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Investigations on applications of nonstandard methods to measure theory and op-
erator theory (see [1] and [2]) are extended to operator-valued measures and charges.

Spaces of operator-valued charges on the algebra 2T and corresponding charges on
the algebra 2T, where T is the standard �lling of a �nite (in the sense of IST) set
T, are introduced and examined. The notions of weak, strong and uniform nearstan-
dardness are de�ned for such charges (including the technics of equipment of Hilbert
space). It is proved that decomposition of the unity N of discrete di�erentiation
operator D is related to the decomposition of the unity M of usual di�erentiation
operator D in the same way as the operators D and D: ◦N =M.

This article is devoted to the investigation of operator-valued charges in hyper-
�nite spaces. It is a continuation of [3] and [4].

T denotes a �nite (in the sense of IST) set such that cardT ≈ +∞, and (T, Q, λ)
its standard �lling (see [3]). Earlier we have assumed that ∀ t ∈ T λQt = h = const.
Now this condition is substituted by a less restrictive one:

∀ t ∈ T λQt > 0. (1)

We are to correct the embedding Q : N → M (N is the set of all charges on T,
and M is the set of all regular σ-additive charges on T ) as follows:

∀ ν ∈ N ∀E ∈ � QνE :=
∑
t∈T

λE(t)νt, (2)

where ∀ t ∈ T λE(t) := λ(E ∩Qt)(λQt)−1. Let H be the Hilbert space of functions
x ∈ CT with the inner product

(x|y) =
∑
t∈T

x(t)y(t)νt, (3)

where ν := �λ. Note that ν ∈ nstN and ◦ν = λ, because the measure λ is standard.

1. Space ~N. Decomposition of the unity of an operator A ∈ B(H) is an operator-
valued measure de�ned on the spectrum σ(A) of A. This spectrum is a �nite set
(cardσ(A) ≤ cardT = dim H)). Therefore, it is expedient to introduce another
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�nite (in the sense of IST) set T̂ and its standard �lling (T̂, Q̂, λ̂). An operator

Nt̂ ∈ B(H) is assigned to each t̂ ∈ T̂. Then de�ne

∀ Ê ∈ 2T̂ NÊ :=
∑
t̂∈Ê

Nt̂. (4)

Then N is an additive function de�ned on the algebra 2T̂, with values in B(H) :
N ∈ B(H)2T̂ . Every such function is called an operator-valued charge (on 2T̂).
Formula (4) de�nes the general form of an operator-valued charge. In particular,

∀ t̂ ∈ T̂ N{t̂} = Nt̂. The set of all operator-valued charges is denoted by ~N = ~N(T̂).
The variation of an operator-valued charge N ∈ ~N is the number measure |N| ∈

N+(T̂) de�ned by

∀ Ê ∈ 2T̂ |N|Ê :=
∑
t̂∈Ê

∥Nt̂∥B(H). (5)

~N is a normed space with pointwise arithmetical operations and with the norm

∀N ∈ ~N ∥N∥ = |N|T̂ . (6)

This normed space is complete because dim ~N = 2card T̂ ∈ N.
Operator-valued charge N is absolutely continuous with respect to its variation

|N| in the sense that ∀ Ê ∈ 2T̂ (|N|Ê ≈ 0 =⇒ ∥NÊ∥B(H) ≈ 0). This follows

from the evident inequality ∀ Ê ∈ 2T̂ ∥NÊ∥ ≤ |N|Ê ▶
N ∈ ~N is called real, if ∀ Ê ∈ 2T̂(NÊ)∗ = NE. Of course, this condition is

equivalent to the following: ∀ t̂ ∈ T̂ (Nt̂)
∗ = Nt̂. An operator-valued charge N ∈ ~N

such that ∀ Ê ∈ 2T̂ NÊ ≥ 0 (i.¥. ∀x ∈ CT (NÊx|x| ≥ 0) is said to be an operator-

valued measure on 2T̂).

