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The Kiselman theorem on the order of entire function is extended on entire Dirich-
let series of arbitrary growth.

1°. Ch. Kiselman [1] showed that the order of an entire function f does not
exceed p = 1 iff there exists an entire function H of two complex variables such
that H(z,e) = f(z) and H(z,w) < exp{|z|} for all z € C and |w| < 1. In this
assertion the condition ¢ = 1 may be replaced by the condition ¢ € [1,400), but
then holomorphicity of H in C must be replaced by holomorphicity of H in the
cylinder {(z,w) : |w| < exp (QTQ1>}

In the present note we extend the Kiselman result, on one hand, on more general
scale of growth and, on the other hand, on entire Dirichlet series.

Let A = (\,) be an increasing to 400 sequence of nonnegative numbers and
S(A) be a class of entire Dirichlet series

F(s) = Z anexp{s\,}, s=o+it. (1)
n=0

For F' € S(A) we put M (o, F) = sup{|F(o + it)| : t € R}, and let
p(o, F) = max{|a,|exp (cA,) : n >0}

be the maximal term of series (1).

By © we denote the class of positive on (—o0,+00) functions ® such that the
derivative ®’ is continuous, positive and increasing to +oo on (—o0,400). For
® € O let ¢ be the inverse to ® and (o) = 0 — ®(0)/P'(s) be the function
associated by Newton to ®. Then [2, p.18] ® is continuous and increasing to +oo
on (—o00, 4+00).

Our aim is to prove the following
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Theorem 1. Let ® € Q be such that o®' (0)/®(c) > q > 1 for all 0 > 09, the
sequence A satisfies the condition

Inn =o(AM¥(p(A\n))), n — oo, (2)
and F € S(A). In order that
InM(o,F) <®(1+(1))o), o — +o0,

it is necessary and sufficient that there exists an absolutely convergent in C* double
Dirichlet series

H(s,w) = Z bpm exp{sA, + Whm}, pm >0, (3)
n,m=0
such that
H(s,1) = F(s), seC, ()
and
|H(s,w)| < Fg(o), se€C,Rew <0, (5)

where Fg is continuous on (—oo, +00) function such that In Fg (o) = @ ((1+(1))0),
as 0 — +0oQ.

By L we denote the class continuous, positive and increasing to +o00 on (g, +00)
functions, and if a € L then the value

o = Tm a(ln M (o, F))
o—+o0 o

is called the a-order of entire Dirichlet series (1). If a(z) = z then a-order coincides
with R-order (Ritt order).

Theorem 2. Let o € L be a slowly increasing function (that is xvo'(x)/a(z) —
0, x — +00) such that a1 (z) = ®(x) € O, a sequence A satisfies the condition (2)
and F' € S(A). In order that a-order of the function (1) does not exceed o € [1,+00)
it is necessary and sufficient that there exists an absolutely convergent in C? double
Dirichlet series (3) such that the relations (4) and (5) hold and a-order of Fg (o)
15 at most 1.

2°. We need some lemmas.

Lemma 1 [2, p.18]. Let ® € Q and F € S(A). In order that In (o, F) < ®(0),
o € R, it is necessary and sufficient that In|a,| < =X\ ¥(p(My)), n > 0.

Lemma 2. Let ® € Q, A satisfies (2), F € S(A) and 0 < o < +o0. If

—_

In M(o, F) < =®(¢0) + (), ~(0) = const, (6)

0
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for all o € R, then there exists an absolutely convergent in (Q = C x {w : Rew <

0*/(0* = 1)}, o* = max{o, 1}, double Dirichlet series (3) such that relations (4)
and (5) hold with

Fo(o) =Y _exp{=Aa¥(p(An)) + oA} (7)
n=0

Proof. Convergence of series (7) for all o € R follows from (2). We put

Hn = (ln |an| + )‘7L\I’(90(>‘n)))+a

where at = max{a, 0}, and consider the double Dirichlet series

H(s,w) = Z ane” ' exp{sAn + wpn}, (8)

n=0

that is series (3) with b, = ape " (n > 0) and by, = 0(m # n). It is clear
that for this series H(s,1) = F(s) for all s € C, and if Rew < 0 then in view of
inequality In |a,| + A, ¥ (p(An)) < pn and Lemma 1 we have

