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The concept of v-Lindel�of space is introduced. It is shown that a space X is v-
Lindel�of if and only if every Wallman realcompacti�cation of X is Lindel�of and that
if X×Y is a z-embedded v-Lindel�of subspace of vX×vY , then v(X×Y ) = vX×vY .

0. Introduction

All topological spaces discused in this paper are assumed to be Tychono�. For
any space X, (βX, βX) ((vX, vX), resp.) denotes the Stone-�Cech compacti�cation
(Hewitt realcompacti�cation, resp.) of X.

An important open question in the theory of Hewitt realcompacti�cations of
Tychono� spaces concerns when the equality vX × vY = v(X × Y ) is valid ([9]).
Glicksberg ([8]) showed that for any in�nite spaces X and Y , βX×βY = β(X×Y )
if and only if X × Y is pseudocompact. Comfort ([6]) showed that if X × Y is C∗-
embedded in vX×vY , then vX×vY = v(X×Y ) and that if card(X) or card(Y ) is
non-measurable and X×Y is C∗-embedded in X×βY , then vX×vY = v(X×Y ).
In [10], it is shown thatX×Y is C∗-embedded inX×βY if and only if the projection
πX :X × Y → X is z-closed.

In this paper we introduce the concept of v-Lindel�of spaces. We �rst show that
a space X is v-Lindel�of if and only if every Wallman realcompacti�cation of X is
Lindel�of and show that for any v-Lindel�of space X, |vX \ X| ≤ 1 if and only if
for any space T with X ⊂ T , vX ⊂ vT . Moreover, we will show that if X × Y is
a z-embedded v-Lindel�of subspace of vX×vY , then v(X×Y ) = vX×vY and that
if X × Y is an v-Lindel�of space such that card(X) or card(Y ) is non-measurable
and X is a P -space, then v(X × Y ) = vX × vY if and only if the projection
πX :X × Y → X iz z-closed. For the terminology, we refer to [7] and [11].

1. Realcompactifications

Recall that a space (Y, j) or simply Y is called a compacti�cation (realcompacti-
�cation, resp.) of a space X if j:X ↪→ Y is a dense embedding and Y is a compact
(realcompact, resp.) space.

The ring of real-valued continuous functions on a space X is denoted by C(X)
and C∗(X) denotes the subring of bounded functions. A subspace S of a space X
is said to be C-embedded in X if every function in C(S) extends to a function
in C(X). C∗-embedding is de�ned analogously. For a space X, βX is a unique
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realcompacti�cation of X in which X is densely C∗-embedded and vX is a unique
realcompacti�cation of X in which X is densely C-embedded.

De�nition 1.1 ([12]). Let X be a space and F a family of closed sets in X. Then
F is called a separating nest generated intersection ring on X if
(i) for each closed set H in X and x /∈ H, there are disjoint sets in F , one contain-

ing H and the other containing x,
(ii) it is closed under �nite unions and countable intersections, and
(iii) for any F ∈ F , there are sequences (Fn) and (Hn) in F such that for any n ∈ N,

X \Hn+1 ⊂ Fn+1 ⊂ X \Hn ⊂ Fn and F =
∩

Fn.

For a space X, Z(X) denotes the set of zero-sets in X, L(X) the set of separating
nest generated intersection rings on X and for any subspaces S of X and F ⊂ 2X ,
let FS = {F ∩ S : F ∈ F}. For a subspace S of a space X and F ∈ L(X),
Z(X) ∈ L(X) and FS ∈ L(S) ([12]).

Let X be a space and F ∈ L(X). Then F is a normal base on X ([1]). Let(
w(X,F), wX

)
be the Wallman compacti�cation ofX associated with F ([1]). Then

F = Z
(
w(X,F)

)
X

and if (Y, j) is a compacti�cation of X such that F = Z(Y )X ,

then there is a continuous map f :w(X,F) → Y with f ◦ wX = j ([12]).
Let v(X,F) = {α : α is an F-ultra�lter on X with the countable intersection

property}. Then the topology on v(X,F), taking sets of the form F ∗ = {α ∈
v(X,F) : F ∈ α} as a base for the closed sets, coincides with the subspace topology
on v(X,F) of w(X,F), v(X,F) is a realcompacti�cation of X (called Wallman re-
alcompacti�cation) ([12]), v(X,F) = v(X,F t) and w(X,F t) = β

(
v(X,F t)

)
, where

F t = Z
(
v(X,F)

)
X

([3]).

