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The natural systems of three pair-interacting particles on the line are investi-
gated. The properties of interactive potentials are considered under assumption that
the given system has the �rst integral which is a polynomial of prescribed degree in
the momenta. The functional equations for those potentials are obtained. All such
potentials for special functional classes are described.
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�áá«¥¤ãîâáï  âãà «ìë¥ á¨áâ¥¬ë âà¥å ¯®¯ à® ¢§ ¨¬®¤¥©áâ¢ãîé¨å ç áâ¨æ
  ¯àï¬®©. � áá¬®âà¥ë á¢®©áâ¢  ¯®â¥æ¨ «®¢ ¢§ ¨¬®¤¥©áâ¢¨ï ¢ ¯à¥¤¯®«®¦¥-
¨¨, çâ® ¤  ï á¨áâ¥¬  ®¡« ¤ ¥â ¯¥à¢ë¬ ¨â¥£à «®¬, ¯®«¨®¬¨ «ìë¬ ¯® ¨¬-
¯ã«ìá ¬. �®«ãç¥ë äãªæ¨® «ìë¥ ãà ¢¥¨ï   ¯®â¥æ¨ «ë ¨ ®¯¨á ë ¢á¥
¨å à¥è¥¨ï ¤«ï ¥ª®â®àëå äãªæ¨® «ìëå ª« áá®¢.

The dynamics of n equal pair-interactive particles on the line is described by the
Hamiltonian system with the Hamiltonian

H =
1

2

n∑
i=1

p2i +
∑
i<j

V (xi − xj), (1)

where the xi and pi, i = 1, . . . , n, are the coordinates and momenta of the par-
ticles. We henceforth call the function V a potential. We say that a potential V
admits an integral F if F is the �rst integral of the Hamiltonian system (1). We
call the �rst integral F to be nontrivial if F is functionally independent with H.
Such systems were considered in [1],[2] and the complete integrability for special
cases of the Weierstrass ℘ function as the interaction potential was established. It
is known ([3]), that the Hamiltonian system (1) is completely integrable for V (x)
being the Weierstrass ℘ function. A distinguishing feature of this problem is the
polynomial character in the momenta of their additional integrals. It is therefore
natural to obtain a description of Hamiltonians (1) which admits integrals that are
polynomials in the momenta. In the paper this problem will be considered for n = 3
and V (x) satisfying tne following conditions:
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1) V is meromorphic in the vicinity of zero,
2) V (x) = V (−x).

The total momentum P =
∑

pi is the �rst integral of the Hamiltonian system
(1). Therefore, this system can be reduced to the system with two degrees of
freedom and the Hamiltonian

H =
1

2
(p21 + p22) +W (x1, x2), (2)

where

W = V (x1) + V (−x1
2

+
x2

√
3

2
) + V (−x1

2
− x2

√
3

2
). (3)

Without loss of generality we can assume that the �rst integral of system (2) has
the form

F = F2N + F2N−2 + · · ·+ F0, (4)

Fk =
∑k

i=1E
k−i,i(x1, x2)p

k−i
1 pi2. Then the equation {F,H} = 0 can be written in

the form

0 = p1∂x1F2N + p2∂x2F2N ,

∂p1F2N ·W1 + ∂p2F2N ·W2 = p1∂x1F2N−2 + p2∂x2F2N−2,

. . . . . . . . . . . . . . .

∂p1F2 ·W1 + ∂p2F2 ·W2 = p1∂x1F0 + p2∂x2F0,

(5)

where ∂t =
∂
∂t , Wi =

∂W
∂xi

.

Let Rk(x1, x2, p1, p2) =
∑

fi(x1, x2)p
k−i
1 pi2 be a homogeneous polynomial in the

momenta. We shall put

[Rk] = Rk(x1, x2, ∂x2 ,−∂x1) =
∑

∂k−i
x2 (−∂x1)

ifi(x1, x2).

Then equations (5) yield
Pi(V ) = 0, (6)

where Pi(V ) = [∂p1(F2N+2−2i)W1] + [∂p2(F2N+2−2i)W2], i = 1, . . . , N.
Each nontrivial relation (6) is called the addition theorem.
The following result holds:

Lemma 1. The relation (6) is nontrivial for i = 1 or i = 2.

The proof of Lemma 1 is based on the consideration of relation (6) for V (x) =
x−1. It is easy to show that if ∂x1E

0,2N ̸= 0, then P1(V ) ̸= 0. Otherewise,
P2(V ) ̸= 0.

