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Investigations on applications of nonstandard methods to measure theory and op-
erator theory (see [1] and [2]) are extended to operator-valued measures and charges.
Spaces of operator-valued charges on the algebra 2T and corresponding charges on
the algebra 2T, where T is the standard filling of a finite (in the sense of IST) set
T, are introduced and examined. The notions of weak, strong and uniform nearstan-
dardness are defined for such charges (including the technics of equipment of Hilbert
space). It is proved that decomposition of the unity )1 of discrete differentiation
operator D is related to the decomposition of the unity 99 of usual differentiation
operator D in the same way as the operators D and D: °1 = 9.

This article is devoted to the investigation of operator-valued charges in hyper-
finite spaces. It is a continuation of [3] and [4].

T denotes a finite (in the sense of IST) set such that card T ~ +o0, and (T, Q, A)
its standard filling (see [3]). Earlier we have assumed that V¢ € T AQt = h = const.
Now this condition is substituted by a less restrictive one:

VieT MQt> 0. (1)

We are to correct the embedding @ : N' — M (N is the set of all charges on T,
and M is the set of all regular o-additive charges on T ) as follows:

VveN VEEA QuE:=) Ae(tu, (2)

teT

where Vi € T Ae(t) := AMENQL)(AQt) L. Let H be the Hilbert space of functions
x € CT with the inner product

(2ly) = 3" (gD, (3)

teT

where v := II\. Note that v € "' and °v = ), because the measure \ is standard.

1. Space M. Decomposition of the unity of an operator A € B(H) is an operator-
valued measure defined on the spectrum o(A) of A. This spectrum is a finite set
(cardo(A) < cardT = dim H)). Therefore, it is expedient to introduce another
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~

finite (in the sense of IST) set T and its standard filling (T,Q, A). An operator
M; € B(H) is assigned to each ¢ € T. Then define

vEe2t mE.=Y . (4)

teE

Then I is an additive function defined on the algebra 2T with values in B(H) :

N e B(H) 2" Every such function is called an operator-valued charge (on 2T)
Formula (4) defines the general form of an operator-valued charge. In particular,

vie T Mt} = N;. The set of all operator-valued charges is denoted by N = N(T).
The variation of an operator-valued charge 91 € 0N is the number measure M| €
N, (T) defined by
vEedt B = [9lse), (5)
tekE
M is a normed space with pointwise arithmetical operations and with the norm

Yotem |0 = |N|T. (6)

This normed space is complete because dim M = 2¢9dT ¢ N,
Operator-valued charge N is absolutely continuous with respect to its variation

9| in the sense that VE € ol (NE~0 = H‘REHB(H) ~ 0). This follows
from the evident inequality V £ € 2T IME| < |NE »

N € Nis called real, if VE € 2T(mE)* = ME. Of course, this condition is
equivalent to the following: Vi € T (M;)* = M;. An operator-valued charge M € N
such that V£ € 2T ME >0 (i.e. Vo € CT (MEz|z| > 0) is said to be an operator-
valued measure on QT).

To each Me N, E € 2T, and & € CT assign “the discrete integral” Nz and the
operator-valued charge M* defined by Nz = NE = > ik #(£)M;. Obviously,
Ny is a linear map ct - B(H), M? is an additive map 2T B(H), and ||Mz2| <
NIE - ||2] 5, where [2] 5 = I?G%\i(f)la 19V E — N E|| < [NY(EAF) - ||z
. Let 9t € M. To each vector 2 € H assign the vector-valued charge M(z) defined

y

vEe2' Na)E:=) M, (7)
tek
with the variation |9(x)|:
VEe2' M@)IE =) |0l ®)
teE

and with the norm [|9(x)||:

19%a)|| = [9() T (9)
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Besides, complez-valued charge (z,y) corresponds to each pair (z,y) € H? ac-
cording to the formula