In a space (X, τ), the family of Gδ-sets on X forms a base for a topology τδ on X
and for A ⊂ X, ℵ1-clX(A) denotes the closure of A in (X, τδ).

Theorem 1.2. A realcompacti�cation (Y, j) of a space X is Wallman if and only
if for non-empty zero-set Z in Y , Z ∩ X ̸= ∅. In this case, Y = v(X,F) and
F = Z(Y )X .

Proof. (⇐) Let F = Z(Y )X , then F ∈ L(X). Note that Z(βY )X = Z(Y )X = F .
Hence, there is a continuous map g:w(X,F) → βY with g ◦ wX = βY ◦ j. Let A
and B be zero-sets in w(X,F) with A ∩ B ∩ X = ∅, then A ∩ X, B ∩ X ∈ F .
Hence there are C,D in Z(Y ) with A ∩ X = C ∩ X and B ∩ X = D ∩ X. Since
C ∩D ∩X = ∅ and C ∩D ∈ Z(Y ), C ∩D = ∅ and hence clβY (C) ∩ clβY (D) =
∅. So clβY (A ∩ X) ∩ clβY (B ∩ X) = ∅. By Urysohn's extension theorem, there
is a continuous map h:βY → w(X,F) such that wX = h ◦ βY ◦ j and so h is
a homeomorphism.

Note that ℵ1-clβY (X) ⊂ ℵ1- clβY (Y ). Let x /∈ ℵ1- clβY (X). Then there is
a zero-set Z in βY such that x ∈ Z and Z ∩ X = ∅. Since (S ∩ Y ) ∩ X = ∅,
Z∩Y = ∅. So x /∈ ℵ1- clβY (Y ). Hence ℵ1- clβY (X) = ℵ1- clβY (Y ). It is well-known
that v(X,F) = ℵ1- clw(X,F)(X) ([1]). Since w(X,F) and βY are homeomorphic,
ℵ1- clβY (Y ) = v(X,F) and since Y is a realcompact space, ℵ1- clβY (Y ) = Y . So
Y = v(X,F).

(⇒) Since Y is a Wallman realcompacti�cation of X, Y = v(X,G) for some
G ∈ L(X). Then v(X,G) = v(X,Gt) and β

(
v(X,Gt)

)
= w(X,Gt), where Gt =

Z
(
v(X,G)

)
X

([3]). Hence there is a continuous map f :w(X,Gt) → w(X,G) with
f ◦ l = k ◦ h, where h: v(X,Gt) → v(X,G) is a homeomorphism and l: v(X,Gt) ↪→
w(X,Gt) and k: v(X,G) ↪→ w(X,G) are dense embeddings. Take any non-empty
zero-set Z in Y . Since h−1(Z) is a zero-set in v(X,Gt), there is a zero-set A in
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β
(
v(X,Gt)

)
= w(X,Gt) with h−1(Z) = A ∩ v(X,Gt). Since h−1(Z) ̸= 0, pick

α ∈ A ∩ v(X,Gt). Then there is a countable family {Zn : n ∈ N} of zero-set
neighborhoods of α in w(X,Gt) such that A =

∩
Zn. For any n ∈ N, Zn ∩X ∈ Gt

and hence Zn ∩X ∈ α. Since α has the countable intersection property, A ∩X =
(
∩

Zn) ∩X ̸= ∅. Thus h−1(Z) ∩X = Z ∩X ̸= ∅.

2. v-Lindelöf spaces

Recall that a separating nest generated intersection ring F on a space X is called
complete if Z

(
v(X,F)

)
X
= F . For a space X, Z(X) is complete and v

(
X,Z(X)

)
=

vX. For a paracompact (or separable) space X, vX is Lindel�of if and only if every
separating nest generated intersection ring on X is complete ([4], [5]).

De�nition 2.1. A space X is called v-Lindel�of if vX is Lindel�of.

A z-ultra�lter on a space X is called real if it has the countable intersection
porperty.

