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The natural systems of three pair-interacting particles on the line are investi-
gated. The properties of interactive potentials are considered under assumption that
the given system has the first integral which is a polynomial of prescribed degree in
the momenta. The functional equations for those potentials are obtained. All such
potentials for special functional classes are described.
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Hccmenyiorest HaTypaabHBIE CHCTEMBI TPEX MOMAPHO B3aNMOJIEHCTBYIONINX YACTHUIT
Ha mpsMoit. PaccMOTpeHBI CBOMCTBA IIOTEHIIHAJIOB B3aUMOAEHCTBUS B IPEAIIOJIOXKe-
HHUHU, 9TO JaHHAS CUCTeMa 00J1alaeT IePBHIM MHTErPAJIOM, IOJHHOMHUAJIBHBIM 10 UM-
IIyJabCaM. HOJIy‘IeHbI (byHKLU/IOHaIH)HbIe YpaBHEHUA Ha INOTCHIOUAJIBI U OIINCAHBI BCE
WX PEIIeHUs JJIsi HEKOTOPBHIX (DYHKIITMOHAJIBHBIX KJIACCOB.

The dynamics of n equal pair-interactive particles on the line is described by the
Hamiltonian system with the Hamiltonian

1 - 2
H = 5;@. + ) V(i — 1), (1)

1<j

where the x; and p;,i = 1,...,n, are the coordinates and momenta of the par-
ticles. We henceforth call the function V' a potential. We say that a potential V'
admits an integral F if F' is the first integral of the Hamiltonian system (1). We
call the first integral F' to be nontrivial if F' is functionally independent with H.
Such systems were considered in [1],[2] and the complete integrability for special
cases of the Weierstrass g function as the interaction potential was established. It
is known ([3]), that the Hamiltonian system (1) is completely integrable for V(x)
being the Weierstrass p function. A distinguishing feature of this problem is the
polynomial character in the momenta of their additional integrals. It is therefore
natural to obtain a description of Hamiltonians (1) which admits integrals that are
polynomials in the momenta. In the paper this problem will be considered for n = 3
and V (z) satisfying tne following conditions:
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1) V is meromorphic in the vicinity of zero,
2) V(z) =V(-ux).

The total momentum P = ) p; is the first integral of the Hamiltonian system
(1). Therefore, this system can be reduced to the system with two degrees of
freedom and the Hamiltonian

1

where

3 3
W= V() + V(-2 + IQ\/_)JFV(—E— xw—). (3)
2 2 2 2
Without loss of generality we can assume that the first integral of system (2) has
the form

F =Fon+ Fon_o+ -+ Fp, (4)

F, =8 | E¥9i(xy, 2,)p"~'pi. Then the equation {F, H} = 0 can be written in
the form

0 = P10z, Fon + P20y, Fon,
Op, Fon - Wi + OpaFon - Wo = p10y, Fon—2 + P20z, Fon—2,

Op, Fo - W1 + Opa Fy - Wy = p10g, Fo + D20y, Fo,

W
8t7W7‘_ 8:(?2"

Let Ri(x1,x2,p1,p2) = > fi(x1, $2)p'f*ip§ be a homogeneous polynomial in the
momenta. We shall put

where 0; =

[Ri] = Ri(w1, 2, 0ny, —0ny) = 3 O (—00,) i1, 32).

Then equations (5) yield
P(V) =0, (6)

where PZ(V) = [8p1 (F2N+2_2i)W1] + [8p2 (F2N+2_2i)W2],i =1,...,N.
Each nontrivial relation (6) is called the addition theorem.
The following result holds:

Lemma 1. The relation (6) is nontrivial for i =1 or i = 2.

The proof of Lemma 1 is based on the consideration of relation (6) for V(x) =
x~1. It is easy to show that if 9,, E®?N #£ 0, then P (V) # 0. Otherewise,
By(V) #0.