VE €2t Nz, y)E = MNEz|y)m, (10)
with the variation |M(x,y)|:
vE €2t Mz,y)E =Y [(Maly)ul, (11)
ieE

and with the norm |MN(x,y)|:
19, y)| = 9z, )T (12)
To each { € T assign the matriz M;(-,-) € CT of the operator M; by
V(t,s) € T> My(t,s) = (Mds]dr),
where d; is the Dirac delta concentrated at the point t € T. We get from (10)
that D (t,s) = N(ds,6:){f}. This means that to each pair (¢,s) € T? we assigned
the complez-valued charge N[t,s] € N = N(T) such that VE € 2T N[t,s]E =

2ici Milt:s) A )
It is easy to prove that V & € 27 Va,y € H (MEzly) =32, er= N, s|Ex(s)y(t)vsm.

2. Space M. Let H be the Hilbert space of all functions & € CT, with the inner

product
(€ln) = /T E(rIA(dr).

Denote by 9 the set of all operator- valued charges defined on the algebra A
of A-measurable sets £ € 2T, where (T,Q, )) is the standard filling of the set T.

By definition, 9 € 9 whenever domM = A, V€ € A ME € B(H), and M is
o-additive in the strong operator topology.

For 9 € M by |M| we denote its variation, i.e. the mesure || € Mo (T) such
that
VEeA |ME :=sup ) ||MEllpw),
k

where sup extends all disjoint partitions & = Iglffk, &, € A. M is interpreted as a

normed space with natural arithmetical operations and with the norm
Ve || = |om|T. (13)

Now we consider another topologies on the space 91. Let 9 € M, &, €
H. By (&) we denote the vector-valued (with values in H) charge defined by

VE e A MEE = (ME)E. By M(€,n) we denote the complez-valued charge (i.e.

M(E,n) € M := M(T)), defined by VE  IM(E,n)E := (ME)¢|n)u. In what follows
we put

vEEA |MEIE = sup ) (MEE |,
k

and VE € A |M(E,n)|€ :=sup Y [(ME)E[nml, (14)
k
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We also put
190(E) | :=|M ()| T,
and [|90(&, n)|| :=|M(E, )| T (15)

These norms define correspondingly the strong and weak topology on 9.

3. Maps Q and P. Recall that VA € B(H) QA4 := QAIl € B(H). We shall
extend the map Q to operator-valued charges 91 € M. Put (see (2))

VReN VEeA (QME:=) A(Han; (16)
ieT
in particular, X X
VieT (QMQE=: QN; = QNI (17)

Proposition. Q is a linear injective unstretching (with respect to norm (13))

transformation M — M. It maps real o.charges to real ones and o.measures to
real ones.

< Tt follows from im IT = H, ker Q = {0}, and (17) that ¥ € T 91; = 0 whenever
QM = 0. Since the (standard) number measure )\ is o-additive, we obtain that
Vi e T the map & — ;\g(f) is a o-additive measure on the subalgebra {£ € A :
EC Qf} of the algebra A. We have 5\(15 t) = 1. Consequently, the function QN

is o-additive on A. Since |Q|| = |[II|| = 1, we have QM| < ||91]. Denote by
‘ﬁ+ and SDLF the cones of o.mesures in N and 9N respectlvely By (17), we get
vieT VEe H (QN; £|€) = (MGIIEITIE) > 0, whenever Vi € T 9; > 0. Therefore,
Q‘ﬁ+ C m+ >

Now we extend the inductor 9B to all of M. Recall that for A € B(H) we have
PA :=1ITAQ. For this reason we define

VvmeMm VEe2T (pmE .= 0OMQE)Q; (18)

in particular, X X
vieT (PM); = I(MQHQ. (19)

Proposition. The inductor *P is a linear unstretching map M — N which maps
real o.charges to real ones and o.measures to o.measures. It is left inverse to the

embedding Q : M — M. This means that

Ve Mm [IPM| < |Mm,
Yen VEe2l pank =nk.