H(s,w)| < 3 Janle ™™ exp{odn} < Fa(o),

n=0

where Fg is defined by formula (7).
Hence for series (8) relations (4) and (5) hold, and we have to prove the absolute
convergence of this series in Q. In view of (5) it is sufficient to show that

Z lan e #m exp{o A, + wpn} < 400 (9)
n=0
for all 0 € R and 0 < w < ¢*/(0* —1). We put ®,(0) = %(I)(ga) + v(0). Then
®,(0) = ®'(00), the inverse to @, is the function ¢, (t) = % (t), and the function
).

associated by Newton to ®, is ¥,(0) = %‘I’(QO‘) —v(0)/®'(00). Thus,
1 1
. (ul0) = T0(6(0) - 110

and in view of Lemma 1 from (6) we have
1
In|a,| < —E)\R\IJ(QO(/\n)) +7v(0), n>0.
If p,, > 0 then it follows that

|an| exp{oX, + (w— 1), } = exp{oA, + In|a,| + (w—1)(In]an| + AT (p(An)))

;
)

=exp{oA, +twin|a,| + (w — DA T (M)} < exp{a)\n - (% —w+ 1) AP (M) ¢ =
:exp{—(l—l—o(l))(% —w 1)Anm(¢(xn))}, n — oo, (10)
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provided £ —w+1> 0. If o € (0, 1] then the last inequality is obvious, and if ¢ > 1
then it is equivalent to the inequality w < o/(0 — 1) = 0*/(0* — 1).
Using (10) and (2) we have for all 0 € R and 0 < w < 0*/(0* — 1)

Z ane M exp{oA, + wpn}t = Z an exp{oA,} + Z .y, €XP {a)\n + (w— 1)un}

n=0 Hn=0 pn >0

< Zan exp{oin} + Zexp{ (1+ 0(1))(% —w 1))\n\11(g0()\n))} < to0,

that is we have (9), and Lemma 2 is proved.

The following lemma is in slightly different form than in [1], but we give its proof
for convenience of the reader.

Lemma 3. Let ® € Q and F € S(A). If there exists an absolutely convergent in
C x {w: Rew < a}, a > 1, double Dirichlet series (3) such that relations (4) and
[H(s,w)| < exp{@(0)}, s €C, Rew <0, (11)

hold then for o > a/(a — 1) inequality (6) holds.
Proof. We put

M(o,w,H) =sup{|H(c + it,w+it)|: teR,T €R}, c€ER, w<a.

Then the function h(o,w) = In M(o,w, H) is convex in R x (—o00,a). We take in
R x (—00, a) three points z; = (0,a), 2o = (0, 1) and z3 = (:2%,0), where a € (1,a)
is an arbitrary number. It is clear that zo = —21 + (1 — —)z3 Thus from convexity

of h we have h(z3) = Lh(z1) + (1 — L1)h(z3), that is

1 1
ho,1) = =h(0, (1——)h( ) 12
(0.1) = ~h(0,0)+ (1~ (12)
Inequality (4) implies M (o, F) < M(o,1,H), that is M (o, F) < h(o,1), and (11)
implies the inequality M(c,0,H) < ®(0), that is h(-2%) < ®(-2%). Thus from

(12) we have

1 ao
<(1-= —
In M(o, F) < (1 a)@(a_ 1) (@) (13)
for every o € (1,a) and all 0 € R, where yo(o) = ZIn M (0,cr, H). We put o =
af(a—1) and v(g) = v0(0/(0—1). Then (13) implies (6) for all o > a/(a—1), and
Lemma 3 is proved.

Lemma 3. Suppose that the exponents of absolutely convergent in C Dirichlet
series (1) can be nonincreasing and nonnegative, but the sequence (\,) contains an
infinite number of positive terms. If 1 > |a,| 1 0 and In n = o(In ‘al—n‘) as n — 0o,
then

M(o,F) < p((1+0(1))o, F), o — +o0.

