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The concept of v-Lindel6f space is introduced. It is shown that a space X is v-
Lindel6f if and only if every Wallman realcompactification of X is Lindel6f and that
if X XY is a z-embedded v-Lindel6f subspace of v.X xvY’, then v(X XY) = v X xvY.

0. INTRODUCTION

All topological spaces discused in this paper are assumed to be Tychonoff. For
any space X, (BX, Bx) ((vX,vx), resp.) denotes the Stone-Cech compactification
(Hewitt realcompactification, resp.) of X.

An important open question in the theory of Hewitt realcompactifications of
Tychonoff spaces concerns when the equality vX x vY = v(X x Y) is valid ([9]).
Glicksberg ([8]) showed that for any infinite spaces X and Y, BX x BY = (X xY)
if and only if X x Y is pseudocompact. Comfort ([6]) showed that if X x Y is C*-
embedded in vX xvY, then vX xvY = v(X xY) and that if card(X) or card(Y') is
non-measurable and X x Y is C*-embedded in X x 8Y, then v X xvY = v(X xY).
In [10], it is shown that X xY is C*-embedded in X x 8Y if and only if the projection
mx: X XY — X is z-closed.

In this paper we introduce the concept of v-Lindel6f spaces. We first show that
a space X is v-Lindelof if and only if every Wallman realcompactification of X is
Lindel6f and show that for any v-Lindelof space X, [vX \ X| < 1 if and only if
for any space T with X C T, vX C vT. Moreover, we will show that if X x Y is
a z-embedded v-Lindel6f subspace of v X x vY, then v(X xY) = vX xvY and that
if X x Y is an v-Lindeldf space such that card(X) or card(Y) is non-measurable
and X is a P-space, then v(X x Y) = vX X vY if and only if the projection
mx:X xY — X iz z-closed. For the terminology, we refer to [7] and [11].

1. REALCOMPACTIFICATIONS

Recall that a space (Y, j) or simply Y is called a compactification (realcompacti-
fication, resp.) of a space X if j: X — Y is a dense embedding and Y is a compact
(realcompact, resp.) space.

The ring of real-valued continuous functions on a space X is denoted by C(X)
and C*(X) denotes the subring of bounded functions. A subspace S of a space X
is said to be C-embedded in X if every function in C(S) extends to a function
in C(X). C*-embedding is defined analogously. For a space X, X is a unique

1991 Mathematics Subject Classification. 54B10, 54C20, 54C45, 54D35, 54D60.

Typeset by AMS-TEX



200 CHANG IL KIM

realcompactification of X in which X is densely C*-embedded and v.X is a unique
realcompactification of X in which X is densely C-embedded.

Definition 1.1 ([12]). Let X be a space and F a family of closed sets in X. Then
F is called a separating nest generated intersection ring on X if
(i) for each closed set H in X and x ¢ H, there are disjoint sets in F, one contain-
ing H and the other containing z,
(ii) it is closed under finite unions and countable intersections, and
(iii) for any F' € F, there are sequences (F,) and (H,,) in F such that for any n € N,
X\H, 1 CF,y1 CX\H,CF,and F=(F,.

For a space X, Z(X) denotes the set of zero-sets in X, £(X) the set of separating
nest generated intersection rings on X and for any subspaces S of X and F C 2X,
let Fs = {FNS : F € F}. For a subspace S of a space X and F € L(X),
Z(X) e L(X) and Fg € L(S) ([12]).

Let X be a space and F € L(X). Then F is a normal base on X ([1]). Let
(w(X,F),wx) be the Wallman compactification of X associated with F ([1]). Then
F=Z(w(X, f))X and if (Y, j) is a compactification of X such that F = Z(Y)x,
then there is a continuous map f:w(X,F) — Y with fowx = j ([12]).

Let v(X,F) = {a : a is an F-ultrafilter on X with the countable intersection
property}. Then the topology on v(X,F), taking sets of the form F* = {« €
v(X,F) : F € a} as a base for the closed sets, coincides with the subspace topology
on v(X,F) of w(X,F), v(X,F) is a realcompactification of X (called Wallman re-
alcompactification) ([12]), v(X,F) = v(X, F') and w(X, F*) = B(v(X, F")), where
Ft=Zw(X,F)) (3]

In a space (X, 7), the family of Gs-sets on X forms a base for a topology 75 on X
and for A C X, Ny-clx(A) denotes the closure of A in (X, 75).

Theorem 1.2. A realcompactification (Y,j) of a space X is Wallman if and only
if for non-empty zero-set Z in'Y, ZNX # . In this case, Y = v(X,F) and
F=7Z(Y)x.