Proposition 2.2. Let X be a space. Then the following are equivalent:
(a) X is an v-Lindel�of space,
(b) every z-�lter on X with the countable intersection property is contained in a real

z-ultra�lter on X, and
(c) every Wallman realcompacti�cation of X is Lindel�of.

Proof. (a)⇒(b) Let F be a z-�lter on X with the countable intersection property,
then G = {Z ∈ Z(vX) : Z ∩ X ∈ G} is a z-�lter on vX with the countable
intersection property. Since X is a v-Lindel�of space,

∩
G ̸= ∅. Pick α ∈

∩
G. Then

α is a real z-ultra�lter on X with F ⊂ α.
(b)⇒(c) Let (Y, j) be a Wallman realcompacti�cation of X and F a z-�lter on Y

with the countable intersection property. Let f : vX → Y be the continuous map
with f ◦ vX = j. Since Y is a Wallman realcompacti�cation of X, by Theorem 1.2,
for any F ∈ F , F ∩ F ̸= ∅. Hence FX is a z-�lter base on X with the countable
intersection property. By (b), there is a real z-ultra�lter α on X with FX ⊂ α. So
for any F ∈ F , α ∈ clvX(F ∩X). Hence for any F ∈ F , f(α) ∈ f

(
clvX(F ∩X)

)
⊂

clY
(
f(F ∩X)

)
= clY (F ∩X) ⊂ F . So Y is Lindel�of.

(c)⇒(a) is trivial.

Every Lindel�of space is v-Lindel�of. If X is a pseudocompact space, then vX =
βX and hence X is a v-Lindel�of space. v-Lindel�of spaces are not productive and
v-Lindel�of spaces are C-embedded hereditary.

Example 2.3. Let ω1 be the �rst uncountable ordinal and D(ω1) the discrete
space of cardinality ω1. Let S = D(ω1) ∪ {p}, topologized as follows. Each point
of D(ω1) is isolated and a subset G of S that contains p is open in S if and only if
|S\G| ≤ ℵ0. Then S is a zerodimensional Hausdor� space and hence Tychono�. Let
N∗ = N∪{ω} denote the one-point compacti�cation of N and X = S×N∗\{(p, w)}.
Then X is called Dieudonne�e plank and vX = S × N∗ ([11]). Since S is Lindel�of,
X is v-Lindel�of. But X is neither v-Lindel�of nor pseudocompact.

It is well-kmowm that for any f ∈ C(X), clvX
(
Z(f)

)
= Z(fv), where fv is

the extension of f to vX ([7]).

Proposition 2.4. Let X be a v-Lindel�of space and A a zero-set in X. Then A is
closed in vX if and only if A is Lindel�of.
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Proof. Suppose that A is Lindel�of. Let p ∈ vX \ A. If p ∈ X, then p /∈ clvX(A).
Suppose that p /∈ X. For any a ∈ A, there is a cozero-sets neighborhood Ca of a
in vX such that p /∈ Ca. Since A is Lindel�of, there is a countable subfamily U of
{Ca : a ∈ A} with A ⊂

∪
U . Let C =

∪
U and Z = vX\C. Then p ∈ Z, Z is a zero-

set in vX and A∩Z = ∅. SinceX is C-embedded in vX, clvX(A)∩clvX(Z∩X) = ∅
and since clvX(Z ∩X) = Z, p /∈ clvX(A) and hence A = clvX(A). The converse is
trivial.

De�nition 2.5. Let X be a dense subspace of a space T , F a z-�lter on X and
p ∈ T . Then F converges to the limit p if every neighborhoods of p in T contains
a member of F .

Lemma 2.6 ([7]). Let X be a dense subspace of T . Then X is C-embedded in T
if and only if every point of T is the limit of a unique real z-ultra�lter on X.

For any space X and F ⊂ 2X let
∩
clX(F) =

∩
{clX(F ) : F ∈ F}.

Theorem 2.7. Let X be a v-Lindel�of space. Then the following are equivalent:
(a) for any two disjoint zero-points in X, at least one of them is Lindel�of,
(b) |vX \X| ≤ 1, and
(c) for any space T with X ⊂ T , there is an embedding f : vX → vT such that

f(x) = x for all x ∈ X.