We shall consider only potentials satisfying the following conditions:
a) zero is a pole of order 2 for V ;
b) V is holomorphic in R\{0}; (7)
c) lim

x→∞
V (x) = 0.

The description of integrable potentials V (x) in the class of functions under
consideration is given in Theorems 1,2.
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Theorem 1. Let the leading homogeneous component of F has constant coe�-
cients. Then V (x) is one of the Weierstrass ℘ function degenerated cases x−2,

sinh−2 kx.

The proof of Theorem 1 is based on three following lemmas.

Lemma 2. The addition theorem is P2(V ) = 0 and P2(V ) = [L]ϱ(V ), where L is
a homogeneous polynomial in p1, p2 of degree 2N − 3 and

ϱ(V ) = V (x1)V
′
(
−x1

2
+

x2
√
3

2

)
− V ′(x1)V

(
−x1

2
+

x2
√
3

2

)
+

+ V
(
−x1

2
+

x2
√
3

2

)
V ′

(
−x1

2
− x2

√
3

2

)
− V ′

(
−x1

2
+

x2
√
3

2

)
V
(
−x1

2
− x2

√
3

2

)
+

+ V
(
−x1

2
− x2

√
3

2

)
V ′(x1)− V ′

(
−x1

2
− x2

√
3

2

)
V (x1).

Proof. Consider the expression F2N . Without loss of generality we can assume that
the integral F is invariant with respect to the canonical transformation

xi → x̃i, pi → p̃i,

where

x̃1 = −x1/2 + x2
√
3/2, x̃2 = −x1

√
3/2− x2/2,

p̃1 = −p1/2 + p2
√
3/2, p̃2 = −p1

√
3/2− p2/2.

Thus we can represent F2N in the form

F2N = (p1p̃1 ˜̃p1)2 ·G(T, J),
where T = p21 + p22, J = p2p̃2 ˜̃p2 and G is a polynomial in its variables. Then
P1(V ) ≡ 0 and

F2N−2 = (p1)
−1 ∂F2N

∂p1
·V (x1)+(p̃1)

−1 ∂F2N
∂p̃1

·V (x̃1)+(˜̃p1)−1 ∂F2N

∂ ˜̃p1 ·V ( ˜̃x1)+ω, (8)

where [ω] = 0.

Then we get

P2(V ) =
[
(3JG− (p1p̃1 ˜̃p1)2 ∂G∂J p1p̃1 ˜̃p1]ϱ(V ).

The expression L =
(
3JG− (p1p̃1 ˜̃p1)2∂G/∂J

)
p1p̃1 ˜̃p1 is a homogeneous polynomial

in p1, p2.
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Lemma 3. (The uniqueness theorem). Let [L]f = 0, where

L = ap21 + bp1p2 + cp22, a2 + b2 + c2 ̸= 0,

f is a holomorphic function in R2 and lim
x2+y2→∞

f(x, y) = 0. Then f ≡ 0 in R2.

If b2 − 4ac < 0, then this lemma is a generalization of the Liouville uniqueness
theorem for the harmonic functions in R2.

If b2 − 4ac ≥ 0, then L can be decomposed into the product of two monomials.
The equation a∂xf + b∂yf = 0 yields f(x, y) = g(bx− ay). Using the asymptotical
condition we get f ≡ 0.

Since every homogeneous polynomial L in p1, p2 can be represented as a product
of polynomials of degree 1 or 2, we receive from Lemmas 1,2 the equation ϱ(V ) = 0.

Lemma 4. The identity ϱ(V ) = 0 is the addition theorem for the integral of degree
3 and only the Weierstrass ℘ function satis�es it.

Proof. Consider the Laurent expansion at x1 = 0 of the expression ϱ(V ). Its �rst
nontrivial coe�cient can be written in the form

V ′′′(t)− 12V (t)V ′(t) = 0, (9)

where t = x2
√
3/2. It is known that the solution of equation (9) is either the

Weierstrass ℘ function or one of its degenerated cases.

Theorem 2. Let the leading homogeneous component of F has nonconstant coef-
�cients and ∂x1E

0,2N ̸= 0. Then V (x) = x−2.