 According to (6) and (19), we find [ = e (B | = Xy MMQUQ| <
Sier IMQL]| < |||, Sinse IIQ = Iy and /\QE coincides with the characteris-
tic funAction of E, we. have PONE = MOQMQEQ = (> e S\QE(QQ‘)TEH)Q =
Yier Aop(D)9 = NE, by (16 ) and (18).

4. Nearstandard o.charges. Nearstandardness notion depends on the choice of
topology.
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Definition. O.charge 91 is E:alled weakly, (respectively strongly, uniformly) near-
standard if for some 9 € M

VE e H [|(0— PM(TIE, Tn) || ~ 0, (20)

(respectively
VEESTTH [|(0— Pm)(T1E)|| ~ 0, (21)
19T — PM|| ~ 0). (22)

Obviously, a uniformly nearstandard o.charge is strongly nearstandard, and
o.charge M satisfying (22) also satisfies (21). A strongly nearstandard o.charge
is weakly nearstandard, and 90 satisfying (21) also satisfies (20). This follows from
the following evident inequalities:

YNERN VeeH [N < 9Nz, (23)
YRERN VayeH [Ny < [N -yl (24)

In the sequel, we assume that the inductor II corresponding to the standard

filling (T, Q, 5\) of T is ezact. It is easily shown that o.charge 90 satisfying (20) is
unique.

Definition. The o.charge 9 satisfying (20) is denoted by °91 and is called the
shadow of M. The quasikernel of P is the set gker’P = {M € M : (VE €
T) ([IBME]| ~ 0).

Proposition. a) The inductor B is exact in the sense that 5 gker B = {0}. b) If

NeN, Me M and |QN — M|| = 0, then o.charge N is uniformly nearstandard
and ° =M.

The proof is left to the reader.

Example. Here we assume that T = T, (’i‘, Q, 5\) = (T,Q, \). Define the o.charges
N and 9N as follows:

VE 2" Va,yeCl (MEzly) =Y a(t)y(t)ir, (n)
teE

where 7, € N is some complex-valued charge, and
vEeA VeneH (mech)= [ crniman). (m)

In other words, ME is the operator of multiplication in H by the characteristic
function of £. Note that 9 € S9N, .

Let B € 2%, .y € H, then (PMEzly) = (MQEQ|Qy) = [ Qu(7)Qu(T)A(dr) =

> er T(t)y(t)ve, where vy := AQt. Consequently,

VteT Vz,yeH ((0—PM)zly) = x(t)m(ﬁt — ), (25)
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orVteT Vz,yeH ((DM—PM)xly) =T () (x|d:)(de|y)ve, where 6, is a discrete
Dirac delta, and Vt € T T'(t) := (&, — v)v; ', v == MQt. According to (11),
(12), and (25), we find

Va,y € H o[BI (2, )l = Y L(Oz(0)y(0) v (). (26)

teT

1° Suppose that Vt € T |T'(t)| < oo and T'(t) ~ 0 quasieverywhere on T, then
the charge M is weakly nearstandard and °O = 9.

A Let &n € H, z := TI§, y := IIn. The function ¢ — T(t)z(t)y(t) is v-
integrable, so that vTo ~ 0 and V¢t € T\ Ty T(t) = 0. According to (26),
|(N=PBM) (x,y)|| = > + > [D)x(t)y(t)|v: =~ 0 because the second summand

teTy t€T\Ty
is not greater than

') - . >
s [L(2)[- ] - ]

Taking into account (8), (9), and that ||| = 1/;1/2, we find

Ve eH [[(M—PM)(z) =Y v VO (27)

teT

2° Let o, op |T(t)[? = 0, then M is strongly nearstandard and °9 = M.
< Tt follows from (27) that

I =) @) | < (3 Il

teT

But for £ € H and x = I we have ||z|| < o0 »

Finally, since the operator x — (z|d;)d;v; is an orthoprojector H — Cd, with the
unit norm, we obtain that V¢ € T ||(DM — PM),|| = |T(¢)|, hence ||9T — PM|| =

2ier [T

This proves that
3° Nis uniformly nearstandard iff Y, |I'(t)| ~ 0. Conversely, if >, . |T'(¢)| ~

0, then °9 = 9% and v; 'T'(t) ~ 0 quasieverywhere on T.