We shall consider only potentials satisfying the following conditions:

a) zero is a pole of order 2 for V;

b) V is holomorphic in R\{0}; (7)
c) ILm V(z)=0.

The description of integrable potentials V(x) in the class of functions under
consideration is given in Theorems 1,2.
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Theorem 1. Let the leading homogeneous component of F' has constant coeffi-

cients. Then V(x) is one of the Weierstrass p function degenerated cases x~2,

sinh ™2 k.
The proof of Theorem 1 is based on three following lemmas.

Lemma 2. The addition theorem is Po(V) =0 and Po(V) = [L]o(V'), where L is
a homogeneous polynomial in pi,ps of degree 2N — 3 and

o(V) = VeV’ (-2 + wQﬁ) ~ V@)V (-5 + :’32\/3)+

2 2 2 2
RC R C N VRGN SI(E S S
T .%’2\/3 o 5132\/3

HV(=g =T Ve -V (-5 = T Ve,

Proof. Consider the expression F5y. Without loss of generality we can assume that
the integral F' is invariant with respect to the canonical transformation

T; = Ti,  Pi = Di,
where

Ell'vl = —1‘1/2 +$2\/§/27 -%/2 - _551\/3/2 - 1'2/2,
PL=-—p1/24+paV3/2, Po=-—p1V3/2—pa/2.

Thus we can represent Fyy in the form
Fon = (pippy)? - G(T', J),

where T = p} +p3, J = p2§2§2 and G is a polynomial in its variables. Then
P (V)=0 and

OF: . . OF - ~ . 4 0F ~
Favoa=(p) " =X Vi) + ) T S22 V(@) + () T 2 V(3 fw, (8)
Op1 Ip1 ap,
where [w] = 0.
Then we get
>~ ,0G _ =~
Py(V) = [(3JG - (p1p1p1)25p1p1p1] o(V).

The expression L = (SJG — (plﬁlﬁl)QaG/aJ)plﬁlﬁl is a homogeneous polynomial
in Pb1,P2-
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Lemma 3. (The uniqueness theorem). Let [L]f = 0, where
L =ap? +bpips +cp3, a*> +b>+c* #0,

f is a holomorphic function in R? and lim  f(z,y) =0. Then f =0 in R2.
z24+y2—o00

If b — 4ac < 0, then this lemma is a generalization of the Liouville uniqueness
theorem for the harmonic functions in R2.

If b2 — 4ac > 0, then L can be decomposed into the product of two monomials.
The equation a0, f + b0, f = 0 yields f(z,y) = g(bx — ay). Using the asymptotical
condition we get f = 0.

Since every homogeneous polynomial L in py, ps can be represented as a product
of polynomials of degree 1 or 2, we receive from Lemmas 1,2 the equation o(V') = 0.

Lemma 4. The identity o(V) = 0 is the addition theorem for the integral of degree
3 and only the Weierstrass p function satisfies it.

Proof. Consider the Laurent expansion at x; = 0 of the expression (V). Its first
nontrivial coefficient can be written in the form

V() =12V (t)V'(t) = 0, (9)
where ¢ = 251/3/2. It is known that the solution of equation (9) is either the

Weierstrass p function or one of its degenerated cases.

Theorem 2. Let the leading homogeneous component of F' has nonconstant coef-
ficients and 0., E®?N # 0. Then V(z) = 272,

Proof. Tt is easy to show that under conditions of Theorem 2 the relation Py (V) = 0
is nontrivial. Equations (5) yield

10N _,0Fy N . _,0FyyN -
Fonv. o — 1 : 2 : 1 :
bN—2 = (p1) By V(ry) + (p1) 3z, U(zy) + (p1) 7, V(zy)+
— 5, OF - ~ . OF ~ ~ . _,O0F =~
+ (1) P U@ + () T = V(@) + () P2 U (7)) +w,
8l‘1 apl 8:31

where V(t) = 0,U(t), [w] = 0.
Then the solution of the addition theorem PP, = 0 can be written in the form

V() = 02 (Qana(2) /(0. E**N (2))), (10)

where (Qan 44 is a polynomial of degree 2N + 4 in =x.

