal{F} such that for any $n \in \mathbb{N}$, $X \setminus H_{n+1} \subset F_{n+1} \subset X \setminus H_n \subset F_n$ and $F = \bigcap F_n$.

For a space X, Z(X) denotes the set of zero-sets in $X, \mathcal{L}(X)$ the set of separating nest generated intersection rings on X and for any subspaces S of X and $\mathcal{F} \subset 2^X$, let $\mathcal{F}_S = \{F \cap S : F \in \mathcal{F}\}$. For a subspace S of a space X and $\mathcal{F} \in \mathcal{L}(X)$, $Z(X) \in \mathcal{L}(X)$ and $\mathcal{F}_S \in \mathcal{L}(S)$ ([12]).

Let X be a space and $\mathcal{F} \in \mathcal{L}(X)$. Then \mathcal{F} is a normal base on X ([1]). Let $(w(X, \mathcal{F}), w_X)$ be the Wallman compactification of X associated with \mathcal{F} ([1]). Then $\mathcal{F} = Z(w(X, \mathcal{F}))_X$ and if (Y, j) is a compactification of X such that $\mathcal{F} = Z(Y)_X$, then there is a continuous map $f: w(X, \mathcal{F}) \to Y$ with $f \circ w_X = j$ ([12]).

Let $v(X, \mathcal{F}) = \{\alpha : \alpha \text{ is an } \mathcal{F}\text{-ultrafilter on } X \text{ with the countable intersection property}\}$. Then the topology on $v(X, \mathcal{F})$, taking sets of the form $F^* = \{\alpha \in v(X, \mathcal{F}) : F \in \alpha\}$ as a base for the closed sets, coincides with the subspace topology on $v(X, \mathcal{F})$ of $w(X, \mathcal{F})$, $v(X, \mathcal{F})$ is a realcompactification of X (called Wallman realcompactification) ([12]), $v(X, \mathcal{F}) = v(X, \mathcal{F}^t)$ and $w(X, \mathcal{F}^t) = \beta(v(X, \mathcal{F}^t))$, where $\mathcal{F}^t = Z(v(X, \mathcal{F}))_X$ ([3]).

In a space (X, τ) , the family of G_{δ} -sets on X forms a base for a topology τ_{δ} on X and for $A \subset X$, \aleph_1 -cl_X(A) denotes the closure of A in (X, τ_{δ}) .

Theorem 1.2. A realcompactification (Y, j) of a space X is Wallman if and only if for non-empty zero-set Z in Y, $Z \cap X \neq \emptyset$. In this case, $Y = v(X, \mathcal{F})$ and $\mathcal{F} = Z(Y)_X$.

Proof. (\Leftarrow) Let $\mathcal{F} = Z(Y)_X$, then $\mathcal{F} \in \mathcal{L}(X)$. Note that $Z(\beta Y)_X = Z(Y)_X = \mathcal{F}$. Hence, there is a continuous map $g: w(X, \mathcal{F}) \to \beta Y$ with $g \circ w_X = \beta_Y \circ j$. Let A and B be zero-sets in $w(X, \mathcal{F})$ with $A \cap B \cap X = \emptyset$, then $A \cap X$, $B \cap X \in \mathcal{F}$. Hence there are C, D in Z(Y) with $A \cap X = C \cap X$ and $B \cap X = D \cap X$. Since $C \cap D \cap X = \emptyset$ and $C \cap D \in Z(Y), C \cap D = \emptyset$ and hence $\mathrm{cl}_{\beta Y}(C) \cap \mathrm{cl}_{\beta Y}(D) = \emptyset$. So $\mathrm{cl}_{\beta Y}(A \cap X) \cap \mathrm{cl}_{\beta Y}(B \cap X) = \emptyset$. By Urysohn's extension theorem, there is a continuous map $h: \beta Y \to w(X, \mathcal{F})$ such that $w_X = h \circ \beta_Y \circ j$ and so h is a homeomorphism.