5. H_-nearstandard o.charges. A wider nearstandardness notion corresponds

to a weaker operator norm. We use the equipment of CT by norms ||-||_, ||-II, |||+,
induced by H and its equipment. Let H_ D H D H, be a Hilbert equipment of

the space H (see, for example, [8]). The embedding @ : C* — H enables us to
carry the equipment of H over to C*. Define

Va,y e C° (zy)- = (QzQy)—, |zll- = [Qx]-.
The negative inner product may be represented in the following form:

(Va, BeH-) (a|f)- = (Ia[IB)o,
Vo, y €Ch)  (zly)- = (Iz|Iy)o,

where I € H¥- T € H¥ are linear operators symmetric w.r.t. the inner products

of H and H respectively. It is easy to prove that I? = III°Q = PI* and T is a
bijection.



OPERATOR-VALUED CHARGES ON FINITE SETS 151
The positive inner product is introduced by
Va,y € CY (zly)y = [ 2T o, lzfls = [T 2 o.

CT with the positive inner product by H,, and with the negative inner product is
denoted by H_. One can find more details on the properties of H; and H_ in [7].
The notions of H_-nearstandardness for functions z € C* and operators A € B(H)

were considered in [8], too.
For A € B(H) denote ||A||" = sup{||Az||- : = € H, ||z|]|+ = 1}. We have
Vo e H |z < Jal| < ||z, hence

vAeBH) [Al <Al (28)

Definition. For 91 € N put

Inll" = 19" (29)

teT
M is called H_-nearstandard if for some 9 € st

19T — BM||" =~ 0. (30)

Proposition. If M is uniformly neastandard, then it is H_-nearstandard, and its
shadow °N coincides with 9 which satisfies condition (30).

< By (28), (29), and (6), VOt € M [N < |N. So, (30) follows from (22).

Uniqueness of 91 follows from the following propositions »

Proposition. If |N||" =~ 0, then N is weakly nearstandard and °IN = 0.

< Obviously, [Nz, y)|| = 2o ,er |(Mzly)| < 3 iep Ml |2+ [lyll+, hence |9z, y)[| <
1IN ||zll+lylls-. Our statement follows from definition (20) because the chain

H_ D H D H, is standard, and V¢ € 'H |II¢]|; < 0 »

Corollary. IfOt is H_-nearstandard, then it is weakly nearstandard, and 9N € St
satisfying (30) coincides with the shadow °N.

Example. Let the conditions of the previous example be satisfied. By (25), we
conclude that [N —PM|)" < >, cr [T@)[|0:]]2 ve. So if 3, cq IT()[]|0¢]|* v¢ = 0, then
M defined in (n) is H_-nearstandard and it has the shadow °91 = 9t defined in
(m). Note that ||d:||— < oo since the chain H_ D H D H, is standard. Therefore,
the multiplicator ||§;]|% is not essential.

6. Spectral decompositions of differential operators. Here we use the ter-
minology and notation of [7], where it was proved that the discrete differentiation
operator D is nearstandard and its shadow D = °D is the “usual” differentiation
operator.