IN
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Proof. If A, > 0 we put r, = 5~ In |al—n| Then for every € > 0
M(0,F) < |an|exp{od,} = ( Y+ Y + X )|an\ exp{oAn} <
n=0 An=0 r,<(14€)o rp>(l4€)o
< K; + Z |an,| exp{(l +e)or, — z—:cr)\n} + Z lan| exp{oA,} <

rn<(l+¢€)o rn>(1+¢€)o

< Ki +u((1+¢)o, F) Z exp{—eX,rn/(1+¢)}+
rn<(l+e)o
+ > anlexp{Aurn /(14 2)} < K1+ p((L+)0, F) Y an[*/0F9), (14)
rn>(14€)o n=0

where K, = const. From the condition In n = o(ln |al—|), n — oo, it follows that

D anl M) = Ky(e) < +o0.

n=0

Hence from (14) we have M (o, F) < Ks(e)u((1 + €)o, F), where K3() = const.
But the function In pu(o, F) is convex. Thus, M (o, F) < u((142¢)o, F) for o > oo,
and Lemma 4 is proved.

3°. We prove Theorem 1. Let ¢ > 0 be such that (1 + ¢)In(l +¢) < g,
and let n = ¢ — ¢(1 +¢)In(1 +¢). Then 0 < < ¢ and from the inequality
InM(o,F) < ®((1+ (1))o), 0 — 400, it follows that In M (o, F) < ®((1 + n)o),
o > o1(n). But

P((1+¢e)o) @'((1+&)o)

_ e > WE—m
b T me) ~ (A0 P72 15z

=In(1 +¢),

where n < ¢ < ¢, for all ¢ > 03 > max{og,01}. Thus we have

1
InM(o,F) < 1 ®((1+¢)o), o> 0o,

+e€
whence we obtain there inequality (6) with 0 = 1+¢ and some y(1+¢). By Lemma
2 exists absolutely convergent in C x {w : Rew < (14 ¢)/e} double Dirichlet series
(3) such that relations (4) and (5) hold with the function Fg defined in (7). In
view of arbitrariness of ¢ this series is absolutely convergent in C, and we need to
estimate the function Fs.

The coefficients a, = exp{=A, ¥(p(A\n))} L 0 (n — o0) and in view of (2) the
relation In n = o(ln ﬁ), n — 00, holds. Thus by Lemma 4

Fo(o) <pu((1+0(1))o, Fs), o — +o0,

and by Lemma 1 In y(o, Fg) < ®(0), 0 € R. Hence we have

InFgp(o) < ®((1+0(1))o), o — oo,
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and so necessarity is proved.

If now series (3) is absolutely convergent in C and satisfies (4) and (5) with
InFgp(o) < ®((1+ o(1))o), 0 — oo, that is for every ¢ > 0 and all o € R the
inequality In F(0) < ®((1 + €)o) + 71 (¢) holds, then by Lemma 3

—_

InM(o,F) < E(I)((l +¢e)o) +m(e) +7(0), (o) = const,

whence in view of arbitrariness of ¢ > 0 and ¢ > 1 we have In M (0, F) < ®((1 +
0(1))0), o — 00. Theorem 1 is completely proved.

Finally, we prove Theorem 2. Since ®(z) = a~!(z) and zd/(z)/a(z) — 0 as
x — 400, we have 0®'(0)/®(0) — +00 as 0 — +oo. Thusif 0 < a < b < 400
then In ®(bo) — In ®(ac) — +00 as ¢ — +o0, and if In M (o, F') < ®(ao), 0 > oy,
then In M (0, F) < $®(bo), o > 01 > 0y, for every b > a.

Since the a-order of F'is at most ¢ then for every ¢ > 0 and all ¢ > o*(¢) we

have
In M(o, F) <a™'((¢+¢)o) = ®((0+€)o)

and therefore for all o0 € R

In Mo, F) < . L ®((0+2¢)0) +v(e), ~(e) = const,

+ 2¢

that is inequality (6) with o + 2¢ instead of ¢ holds. Thus by Lemma 2 there
exists absolutely convergent in C x {w : Rew < (0 + 2¢)/(0 + 2¢ — 1)} double
Dirichlet series (3) such that the relations (4) and (5) hold with the function Fg
defined in (7). In view of arbitrariness of ¢ this series is absolutely convergent in
C x{w: Rew < p/(¢0— 1)} and as in the proof of Theorem 1 we have

InFy(0) <®((14+0(1))o) =a ' ((1+0(1)s), o — +o0,

that is the a-order of F'is at most 1. Necessarity is proved. The proof of sufficiency
is analogous to that of sufficiency in Theorem 1.
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