Proof. (a)⇒(b) Suppose that 2 ≤ |vX \X|. Pick p, q ∈ vX \X with p ̸= q. Since p
and q are z-ultra�lters on X, there are disjoint zero-sets A,B in X such that A ∈ p
and B ∈ q. We may assume that A is Lindel�of. By Proposition 2.4, A is closed
in vX. Note that p ∈ clvX(A) \A. This is a contradiction.

(b)⇒(a) Suppose that vX\X = {p}. Take any disjoint zero-sets A,B inX. Then
clvX(A) ∩ clvX(B) = ∅ and hence p /∈ clvX(A) or p /∈ clvX(B). So clvX(A) = A or
clvX(B) = B. Hence A is Lindel�of or B is Lindel�of.

(b)⇒(c) Suppose that vX \ X = {p}. Take any space T with X ⊂ T . Then
there is a continuous map f : vX → vT such that f(x) = x for all x ∈ X ([7]).
Let q = f(p) and Y = X ∪ {q}. Then X is a dense subspace of Y . Let g be
the corestriction of f to Y , then g: vX → Y is one-to-one, onto, and continuous.

We will show that g is a homeomorphism. Since vX is Lindel�of, Y is a Lindel�of
space and hence Y is a realcompacti�cation of X. Since X is C-embedded in vX,
there is a unique real z-ultra�lter Ap on X such that p is a limit point of Ap. Take
any neighborhood V of q in Y . Then g−1(V ) is a neighborhood of p in vX. Since
p is a limit point of Ap, there is A ∈ Ap with A ⊂ g−1(V ) and so g(A) = A ⊂ V .
Hence q is a limit point of Ap. Suppose that F is a real z-ultra�lter on X such that
q is a limit point of F . If

∩
F ̸= ∅, then

∩
F = {x} for some x ∈ X. Since x ̸= q,

there are disjoint zero-set neighborhoods C and D of x and q in Y , respectively.
Then C ∩ X ∈ F and C ∩ D ∩ X = ∅. Hence q is not a limit point of F and so∩
F = ∅. Since F is real, clvX(F) = {clvX(F ) : F ∈ F} is a z-�lter on vX with

countable intersection property and since vX is Lindel�of,
∩
clvX(F) ̸= ∅. Hence∩

clvX(F) = {p} and so F = Ap. Thus every point of Y is the limit of a unique
real z-ultra�lter on X. By Lemma 2.6, X is C-embedded in Y and therefore, g is
a homeomorphism.

(c)⇒(b) Suppose that there are p, q ∈ vX \X with p ̸= q. Let Y = X ∪ {p, q}
and R = {(x, x) : x ∈ Y } ∪ {(p, q), (q, p)}. Then R is an equivalence relation on Y .
Let K be the quotient space Y/R and π:Y → K the quotient map. Clearly, K is
a Tychono� space and X is a dense subspace of K. By the assumption, there is
an embedding f : vX → vK such that f(x) = x for all x ∈ X. Since X is dense in Y
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and (vK ◦ π)|X = f |X , vK ◦ π = f |Y . Since f is one-to-one and p ̸= q, f(p) ̸= f(q)
but vK

(
π(p)

)
= π(p) = [p] = [q] = π(q) = vK

(
π(q)

)
. This is a contradiction.

A subspace Y of a space X is z-embedded in X if for any zero-set A in Y , there
is a zero-set Z in X with A = Z ∩ Y . It is known that a space X is z-embedded in
each of its compacti�cations if and only if for any two disjoint zero-sets in X, one
of them is Lindel�of ([2]). Using this, we have the following:

Corollary 2.8. Let X be a v-Lindel�of space. Then |vX \X| ≤ 1 if and only if X
is z-embedded in each of its compacti�cations.

3. Hewitt realcompactification of product spaces

The equality v(X × Y ) = vX × vY is to be interpreted to mean that X × Y is
C-embedded in vX × vY .

Lemma 3.1 ([6]). Let X and Y be spaces. Then v(X ×Y ) = vX × vY if and only
if X × Y is C∗-embedded in vX × vY .

Theorem 3.2. Let X and Y be spaces such that X × Y is a v-Lindel�of spaces.
Then X × Y is z-embedded in vX × vY if and only if v(X × Y ) = vX × vY .