O.charge M = MNp. Recall that dom D = CT = H, where T = 2/ is a discrete

2¢-periodic discrete axis, 20 = {—¢,—{+h,....,{—h}, £ >0, h >0, h~ 0. D takes
the form: Vo € H, Vte T Dx(t) = F[z(t + h) — z(t)] in view of condition of
periodicity (¢ — h) + h = —¢. Tt has eigenfunctions e;, where e;(t) = et ¢t € T,
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te20,20 ={—0,~0+h,.. 0—h},{:= ™ h = 7- As T we take the spectrum of

B eith —1

te2e ih

(31)

We have Vi € 20 De; = ze;. Since |lej|| = v/2(, the decomposition of the unity
N = Np of D acts according to the formula

. A A 1
VEc2" VYVoecH NEz= i Z(m\ef)ef. (32)
ZEEE
O.measure M = NMp. At first we examine the case ¢ < oco. To avoid technical

difficulties we assume that ¢ € **R. In this case D = °D is an operator in H :=
Lo(T, \), where T = [—¢,¢[, A = d7 is the Lebesgue measure on T. D is defined

on functions £ € H such that % € H and £(—¢) = £(¢); D¢ = 148 - According to

i dr
our plan we take the spectrum of D as T:

T:=o0(D) =hZ:={...,—2h,—h,0,h,2h,...}.

The eigenfunction e; such that V7 € T e;(7) = €'" corresponds to the eigenvalue
7 € T. Since |le+|* = 2¢, we get that the decomposition of the unity 9 = Mp of

D operates as follows
4 i 4 1
T _ )
vée2lt veéeH mw@_ﬂ§;@@yh
reé
in particular,

VieT vecH mqﬂg_l(kgT (33)

Exactness of II. Recall that the embedding @ :A2T — A C 27 is defined by
VteT Qt=I[tt+h[. The embedding Q : 2T — 2T will be defined by

. o R . eii’h -1
Vie2l Qzr={7}, z= T
i

(34)

what is natural for reason of z; ~ 7 whenever |7| < co. The measure A is defined
onA=2TbyvieT X := M7} = h. Note that T, A, A are standard because
h = % € *'R. The inductor IT corresponding to the standard filling (T, Q, \) of T
is ezxact. Really, let pu € ¢ qkerH (that is, ¢ is a standard complex-valued charge
defined on A) be such that VE € 2T MuE ~ 0, then V# € T = hZ pQ{z:} =
{2} ~ 0, hence by (34), u{#} ~ 0. But for # € **hZ the number pu{7} is
standard, therefore u = 0.

Proposition. The decomposition of the unity Nt = Np is weakly nearstandard and
its shadow is 9N = Mp

< Recall that e; are related to €; through II : H — H by
ith

VteT e; =lle, where v; := 1
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By (34), (PM)., = (PM){z} = MOz })Q = MM{#}Q. Consequently,
by (33), Vo € H (PM)., 2 = IM{7}Qz = 5;(Qz|e;)Ile;. Taking into account
(Qzlez) = (x(Ilez), we find

VeeH Vie2l (PM)..a= zle;)e;. (35)

11
20 [y ?
Define the complex-valued charge (91— BIM)(z,y) on 2T by (N —PM)(z,y){z+}
(M = PM)...z|y)u. According to (32) and (35), we have (9 — PM)(x,y){z}
3 (1= 1) @lep)(egly). So, (see (12))

- gl = 55 3 (1= - ) ke edol
z€T t

Note that V{ € s*(hZ) th ~ 0. Thus Vi € 5*(hZ) ~; ~ 1. By the Robinson lemma,

v; ~= 1 up to some iy € hZ, \ **(hZ), i.e. 7; ~ 1 whenever |{| < to. We conclude
that

[ =Pyl < 50 3 (1-

|| <to

1

|7¢]?

L 1) (X wlen?)

[£]>to [£]>10

J@leq)esly)+

because ;] > 1 and |1 — ﬁ| < 2. Let x = II¢, y = IIn with &,n € *H. Then
z,y € "5'H and, by nearstandardness criterion 6.6.1 [7], the addend in the last sum
is infinitesimal. The augend is also infinitesimal, because it is not greater than
]l -yl max |1 - =zl allz]l, lyl < oo »

[Tl <to ¢

Case ( ~ +oo. In this case the description of spectrum o(D) =: T and decom-
position of the unity M = Np of D remains the same as for £ € *R. Note that

h = 7 =~ 0, s0 Vh e 2€ the eigenvalues z; and z;_ ; are infinitely close: z; ~ z;_ ;.