Proof. (<) Let F = Z(Y)x, then F € L£(X). Note that Z(8Y)x = Z(Y)x = F.
Hence, there is a continuous map ¢: w(X,F) — BY with gowx = fy oj. Let A
and B be zero-sets in w(X,F) with ANBNX = @, then ANX, BNX € F.
Hence there are C, D in Z(Y) with ANX =CNX and BNX = DN X. Since
CNnDNX =@and CND e Z(Y), CND = @ and hence clgy (C) Nclgy (D) =
@. So clgy (AN X)Nclgy(BNX) = @. By Urysohn’s extension theorem, there
is a continuous map h: Y — w(X,F) such that wx = ho fy oj and so h is
a homeomorphism.

Note that Nj-clgy (X) C Ry-clgy(Y). Let x ¢ Nj-clgy(X). Then there is
a zero-set Z in BY such that x € Z and ZNX = @. Since (SNY)NX = g,
ZNY =@. Soz ¢ Ny-clgy (V). Hence Ny-clgy (X) = Ny-clgy (V). It is well-known
that v(X,F) = R;-clyx,7)(X) ([1]). Since w(X,F) and BY are homeomorphic,
Ni-clgy (Y) = v(X,F) and since Y is a realcompact space, Ri-clgy (Y) =Y. So
Y =v(X,F).

(=) Since Y is a Wallman realcompactification of X, Y = v(X,G) for some
G € L(X). Then v(X,G) = v(X,¢G") and B(v(X,G")) = w(X,G"), where G' =
Z(v(X, g))X ([3]). Hence there is a continuous map f:w(X,G") — w(X,§G) with
fol=koh,where h:v(X,G") — v(X,G) is a homeomorphism and : v(X,G") <
w(X,G") and k:v(X,G) — w(X,G) are dense embeddings. Take any non-empty
zero-set Z in Y. Since h™1(Z) is a zero-set in v(X,G?), there is a zero-set A in
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B(v(X,6") = w(X,G") with h™1(Z) = Anwv(X,G"). Since h™'(Z) # 0, pick
a € ANwuv(X,G"). Then there is a countable family {Z,, : n € N} of zero-set
neighborhoods of « in w(X,G") such that A =(\Z,. Foranyn €N, Z, N X € G*

and hence Z, N X € «a. Since « has the countable intersection property, AN X =
NZ)NX #@. Thus h " H(Z)NX =ZnX # @.

2. v-LINDELOF SPACES

Recall that a separating nest generated intersection ring F on a space X is called
complete if Z(v(X, F)), = F. For aspace X, Z(X) is complete and v(X, Z(X)) =
vX. For a paracompact (or separable) space X, vX is Lindeldf if and only if every
separating nest generated intersection ring on X is complete ([4], [5]).

Definition 2.1. A space X is called v-Lindeldf if vX is Lindelof.

A z-ultrafilter on a space X is called real if it has the countable intersection
porperty.

Proposition 2.2. Let X be a space. Then the following are equivalent:
(a) X is an v-Lindelof space,
(b) every z-filter on X with the countable intersection property is contained in a real
z-ultrafilter on X, and
(c) every Wallman realcompactification of X is Lindeldf.

Proof. (a)=(b) Let F be a z-filter on X with the countable intersection property,
then G = {Z € Z(vX) : ZN X € G} is a zfilter on vX with the countable
intersection property. Since X is a v-Lindelof space, (G # @. Pick a € (1 G. Then
« is a real z-ultrafilter on X with F C a.

(b)=>(c) Let (Y, j) be a Wallman realcompactification of X and F a z-filter on Y
with the countable intersection property. Let f:vX — Y be the continuous map
with fowvx = 7. Since Y is a Wallman realcompactification of X, by Theorem 1.2,
for any ' € F, FNF # @. Hence Fx is a z-filter base on X with the countable
intersection property. By (b), there is a real z-ultrafilter & on X with Fx C a. So
for any F € F, a € clyx (F N X). Hence for any F € F, f(a) € f(cl,x(FNX)) C
cy (f(FNX))=cy(FNX)CF.SoY is Lindeldf.

(c)=(a) is trivial.

Every Lindelof space is v-Lindelof. If X is a pseudocompact space, then v.X =
BX and hence X is a v-Lindeldf space. v-Lindelof spaces are not productive and
v-Lindel6f spaces are C-embedded hereditary.

Example 2.3. Let w; be the first uncountable ordinal and D(w;) the discrete
space of cardinality wy. Let S = D(wy) U {p}, topologized as follows. Each point
of D(wy) is isolated and a subset G of S that contains p is open in S if and only if
|S\G| < Ng. Then S is a zerodimensional Hausdorff space and hence Tychonoff. Let
N* = NU{w} denote the one-point compactification of N and X = SxN*\{(p, w)}.
Then X is called Dieudonneé plank and vX = S x N* ([11]). Since S is Lindel6f,
X is v-Lindel6f. But X is neither v-Lindel6f nor pseudocompact.