Note that $\aleph_1 - \operatorname{cl}_{\beta Y}(X) \subset \aleph_1 - \operatorname{cl}_{\beta Y}(Y)$. Let $x \notin \aleph_1 - \operatorname{cl}_{\beta Y}(X)$. Then there is a zero-set Z in βY such that $x \in Z$ and $Z \cap X = \emptyset$. Since $(S \cap Y) \cap X = \emptyset$, $Z \cap Y = \emptyset$. So $x \notin \aleph_1 - \operatorname{cl}_{\beta Y}(Y)$. Hence $\aleph_1 - \operatorname{cl}_{\beta Y}(X) = \aleph_1 - \operatorname{cl}_{\beta Y}(Y)$. It is well-known that $v(X, \mathcal{F}) = \aleph_1 - \operatorname{cl}_{w(X, \mathcal{F})}(X)$ ([1]). Since $w(X, \mathcal{F})$ and βY are homeomorphic, $\aleph_1 - \operatorname{cl}_{\beta Y}(Y) = v(X, \mathcal{F})$ and since Y is a realcompact space, $\aleph_1 - \operatorname{cl}_{\beta Y}(Y) = Y$. So $Y = v(X, \mathcal{F})$.

 (\Rightarrow) Since Y is a Wallman realcompactification of X, $Y = v(X, \mathcal{G})$ for some $\mathcal{G} \in \mathcal{L}(X)$. Then $v(X, \mathcal{G}) = v(X, \mathcal{G}^t)$ and $\beta(v(X, \mathcal{G}^t)) = w(X, \mathcal{G}^t)$, where $\mathcal{G}^t = Z(v(X, \mathcal{G}))_X$ ([3]). Hence there is a continuous map $f: w(X, \mathcal{G}^t) \to w(X, \mathcal{G})$ with $f \circ l = k \circ h$, where $h: v(X, \mathcal{G}^t) \to v(X, \mathcal{G})$ is a homeomorphism and $l: v(X, \mathcal{G}^t) \hookrightarrow w(X, \mathcal{G}^t)$ and $k: v(X, \mathcal{G}) \hookrightarrow w(X, \mathcal{G})$ are dense embeddings. Take any non-empty zero-set Z in Y. Since $h^{-1}(Z)$ is a zero-set in $v(X, \mathcal{G}^t)$, there is a zero-set A in

 $\beta(v(X,\mathcal{G}^t)) = w(X,\mathcal{G}^t)$ with $h^{-1}(Z) = A \cap v(X,\mathcal{G}^t)$. Since $h^{-1}(Z) \neq 0$, pick $\alpha \in A \cap v(X,\mathcal{G}^t)$. Then there is a countable family $\{Z_n : n \in \mathbb{N}\}$ of zero-set neighborhoods of α in $w(X,\mathcal{G}^t)$ such that $A = \bigcap Z_n$. For any $n \in \mathbb{N}, Z_n \cap X \in \mathcal{G}^t$ and hence $Z_n \cap X \in \alpha$. Since α has the countable intersection property, $A \cap X = (\bigcap Z_n) \cap X \neq \emptyset$. Thus $h^{-1}(Z) \cap X = Z \cap X \neq \emptyset$.

2. v-Lindelöf spaces

Recall that a separating nest generated intersection ring \mathcal{F} on a space X is called *complete* if $Z(v(X, \mathcal{F}))_X = \mathcal{F}$. For a space X, Z(X) is complete and v(X, Z(X)) = vX. For a paracompact (or separable) space X, vX is Lindelöf if and only if every separating nest generated intersection ring on X is complete ([4], [5]).

Definition 2.1. A space X is called v-Lindelöf if vX is Lindelöf.

A z-ultrafilter on a space X is called *real* if it has the countable intersection porperty.

Proposition 2.2. Let X be a space. Then the following are equivalent:

- (a) X is an v-Lindelöf space,
- (b) every z-filter on X with the countable intersection property is contained in a real z-ultrafilter on X, and
- (c) every Wallman realcompactification of X is Lindelöf.

Proof. (a) \Rightarrow (b) Let \mathcal{F} be a z-filter on X with the countable intersection property, then $\mathcal{G} = \{Z \in Z(vX) : Z \cap X \in \mathcal{G}\}$ is a z-filter on vX with the countable intersection property. Since X is a v-Lindelöf space, $\bigcap \mathcal{G} \neq \emptyset$. Pick $\alpha \in \bigcap \mathcal{G}$. Then α is a real z-ultrafilter on X with $\mathcal{F} \subset \alpha$.