Since now °D = D is the differentiation on whole axis, it is natural to take T = R,
A be the Lebesgue measureon R, and V¢t € T Qt = [t,t+ h[ as the standard ﬁlling

(T, Q,)\) of T. Besides, the standard filling (T,Q, ) of T = o(D) is defined as
follows: T = (D) = R, A is the Lebesgue measure on R, and

Ve, €T Q{z) =i, i+ h (36)

As it was noted, the condition h~0 implies the exactness of 11.
It is a well-known fact that decomposition of the unity 9t = 9p of D takes the
form

VéEeH VEeA Mé¢(r \/_/5% )ei T dr,

where A is the algebra of Lebesgue measurable sets EC R, 5 = §¢ is the Fourier
transform of £ € H:

)e T dr,

E7) = 36(7) = m/f
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In particular, according to (36) we have

Vz; € T MQ{z}e(7) )e' T dr.

It is easily shown that, for x € H, the “usual” Fourier transform Qzr = FQu is
related to the discrete Fourier transform z := €z by
. SR 1. . iTh
VreR Q(E(T) = 7:£$(7‘), Y& = m
For any z,y € H form the complex-valued charge B9 (zx,y) as follows:

vEeh Pm(ey)E =Y (IMQ{=}Qaly)

Z{Eé

(38)

In particular, taking into account that IT* = @ and by (37), we get
Vel PM@,y){z) = (WQ{Zf}Q$|Qy>H =

t+h t+h .
/ dr E / e’ df Qy( ) /t Qw (72) Qy(f') dr.
On the other hand, by (32),

s N~ t+h ~ =
We){aid = Fo@id = [ ara@ild)

Thus according to (12) and (38),

-3 )1 = 3o tal| = 3] [ - @Gt |

zte']T teT

If |£| < oo, then 7; &~ 1, hence there exists a fy &~ 400 such that y := max nyt\z — 1|~
It]<
0. Taking the condition |y;| < § into account, we find that

/\ ~

(90— PM(z, )| < ~|Qa} - ||@y\|+c\ (#)Oy(7) d?

|T|>to

Y

where C is independent of z and y, 0 < C < oco. If 2,y € "'H], then the augend at
the right is infinitesimal, because [|Qz| = ||Qz|| = ||z|| < oo and ||Qy|| = ||Qy]| =
|ly|| < oo. The addend is also infinitesimal, because Qx,Qy € "*'H  »

Remark. Formula (38) may be interpreted in the following way: §D'Q = €D*,
where D’ “E is the differentiation operator on R in the sense of distributions,
D* is adjoint to D: Vo € CT D*x(t) = (Dx)(t — h) = F[2(t) — z(t — h)].

< Since vz = %, relationship (38) may be represented in the form 7Qxz(7) =

Zz2(7). It remains to take into account that differentiation converts to multiplica-
tion by independent variable under the Fourier transrorm »

Appendix. Nearstandardness criterion for a scalar measure.

1. Let X be a standard set, X a standard o-algebra of sets A C X. A measure (on X)
is a o-additive function p € Rf. By definition, it is nearstandard if var(p —v) ~ 0

for some standard measure v on X. Then v is denoted by °u and called the shadow
of p.



OPERATOR-VALUED CHARGES ON FINITE SETS 155

Definition. A measure p is said to be S-continuous iff uX < oo and for any stan-
dard decreasing sequence A,, € X such that ﬂneN A, = @ the following condition

holds:
nroo = p(4,) =0.

Remark. Each nearstandard measure is S-continuous.