It is well-kmowm that for any f € C(X), clyx (Z(f)) = Z(f"), where f¥ is
the extension of f to vX ([7]).

Proposition 2.4. Let X be a v-Lindeldf space and A a zero-set in X. Then A is
closed in vX if and only if A is Lindeldf.
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Proof. Suppose that A is Lindelof. Let p € vX \ A. If p € X, then p ¢ cl,x(A).
Suppose that p ¢ X. For any a € A, there is a cozero-sets neighborhood C, of a
in vX such that p ¢ C,. Since A is Lindeldf, there is a countable subfamily U of
{Co:ae€ A} with AC JU. Let C = JU and Z = vX\C. Then p € Z, Z is a zero-
set in vX and ANZ = @. Since X is C-embedded in v.X, cl,x (A)Ncl,x (ZNX) = &
and since cl,x(ZNX) =Z, p ¢ clyx(A) and hence A = cl,x(A). The converse is
trivial.

Definition 2.5. Let X be a dense subspace of a space T, F a z-filter on X and
p € T. Then F converges to the limit p if every neighborhoods of p in T' contains
a member of F.

Lemma 2.6 ([7]). Let X be a dense subspace of T. Then X is C-embedded in T
if and only if every point of T is the limit of a unique real z-ultrafilter on X.

For any space X and F C 2% let clx(F) = {clx(F) : F € F}.

Theorem 2.7. Let X be a v-Lindeldf space. Then the following are equivalent:
(a) for any two disjoint zero-points in X, at least one of them is Lindeldf,
(b) [vX \ X| <1, and
(c) for any space T with X C T, there is an embedding f:vX — vT such that
flx) ==z for allz € X.

Proof. (a)=-(b) Suppose that 2 < |[vX \ X|. Pick p,q € vX \ X with p # ¢. Since p
and q are z-ultrafilters on X, there are disjoint zero-sets A, B in X such that A € p
and B € q. We may assume that A is Lindel6f. By Proposition 2.4, A is closed
in vX. Note that p € cl,x(A) \ A. This is a contradiction.

(b)=-(a) Suppose that v X\ X = {p}. Take any disjoint zero-sets A, B in X. Then
clyx(A)Nelyx(B) = @ and hence p ¢ cl,x(A) or p ¢ cl,x(B). So cl,x(A4) = A or
cly,x(B) = B. Hence A is Lindel6f or B is Lindel6f.

(b)=-(c) Suppose that vX \ X = {p}. Take any space T" with X C T. Then
there is a continuous map f:vX — o7 such that f(z) = « for all x € X ([7]).
Let ¢ = f(p) and Y = X U{q}. Then X is a dense subspace of Y. Let g be
the corestriction of f to Y, then g:vX — Y is one-to-one, onto, and continuous.

We will show that ¢ is a homeomorphism. Since vX is Lindelof, Y is a Lindel6f
space and hence Y is a realcompactification of X. Since X is C-embedded in v.X,
there is a unique real z-ultrafilter A on X such that p is a limit point of AP. Take
any neighborhood V of ¢ in Y. Then g—!(V) is a neighborhood of p in vX. Since
p is a limit point of AP, there is A € AP with A C g71(V) and so g(A) = AC V.
Hence q is a limit point of AP. Suppose that F is a real z-ultrafilter on X such that
q is a limit point of F. If (| F # &, then (| F = {z} for some x € X. Since z # g,
there are disjoint zero-set neighborhoods C and D of x and ¢ in Y, respectively.
Then CNX € Fand CNDNX = @. Hence ¢ is not a limit point of F and so
(F = @. Since F is real, cl,x(F) = {clyx(F) : F € F} is a z-filter on vX with
countable intersection property and since vX is Lindelof, () cl,x (F) # @. Hence
Nclyx (F) = {p} and so F = AP. Thus every point of Y is the limit of a unique
real z-ultrafilter on X. By Lemma 2.6, X is C-embedded in Y and therefore, g is
a homeomorphism.

(c)=(b) Suppose that there are p,q € vX \ X with p # ¢. Let Y = X U {p, ¢}
and R = {(z,x) : 2 € Y}U{(p,q),(¢,p)}. Then R is an equivalence relation on Y.
Let K be the quotient space Y/R and 7:Y — K the quotient map. Clearly, K is
a Tychonoff space and X is a dense subspace of K. By the assumption, there is
an embedding f:vX — vK such that f(z) = z for all x € X. Since X is dense in Y’
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and (vxc o m)|x = flx, v o7 = fly. Since f is one-to-one and p # ¢, /(p) # /(q)
but vk (7(p)) = m(p) = [p] = [q] = 7(q) = vk (7(g)). This is a contradiction.