 $(b)\Rightarrow(c)$ Let (Y,j) be a Wallman realcompactification of X and \mathcal{F} a z-filter on Y with the countable intersection property. Let $f:vX \to Y$ be the continuous map with $f \circ v_X = j$. Since Y is a Wallman realcompactification of X, by Theorem 1.2, for any $F \in \mathcal{F}, F \cap \mathcal{F} \neq \emptyset$. Hence \mathcal{F}_X is a z-filter base on X with the countable intersection property. By (b), there is a real z-ultrafilter α on X with $\mathcal{F}_X \subset \alpha$. So for any $F \in \mathcal{F}, \alpha \in cl_{vX}(F \cap X)$. Hence for any $F \in \mathcal{F}, f(\alpha) \in f(cl_{vX}(F \cap X)) \subset$ $cl_Y(f(F \cap X)) = cl_Y(F \cap X) \subset F$. So Y is Lindelöf.

 $(c) \Rightarrow (a)$ is trivial.

Every Lindelöf space is v-Lindelöf. If X is a pseudocompact space, then $vX = \beta X$ and hence X is a v-Lindelöf space. v-Lindelöf spaces are not productive and v-Lindelöf spaces are C-embedded hereditary.

Example 2.3. Let ω_1 be the first uncountable ordinal and $D(\omega_1)$ the discrete space of cardinality ω_1 . Let $S = D(\omega_1) \cup \{p\}$, topologized as follows. Each point of $D(\omega_1)$ is isolated and a subset G of S that contains p is open in S if and only if $|S \setminus G| \leq \aleph_0$. Then S is a zerodimensional Hausdorff space and hence Tychonoff. Let $\mathbb{N}^* = \mathbb{N} \cup \{\omega\}$ denote the one-point compactification of \mathbb{N} and $X = S \times \mathbb{N}^* \setminus \{(p, w)\}$. Then X is called *Dieudonneé plank* and $vX = S \times \mathbb{N}^*$ ([11]). Since S is Lindelöf, X is v-Lindelöf. But X is neither v-Lindelöf nor pseudocompact.

It is well-knowm that for any $f \in C(X)$, $\operatorname{cl}_{vX}(Z(f)) = Z(f^v)$, where f^v is the extension of f to vX([7]).

Proposition 2.4. Let X be a v-Lindelöf space and A a zero-set in X. Then A is closed in vX if and only if A is Lindelöf.

CHANG IL KIM

Proof. Suppose that A is Lindelöf. Let $p \in vX \setminus A$. If $p \in X$, then $p \notin \operatorname{cl}_{vX}(A)$. Suppose that $p \notin X$. For any $a \in A$, there is a cozero-sets neighborhood C_a of a in vX such that $p \notin C_a$. Since A is Lindelöf, there is a countable subfamily \mathcal{U} of $\{C_a : a \in A\}$ with $A \subset \bigcup \mathcal{U}$. Let $C = \bigcup \mathcal{U}$ and $Z = vX \setminus C$. Then $p \in Z$, Z is a zeroset in vX and $A \cap Z = \emptyset$. Since X is C-embedded in vX, $\operatorname{cl}_{vX}(A) \cap \operatorname{cl}_{vX}(Z \cap X) = \emptyset$ and since $\operatorname{cl}_{vX}(Z \cap X) = Z$, $p \notin \operatorname{cl}_{vX}(A)$ and hence $A = \operatorname{cl}_{vX}(A)$. The converse is trivial.

Definition 2.5. Let X be a dense subspace of a space T, \mathcal{F} a z-filter on X and $p \in T$. Then \mathcal{F} converges to the limit p if every neighborhoods of p in T contains a member of \mathcal{F} .

Lemma 2.6 ([7]). Let X be a dense subspace of T. Then X is C-embedded in T if and only if every point of T is the limit of a unique real z-ultrafilter on X.

For any space X and $\mathcal{F} \subset 2^X$ let $\bigcap \operatorname{cl}_X(\mathcal{F}) = \bigcap \{\operatorname{cl}_X(F) : F \in \mathcal{F}\}.$

Theorem 2.7. Let X be a v-Lindelöf space. Then the following are equivalent: (a) for any two disjoint zero-points in X, at least one of them is Lindelöf,

- (b) $|vX \setminus X| \leq 1$, and
- (c) for any space T with $X \subset T$, there is an embedding $f: vX \to vT$ such that f(x) = x for all $x \in X$.