Lemma 5. Consider potential (10) as V(z),z € C. If a # 0 is a pole for V(z),
then 2a is also a pole.

The proof of Lemma 5 is based on consideration of the Laurent expansion (at
x1 = a) of the coefficients E¥~%¢. Then one can show that z = a is a pole of order
2 for V(z). Let

AVE] N g) B V(ﬂﬂz\/g B g>'

B(@):V( 2 2 2 2
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Consider the order of the pole at z; = a of the coefficients E?N~4=%?_ The expres-
sion B(z5) can be represented as B(xy) = g(x2)~3/(™) where g(z5) is a polynomial
of degree k < 2m.

Since B(z») is a rational function, B(zs) = P; '(z5), where P is a nontrivial
polynomial of degree 3. Let z = *a be the poles and z = £2a the regular points
for V(z). Then B(z») has two poles of degree 3 at x5 = av/3. But the expression
P; ! (x3) cannot have more then 3 poles in C. This contradiction proves Lemma 5.

It follows from the previous lemma that potential (10) cannot have a pole a # 0.
Therefore, V(z) = 272 + Q(x), where Q(z) is a polynomial in z. In the class of
potentials under consideration, V(z) = z72.

Let the potential V satisfy only conditions (7a,7b). Then the following result is
established:

Theorem 3. Let the potential V(z) = 272 + Q(x) admit integral (4). Then
deg Q(z) < 4.

Lemma 6. Let the potential V(z) = 272 + Q(z) admit an integral F of degree
2N and deg Q(x) = k. Then the potential ¥ admits a nontrivial integral, which is
polynomial of degree d < 2N.

The proof of Lemma 6 is based on using of the canonical transformation

_ _ _ -1 _ -1
T =Up € T2=U2"E P1=q1°€ ,P2=(g2-€ .

Then H and F are holomorphic functions of the parameter €. Let Hy = H|.—o,
Fy = Fle—o. Then {Hy, Fy} = 0, where Hy is a Hamiltonian for the system with
V(x) = 2 and Fj is a nontrivial polynomial in p;, p».

For proof of Theorem 3 we use Yoshida’s theorem [4] on the nonintegrability of
natural systems with the Hamiltonian (2), where W is the homogeneous polynomial
in 1,29 of degree k.

Following Yoshida’s method, consider the system

{ 81;1W—LL‘1, (11)
a:cQW = I,

where
ko, o~k <P
W=ai+2y+z,.
Its solution is (k)
z1 = (2/(k(1 +2771))) ,
To = IL‘l\/g.

For these x1, x5 the eigenvalues Ai, Ay of the matrix (W“ Wiz

Wo1 Was
M=k—1, \=3k-1)/(1+2"1).
Calculating Kovalevska’s indicators
0i =/ 1+ 8kX;/(k — 2)?
we get 0 = (3k—2)/(k —2) € Q and
24k(k -1
ez = \/1 = 2)2((1 n Q)k—l) '

If 02 ¢ Q, then it follows from Yoshida’s theorem that the Hamiltonian system with
V(x) = z¥ is nonintegrable.

) are
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Proposition. If (k,m) is a solution of the Diophantine equation

(k=221 4212 4 24k(k — 1)(1 +2°71) = m?, (12)
then k < 4.
Proof. For k = 6,8 or 10 we can directly calculate m. Consider the case £ > 10.
Let (k,m) be a solution of (12). One can show that

m=2(1 — 1)(1+2271) + 125,

where k£ = 2l and s is an integer number.Then s satisfies the Diophantine equation

(1(21 — 1) — s(1 — 1))(1 + 2%71) = 352,

But for [ > 6 its solution must satisfy the inequalities 2] + 1 < s < 2] + 2.

The last proposition completes the proof of Theorem 3.
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