Proof. First suppose that p is standard. Let (A,)nen be a standard decreasing
sequence in X with N,eny = @. The o-additivity of p implies u(A1) = > o p(An \
Apy1)- The series above is standard and convergent, hence p(A,) = > ;5 #(Ag \

Agy1) = 0 for any n =~ oo. Now consider a nearstandard measure p on X. By
definition, there exists (a unique) standard measure °p on X such that var(u—°p) ~
0. Since VA e X (u)(A) < (var(pu—"°p))(X)+(°pn)(A), from (°u)(A) = 0 it follows
that (u)(A) ~ 0. Hence p is S-continuous, too.
Definition. A measure po on X is said to be the shadow of p in the weak sense
iff
(i) po is standard,
(ii) for any standard A € X po(A) = p(A). Obviously, if u has the shadow in
the weak sense, then it is unique. As above it will be denoted by °u (without
ambiguity).

Proposition. A S-continuous measure p has the shadow in the weak sense.
Proof. For A € 51X put py(A) = °[u(A)] and let pgy be the standard extension of uy
from s'X to the whole X. Consider an arbitrary standard partition A = U,enA,

of an arbitrary standard A € X. For n < oo A, is standard. Hence Vn < oo
to(A) = D p<p Ho(Ak) + °[u(Bn)], where By, := UgspAy. Therefore, for n < oo

fo(A) = > pen to(Ax) — p(Bpn) ~ 0. By the Robinson lemma, this holds up to

some n = ng ~ co. But the B,’s form a standard decreasing sequence with empty
intersection. Therefore, Vn ~ oo u(By) ~ 0. Hence uo(A) ~ 4o, to(Ag). The

number f9(A) and the series ) po(An) are standard. Besides Vn po(Ay) > 0.
Therefore po(A) = Y, cn Ho(An). By transfer, po is o-additive, hence VA € **X
1(A) ~ po(A), po =°p »

2. Now we consider another approach. Let X be a standard set, X a standard
o-algebra of subsets A C X, m a o-additive measure on X. We interpret X as a
metric space with equality and distance defined as follows: V A, B € X

(A=B = m(AA B)=0)
d(A,B) = m(A,B),

where AA B:=(A\ B)U(B\ A).
Remark. Let f € Y (here Y is an internal set), then f is a function on (X, d) iff
m(AAB)=0 = f(A) = f(B). (1)
But for an additive function p € C* this is simpler:
m(A) =0 = pu(4)=0. (2)

< Let (1) hold. Put B = @. The additivity of p implies p(B) = 0 and we
see that (2) is satisfied. The additivity of p implies |u(A) — pw(B)| < u(A A B).
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Suppose that (1) holds for f = p and m(A A B) = 0. Then u(A A B) = 0, hence
u(A) = n(B) »

Now suppose that a measure space (X,X,m) is standard. Arguing as above,
we find that for an additive function u € C% the <nst>-condition of graph-

nearstandardness is
m(A)~0 = u(A)=D0. (3)

We emphasize that (2) is exactly the condition of absolute continuity of p with
respect to m.

Definition. A measure p on X is said to be absolutely continuous with respect to
miff VAe X pu(A) < oo and p satisfies (2) and (3).

Let 1 be an absolutely S-continuous (with respect to m) measure. Since VA € X
p(A) < oo, °u considered as the shadow of a graph-nearstandard function is defined
everywhere: dom(°u) = X. Besides VA € 'X (°u)(A4) = °[u(A)]. We see that
°u is the standard extension of X > A — °[u(A)] to the whole X. Note that °u
is S-continuous. Indeed, let (A, )nen be a standard decreasing sequence in X such
that NpenA, = @. Then Vn =~ co m(A,) ~ 0 (since m is standard). Therefore,
by (3), Vn ~ oo u(A,) =~ 0. Hence p has the shadow in the weak sense. Thus the
following statement holds.

Proposition. The shadow of a graph-nearstandard measure coincides with the one
in the weak sense. In particular, it is o-additive.

Many other approaches to the problems which are discussed in this paper are
possible. For instance, see [1, Ch.5].
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