Proof. (a) \Rightarrow (b) Suppose that $2 \leq |vX \setminus X|$. Pick $p, q \in vX \setminus X$ with $p \neq q$. Since p and q are z-ultrafilters on X, there are disjoint zero-sets A, B in X such that $A \in p$ and $B \in q$. We may assume that A is Lindelöf. By Proposition 2.4, A is closed in vX. Note that $p \in cl_{vX}(A) \setminus A$. This is a contradiction.

 $(b) \Rightarrow (a)$ Suppose that $vX \setminus X = \{p\}$. Take any disjoint zero-sets A, B in X. Then $\operatorname{cl}_{vX}(A) \cap \operatorname{cl}_{vX}(B) = \emptyset$ and hence $p \notin \operatorname{cl}_{vX}(A)$ or $p \notin \operatorname{cl}_{vX}(B)$. So $\operatorname{cl}_{vX}(A) = A$ or $\operatorname{cl}_{vX}(B) = B$. Hence A is Lindelöf or B is Lindelöf.

(b) \Rightarrow (c) Suppose that $vX \setminus X = \{p\}$. Take any space T with $X \subset T$. Then there is a continuous map $f: vX \to vT$ such that f(x) = x for all $x \in X$ ([7]). Let q = f(p) and $Y = X \cup \{q\}$. Then X is a dense subspace of Y. Let g be the corestriction of f to Y, then $g: vX \to Y$ is one-to-one, onto, and continuous.

We will show that g is a homeomorphism. Since vX is Lindelöf, Y is a Lindelöf space and hence Y is a realcompactification of X. Since X is C-embedded in vX, there is a unique real z-ultrafilter \mathcal{A}^p on X such that p is a limit point of \mathcal{A}^p . Take any neighborhood V of q in Y. Then $g^{-1}(V)$ is a neighborhood of p in vX. Since p is a limit point of \mathcal{A}^p , there is $A \in \mathcal{A}^p$ with $A \subset g^{-1}(V)$ and so $g(A) = A \subset V$. Hence q is a limit point of \mathcal{A}^p . Suppose that \mathcal{F} is a real z-ultrafilter on X such that q is a limit point of \mathcal{F} . If $\bigcap \mathcal{F} \neq \emptyset$, then $\bigcap \mathcal{F} = \{x\}$ for some $x \in X$. Since $x \neq q$, there are disjoint zero-set neighborhoods C and D of x and q in Y, respectively. Then $C \cap X \in \mathcal{F}$ and $C \cap D \cap X = \emptyset$. Hence q is not a limit point of \mathcal{F} and so $\bigcap \mathcal{F} = \emptyset$. Since \mathcal{F} is real, $\operatorname{cl}_{vX}(\mathcal{F}) = \{\operatorname{cl}_{vX}(F) : F \in \mathcal{F}\}$ is a z-filter on vX with countable intersection property and since vX is Lindelöf, $\bigcap \operatorname{cl}_{vX}(\mathcal{F}) \neq \emptyset$. Hence $\bigcap \operatorname{cl}_{vX}(\mathcal{F}) = \{p\}$ and so $\mathcal{F} = \mathcal{A}^p$. Thus every point of Y is the limit of a unique real z-ultrafilter on X. By Lemma 2.6, X is C-embedded in Y and therefore, g is a homeomorphism.

(c) \Rightarrow (b) Suppose that there are $p, q \in vX \setminus X$ with $p \neq q$. Let $Y = X \cup \{p,q\}$ and $R = \{(x,x) : x \in Y\} \cup \{(p,q), (q,p)\}$. Then R is an equivalence relation on Y. Let K be the quotient space Y/R and $\pi: Y \to K$ the quotient map. Clearly, K is a Tychonoff space and X is a dense subspace of K. By the assumption, there is an embedding $f: vX \to vK$ such that f(x) = x for all $x \in X$. Since X is dense in Y and $(v_K \circ \pi)|_X = f|_X$, $v_K \circ \pi = f|_Y$. Since f is one-to-one and $p \neq q$, $f(p) \neq f(q)$ but $v_K(\pi(p)) = \pi(p) = [p] = [q] = \pi(q) = v_K(\pi(q))$. This is a contradiction.