Proof. It is easy to show that under conditions of Theorem 2 the relation P1(V ) = 0
is nontrivial. Equations (5) yield

F2N−2 = (p1)
−1 ∂F2N

∂p1
· V (x1) + (p1)

−2 ∂F2N
∂x1

· U(x1) + (p̃1)
−1 ∂F2N

∂p̃1
· V (x̃1)+

+ (p̃1)
−2 ∂F2N

∂x̃1
· U(x̃1) + (˜̃p1)−1 ∂F2N

∂ ˜̃p1 · V ( ˜̃x1) + (˜̃p1)−2 ∂F2N

∂ ˜̃x1 · U( ˜̃x1) + ω,

where V (t) = ∂tU(t), [ω] = 0.
Then the solution of the addition theorem P1 = 0 can be written in the form

V (x) = ∂x
(
Q2N+4(x)/(∂xE

0,2N (x))
)
, (10)

where Q2N+4 is a polynomial of degree 2N + 4 in x.

Lemma 5. Consider potential (10) as V (z), z ∈ C. If a ̸= 0 is a pole for V (z),
then 2a is also a pole.

The proof of Lemma 5 is based on consideration of the Laurent expansion (at
x1 = a) of the coe�cients Ek−i,i. Then one can show that z = a is a pole of order
2 for V (z). Let

B(x2) = V
(x2√3

2
+

a

2

)
− V

(x2√3

2
− a

2

)
.
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Consider the order of the pole at x1 = a of the coe�cients E2N−4−i,i. The expres-
sion B(x2) can be represented as B(x2) = g(x2)

−3/(2m), where g(x2) is a polynomial
of degree k ≤ 2m.

Since B(x2) is a rational function, B(x2) = P−1
3 (x2), where P3 is a nontrivial

polynomial of degree 3. Let z = ±a be the poles and z = ±2a the regular points
for V (z). Then B(x2) has two poles of degree 3 at x2 = a

√
3. But the expression

P−1
3 (x2) cannot have more then 3 poles in C. This contradiction proves Lemma 5.
It follows from the previous lemma that potential (10) cannot have a pole a ̸= 0.

Therefore, V (x) = x−2 + Q(x), where Q(x) is a polynomial in x. In the class of
potentials under consideration, V (x) = x−2.

Let the potential V satisfy only conditions (7a,7b). Then the following result is
established:

Theorem 3. Let the potential V (x) = x−2 + Q(x) admit integral (4). Then
degQ(x) ≤ 4.

Lemma 6. Let the potential V (x) = x−2 + Q(x) admit an integral F of degree
2N and degQ(x) = k. Then the potential xk admits a nontrivial integral, which is
polynomial of degree d ≤ 2N .

The proof of Lemma 6 is based on using of the canonical transformation

x1 = u1 · ε, x2 = u2 · ε, p1 = q1 · ε−1, p2 = q2 · ε−1.

Then H and F are holomorphic functions of the parameter ε. Let H0 = H|ε=0,
F0 = F |ε=0. Then {H0, F0} = 0, where H0 is a Hamiltonian for the system with
V (x) = xk and F0 is a nontrivial polynomial in p1, p2.

For proof of Theorem 3 we use Yoshida's theorem [4] on the nonintegrability of
natural systems with the Hamiltonian (2), whereW is the homogeneous polynomial
in x1, x2 of degree k.

Following Yoshida's method, consider the system{
∂x1W = x1,

∂x2W = x2,
(11)

where

W = xk
1 + x̃k

1 +
˜̃xk

1 .

Its solution is {
x1 =

(
2/(k(1 + 2k−1))

)1/(k−2)
,

x2 = x1
√
3.

For these x1, x2 the eigenvalues λ1, λ2 of the matrix
(W11 W12

W21 W22

)
are

λ1 = k − 1, λ2 = 3(k − 1)/(1 + 2k−1).

Calculating Kovalevska's indicators

ϱi =
√
1 + 8kλi/(k − 2)2

we get ϱ1 = (3k − 2)/(k − 2) ∈ Q and

ϱ2 =

√
1 +

24k(k − 1)

(k − 2)2(1 + 2k−1)
.

If ϱ2 /∈ Q, then it follows from Yoshida's theorem that the Hamiltonian system with
V (x) = xk is nonintegrable.
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Proposition. If (k,m) is a solution of the Diophantine equation

(k − 2)2(1 + 2k−1)2 + 24k(k − 1)(1 + 2k−1) = m2, (12)

then k ≤ 4.

Proof. For k = 6, 8 or 10 we can directly calculate m. Consider the case k > 10.
Let (k,m) be a solution of (12). One can show that

m = 2(l − 1)(1 + 22l−1) + 12s,

where k = 2l and s is an integer number.Then s satis�es the Diophantine equation

(l(2l − 1)− s(l − 1))(1 + 22l−1) = 3s2.

But for l ≥ 6 its solution must satisfy the inequalities 2l + 1 < s < 2l + 2.

The last proposition completes the proof of Theorem 3.
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