A subspace Y of a space X is z-embedded in X if for any zero-set A in Y, there
is a zero-set Z in X with A = ZNY. It is known that a space X is z-embedded in
each of its compactifications if and only if for any two disjoint zero-sets in X, one
of them is Lindel6f ([2]). Using this, we have the following:

Corollary 2.8. Let X be a v-Lindelof space. Then |[vX \ X| <1 if and only if X
1s z-embedded in each of its compactifications.

3. HEWITT REALCOMPACTIFICATION OF PRODUCT SPACES

The equality v(X x Y) = vX x vY is to be interpreted to mean that X x Y is
C-embedded in vX x vY.

Lemma 3.1 ([6]). Let X and Y be spaces. Then v(X xY)=0vX xvY if and only
if X XY is C*-embedded in vX x vY.

Theorem 3.2. Let X and Y be spaces such that X XY is a v-Lindeldf spaces.
Then X XY is z-embedded in vX x vY if and only if v(X X Y) =vX x vY.

Proof. Suppose that X x Y is z-embedded in vX x vY. Since vX x vY is a re-
alcompact space, there is a continuous map f:v(X X Y) — vX x vY such that
f((z,y)) = (z,y) for all (z,y) € X xY. Take any (p,q) € (vX xvY)\(X xY). Then
{(p,9)} = (Nclox(P)) x (Nclox(q)). Let F be the z-filter on X X Y generated by
{AxB: A€ p,B € q}. Then F has the countable intersection property and (| F =
@. Since X x Y is v-Lindeldf, () cly(xxv)(F) # 9. Pick x € (cly(xxy)(F). Then
for any A € pand B € ¢, f(z) € f(clyxxy)(A X B)) C cliuxxuoy) (f(A X B)) =
cliwx xoy) (A X B) = clyx (A) x clyy (B). Hence f(z) € (Nclox(p)) % (Nclox(q)).
So f(z) = (p,q). Thus f is onto.

Take any zero-sets F/, F'in X x Y with ENF = @&. Since X XY is z-embedded
in vX x vY, there are zero-sets C,D in vX x vY with E = CN (X xY) and
F=DN(X xY). Since f/1(CND)N(X xY) =@ and f~1(CN D) is a zero-set
inv(X xY), f7H(CND) =@ and since f is onto, C N D = @. So clyx xvy)(E) N
cliwx xoy)(F) = @. By Urysohn’s extension theorem, X x Y is C*-embedded in
vX x vY. By Lemma 3.1, v(X X Y) = vX x vY. The converse is trivial.

Definition 3.3. Let X and Y be spaces. Then f: X — Y is called z-closed if for
any zero-set Z in X, f(Z) is closed in Y.

Recall that a space X is called a P-space if every Gs-set in X is open in X.

Remark 8.4. (1) If the projection mx: X x Y — X is z-closed, then X is a P-space
or Y is a pseudocompact space ([11]). (2) The projection mx: X xY — X is z-closed
if and only if X x Y is C*-embedded in X x BY ([6]). (3) If card(X) or card(Y) is
non-measurable and X x Y is C*-embedded in X x BY, then v(X xY) = vX xvY
([6]).-

Theorem 3.5. Let X be a P-space and X XY a v-Lindeldf space. If v(X xY) =
vX X vY, then the projection mx: X XY — X s z-closed.

Proof. Take any zero-set Ain X x Y and x ¢ mx(A). Then {z} xY)NA = 2.
We will show that {z} x Y is C-embedded in X x Y. Take any continuous map
f:{z} xY — R. Note that the map h:Y — {x} x Y, defined by h(y) = (z,y),
is a homeomorphism. Let k = f o h and define a map 0: X — R by 0(z) = 0
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for all z € X. Then the map I: X x Y — R, defined I((z,y)) = 0(2) + k(y),
is continuous and l|{z}xy = f. Hence {z} x Y is C-embedded in X x Y. Thus
{z} xY and A are completely separated in X xY ([7]). Since v(X xY) = vX xvY,
({z}xvY)Nclyx xvy (A) = @. For any y € vY, there are open neighborhoods Cy, D,,
of z,y in X,Y, respectively such that (C, x D,) N A = &. Since vY is Lindeldf,
there is a sequence (y,) in vY with {z} x oY c U{C,, x D,, : n € N}. Let
Z =({Cy, : n € N}. Since X is a P-space, Z is open in X and {z} x vY C
Z x (U(Dy, : n € N}). Moreover, (Z x vY)N A= @. Thus Z Nnx(A) = & and
so = ¢ clx (mx(A)). Therefore mx (A) is closed in X.

Corollary 3.6. Suppose that X X Y is a v-Lindeldf space such that card(X) or

card(Y') is non-measurable and X is a P-space. Then mx is z-closed if and only if
V(X xY)=vX xovY.
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