Proof. Suppose that X × Y is z-embedded in vX × vY . Since vX × vY is a re-
alcompact space, there is a continuous map f : v(X × Y ) → vX × vY such that
f
(
(x, y)

)
= (x, y) for all (x, y) ∈ X×Y . Take any (p, q) ∈ (vX×vY )\(X×Y ). Then

{(p, q)} =
(∩

clvX(p)
)
×
(∩

clvX(q)
)
. Let F be the z-�lter on X × Y generated by

{A×B : A ∈ p,B ∈ q}. Then F has the countable intersection property and
∩
F =

∅. Since X × Y is v-Lindel�of,
∩
clv(X×Y )(F) ̸= ∅. Pick x ∈

∩
clv(X×Y )(F). Then

for any A ∈ p and B ∈ q, f(x) ∈ f
(
clv(X×Y )(A × B)

)
⊂ cl(vX×vY )

(
f(A × B)

)
=

cl(vX×vY )(A× B) = clvX(A)× clvY (B). Hence f(x) ∈
(∩

clvX(p)
)
×

(∩
clvX(q)

)
.

So f(x) = (p, q). Thus f is onto.
Take any zero-sets E,F in X × Y with E ∩ F = ∅. Since X × Y is z-embedded

in vX × vY , there are zero-sets C,D in vX × vY with E = C ∩ (X × Y ) and
F = D ∩ (X × Y ). Since f−1(C ∩D) ∩ (X × Y ) = ∅ and f−1(C ∩D) is a zero-set
in v(X × Y ), f−1(C ∩D) = ∅ and since f is onto, C ∩D = ∅. So cl(vX×vY )(E) ∩
cl(vX×vY )(F ) = ∅. By Urysohn's extension theorem, X × Y is C∗-embedded in
vX × vY . By Lemma 3.1, v(X × Y ) = vX × vY . The converse is trivial.

De�nition 3.3. Let X and Y be spaces. Then f :X → Y is called z-closed if for
any zero-set Z in X, f(Z) is closed in Y .

Recall that a space X is called a P -space if every Gδ-set in X is open in X.

Remark 3.4. (1) If the projection πX :X × Y → X is z-closed, then X is a P -space
or Y is a pseudocompact space ([11]). (2) The projection πX :X×Y → X is z-closed
if and only if X × Y is C∗-embedded in X × βY ([6]). (3) If card(X) or card(Y ) is
non-measurable and X×Y is C∗-embedded in X×βY , then v(X×Y ) = vX× vY
([6]).

Theorem 3.5. Let X be a P -space and X × Y a v-Lindel�of space. If v(X × Y ) =
vX × vY , then the projection πX :X × Y → X is z-closed.

Proof. Take any zero-set A in X × Y and x /∈ πX(A). Then ({x} × Y ) ∩ A = ∅.
We will show that {x} × Y is C-embedded in X × Y . Take any continuous map
f : {x} × Y → R. Note that the map h:Y → {x} × Y , de�ned by h(y) = (x, y),
is a homeomorphism. Let k = f ◦ h and de�ne a map 0:X → R by 0(x) = 0
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for all x ∈ X. Then the map l:X × Y → R, de�ned l
(
(z, y)

)
= 0(z) + k(y),

is continuous and l|{x}×Y = f . Hence {x} × Y is C-embedded in X × Y . Thus
{x}×Y and A are completely separated in X×Y ([7]). Since v(X×Y ) = vX×vY ,
({x}×vY )∩clvX×vY (A) = ∅. For any y ∈ vY , there are open neighborhoods Cy, Dy

of x, y in X,Y , respectively such that (Cy × Dy) ∩ A = ∅. Since vY is Lindel�of,
there is a sequence (yn) in vY with {x} × vY ⊂

∪
{Cyn × Dyn : n ∈ N}. Let

Z =
∩
{Cyn : n ∈ N}. Since X is a P -space, Z is open in X and {x} × vY ⊂

Z ×
(∪

(Dyn : n ∈ N}
)
. Moreover, (Z × vY ) ∩ A = ∅. Thus Z ∩ πX(A) = ∅ and

so x /∈ clX
(
πX(A)

)
. Therefore πX(A) is closed in X.

Corollary 3.6. Suppose that X × Y is a v-Lindel�of space such that card(X) or
card(Y ) is non-measurable and X is a P -space. Then πX is z-closed if and only if
v(X × Y ) = vX × vY .
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