A subspace Y of a space X is z-embedded in X if for any zero-set A in Y, there is a zero-set Z in X with $A = Z \cap Y$. It is known that a space X is z-embedded in each of its compactifications if and only if for any two disjoint zero-sets in X, one of them is Lindelöf ([2]). Using this, we have the following:

Corollary 2.8. Let X be a v-Lindelöf space. Then $|vX \setminus X| \le 1$ if and only if X is z-embedded in each of its compactifications.

3. Hewitt realcompactification of product spaces

The equality $v(X \times Y) = vX \times vY$ is to be interpreted to mean that $X \times Y$ is *C*-embedded in $vX \times vY$.

Lemma 3.1 ([6]). Let X and Y be spaces. Then $v(X \times Y) = vX \times vY$ if and only if $X \times Y$ is C^* -embedded in $vX \times vY$.

Theorem 3.2. Let X and Y be spaces such that $X \times Y$ is a v-Lindelöf spaces. Then $X \times Y$ is z-embedded in $vX \times vY$ if and only if $v(X \times Y) = vX \times vY$.

Proof. Suppose that $X \times Y$ is z-embedded in $vX \times vY$. Since $vX \times vY$ is a real compact space, there is a continuous map $f:v(X \times Y) \to vX \times vY$ such that f((x,y)) = (x,y) for all $(x,y) \in X \times Y$. Take any $(p,q) \in (vX \times vY) \setminus (X \times Y)$. Then $\{(p,q)\} = (\bigcap \operatorname{cl}_{vX}(p)) \times (\bigcap \operatorname{cl}_{vX}(q))$. Let \mathcal{F} be the z-filter on $X \times Y$ generated by $\{A \times B : A \in p, B \in q\}$. Then \mathcal{F} has the countable intersection property and $\bigcap \mathcal{F} = \emptyset$. Since $X \times Y$ is v-Lindelöf, $\bigcap \operatorname{cl}_{v(X \times Y)}(\mathcal{F}) \neq \emptyset$. Pick $x \in \bigcap \operatorname{cl}_{v(X \times Y)}(\mathcal{F})$. Then for any $A \in p$ and $B \in q$, $f(x) \in f(\operatorname{cl}_{v(X \times Y)}(A \times B)) \subset \operatorname{cl}_{(vX \times vY)}(f(A \times B)) = \operatorname{cl}_{(vX \times vY)}(A \times B) = \operatorname{cl}_{vX}(A) \times \operatorname{cl}_{vY}(B)$. Hence $f(x) \in (\bigcap \operatorname{cl}_{vX}(p)) \times (\bigcap \operatorname{cl}_{vX}(q))$. So f(x) = (p,q). Thus f is onto.

Take any zero-sets E, F in $X \times Y$ with $E \cap F = \emptyset$. Since $X \times Y$ is z-embedded in $vX \times vY$, there are zero-sets C, D in $vX \times vY$ with $E = C \cap (X \times Y)$ and $F = D \cap (X \times Y)$. Since $f^{-1}(C \cap D) \cap (X \times Y) = \emptyset$ and $f^{-1}(C \cap D)$ is a zero-set in $v(X \times Y), f^{-1}(C \cap D) = \emptyset$ and since f is onto, $C \cap D = \emptyset$. So $cl_{(vX \times vY)}(E) \cap$ $cl_{(vX \times vY)}(F) = \emptyset$. By Urysohn's extension theorem, $X \times Y$ is C^* -embedded in $vX \times vY$. By Lemma 3.1, $v(X \times Y) = vX \times vY$. The converse is trivial.

Definition 3.3. Let X and Y be spaces. Then $f: X \to Y$ is called *z*-closed if for any zero-set Z in X, f(Z) is closed in Y.

Recall that a space X is called a *P*-space if every G_{δ} -set in X is open in X.

Remark 3.4. (1) If the projection $\pi_X: X \times Y \to X$ is z-closed, then X is a P-space or Y is a pseudocompact space ([11]). (2) The projection $\pi_X: X \times Y \to X$ is z-closed if and only if $X \times Y$ is C^* -embedded in $X \times \beta Y$ ([6]). (3) If card(X) or card(Y) is non-measurable and $X \times Y$ is C^* -embedded in $X \times \beta Y$, then $v(X \times Y) = vX \times vY$ ([6]).

Theorem 3.5. Let X be a P-space and $X \times Y$ a v-Lindelöf space. If $v(X \times Y) = vX \times vY$, then the projection $\pi_X: X \times Y \to X$ is z-closed.

Proof. Take any zero-set A in $X \times Y$ and $x \notin \pi_X(A)$. Then $(\{x\} \times Y) \cap A = \emptyset$. We will show that $\{x\} \times Y$ is C-embedded in $X \times Y$. Take any continuous map $f: \{x\} \times Y \to \mathbb{R}$. Note that the map $h: Y \to \{x\} \times Y$, defined by h(y) = (x, y), is a homeomorphism. Let $k = f \circ h$ and define a map $\underline{0}: X \to \mathbb{R}$ by $\underline{0}(x) = 0$ CHANG IL KIM

for all $x \in X$. Then the map $l: X \times Y \to \mathbb{R}$, defined $l((z,y)) = \underline{0}(z) + k(y)$, is continuous and $l|_{\{x\} \times Y} = f$. Hence $\{x\} \times Y$ is *C*-embedded in $X \times Y$. Thus $\{x\} \times Y$ and *A* are completely separated in $X \times Y$ ([7]). Since $v(X \times Y) = vX \times vY$, $(\{x\} \times vY) \cap cl_{vX \times vY}(A) = \emptyset$. For any $y \in vY$, there are open neighborhoods C_y, D_y of x, y in X, Y, respectively such that $(C_y \times D_y) \cap A = \emptyset$. Since vY is Lindelöf, there is a sequence (y_n) in vY with $\{x\} \times vY \subset \bigcup \{C_{y_n} \times D_{y_n} : n \in \mathbb{N}\}$. Let $Z = \bigcap \{C_{y_n} : n \in \mathbb{N}\}$. Since X is a P-space, Z is open in X and $\{x\} \times vY \subset$ $Z \times (\bigcup (D_{y_n} : n \in \mathbb{N}\})$. Moreover, $(Z \times vY) \cap A = \emptyset$. Thus $Z \cap \pi_X(A) = \emptyset$ and so $x \notin cl_X(\pi_X(A))$. Therefore $\pi_X(A)$ is closed in X.

Corollary 3.6. Suppose that $X \times Y$ is a v-Lindelöf space such that card(X) or card(Y) is non-measurable and X is a P-space. Then π_X is z-closed if and only if $v(X \times Y) = vX \times vY$.

REFERENCES

- R.A. Aló and H.L. Shapiro, Z-realcompactifications and normal bases, J. Austral. Math. Soc. 9 (1966), 489-495.
- [2] R. Blair, Spaces in which special sets are Z-embedded, Canadian J. Math. 28 (1976), 673-690.
- [3] J.L. Blasko, Complete bases and Wallman realcompactifications, Proc. Amer. Math. Soc. 75 (1979), 114-118.
- [4] J.L. Blasko, Complete bases in topological spaces, Studia Sci. Math. Hung. 20 (1985), 49–54.
- [5] J.L. Blasko, Complete bases in topological spaces, II, Studia Sci. Math. Hung. 24 (1989), 447-452.
- [6] W.W. Comfort, On Hewitt realcompactification of a product space, Trans. Amer. Soc. 181 (1968), 107–118.
- [7] L. Gillman and M. Jerison, *Rings of continuous functions*, Van Nostrand, Princeton, New York, 1960.
- [8] Irving Glicksberg, Stone-Čech compactification of products, Trans. Amer. Math. Soc. 90 (1959), 369-382.
- [9] H. Herrlich and M. Hušek, Some open categorical problems in TOP, Applied Categorical Structure 1 (1993), 1-19.
- [10] W.G. Mcarthur, Hewitt realcompactifications of products, Canadian J. Math. 22 (1970), no. 3, 645–656.
- [11] J. Porter and R.G. Woods, Extensions and absolutes of Hausdorff spaces, Springer, Berlin, 1988.
- [12] A.K. Steiner and E.F. Steiner, Nested generated intersection rings in Tychonoff spaces, Trans. Amer. Math. Soc. 303 (1970), 779-804.

Department of Math. Education, Dankook University, Seoul 140-714, Korea

Received 15.09.97