To each N ∈ ~N, Ê ∈ 2T̂ , and x̂ ∈ CT assign \the discrete integral" NÊ and the

operator-valued charge Nx̂ de�ned by NÊ x̂ = Nx̂Ê :=
∑

t̂∈Ê x̂(t̂)Nt̂. Obviously,

NÊ is a linear map CT̂ → B(H), Nx̂ is an additive map 2T̂ → B(H), and ∥NÊ x̂∥ ≤
|N|Ê · ∥x̂∥Ê , where ∥x̂∥Ê = max

t̂∈Ê
|x̂(t̂)|, ∥Nx̂Ê −Nx̂F̂∥ ≤ |N|(Ê△F̂ ) · ∥x̂∥T̂.

Let N ∈ ~N. To each vector x ∈ H assign the vector-valued charge N(x) de�ned
by

∀ Ê ∈ 2T̂ N(x)Ê :=
∑
t̂∈Ê

Nt̂x, (7)

with the variation |N(x)|:

∀ Ê ∈ 2T̂ |N(x)|Ê =
∑
t̂∈Ê

∥Nt̂x∥H, (8)

and with the norm ∥N(x)∥:

∥N(x)∥ := |N(x)|T̂. (9)
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Besides, complex-valued charge N(x, y) corresponds to each pair (x, y) ∈ H2 ac-
cording to the formula

∀ Ê ∈ 2T̂ N(x, y)Ê := (NÊx|y)H, (10)

with the variation |N(x, y)|:

∀ Ê ∈ 2T̂ |N(x, y)|Ê =
∑
t̂∈Ê

|(Nt̂x|y)H|, (11)

and with the norm ∥N(x, y)∥:

∥N(x, y)∥ = |N(x, y)|T̂. (12)

To each t̂ ∈ T̂ assign the matrix Nt̂(·, ·) ∈ CT2 of the operator Nt̂ by

∀ (t, s) ∈ T2 Nt̂(t, s) = (Nt̂δs|δt),

where δt is the Dirac delta concentrated at the point t ∈ T. We get from (10)
that Nt̂(t, s) = N(δs, δt){t̂}. This means that to each pair (t, s) ∈ T2 we assigned

the complex-valued charge N[t, s] ∈ N = N (T̂) such that ∀ Ê ∈ 2T̂ N[t, s]Ê =∑
t̂∈Ê Nt̂(t, s)

It is easy to prove that ∀ Ê ∈ 2T̂ ∀x, y ∈ H (NÊx|y)=
∑

(t,s)∈T2 N[t, s]Êx(s)y(t)νsνt.

2. Space ~M. Let H be the Hilbert space of all functions ξ ∈ CT, with the inner
product

(ξ|η) =
∫
T

ξ(τ)η(τ)λ(dτ).

Denote by ~M the set of all operator-valued charges de�ned on the algebra �̂
of λ̂-measurable sets Ê ∈ 2T, where (T̂, Q̂, λ̂) is the standard �lling of the set T̂.
By de�nition, M ∈ ~M whenever domM = �̂, ∀ Ê ∈ �̂ MÊ ∈ B(H), and M is
σ-additive in the strong operator topology.

For M ∈ ~M by |M| we denote its variation, i.e. the mesure |M| ∈ M+(T̂) such
that

∀ Ê ∈ �̂ |M|Ê := sup
∑
k

∥MÊk∥B(H),

where sup extends all disjoint partitions Ê = ⊔
k
Êk, Êk ∈ �̂. ~M is interpreted as a

normed space with natural arithmetical operations and with the norm

∀M ∈ ~M ∥M∥ := |M|T̂. (13)

Now we consider another topologies on the space N. Let M ∈ ~M, ξ, η ∈
H. By M(ξ) we denote the vector-valued (with values in H) charge de�ned by

∀ Ê ∈ �̂ M(ξ)Ê = (ME)ξ. By M(ξ, η) we denote the complex-valued charge (i.e.

M(ξ, η) ∈ M := M(T̂)), de�ned by ∀ Ê M(ξ, η)Ê := ((MÊ)ξ|η)H. In what follows
we put

∀ Ê ∈ �̂ |M(ξ)|Ê := sup
∑
k

∥(MÊk)ξ∥H,

and ∀ Ê ∈ �̂ |M(ξ, η)|Ê := sup
∑
k

|((MÊk)ξ|η)H|, (14)
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We also put

∥M(ξ)∥ :=|M(ξ)|T̂,

and ∥M(ξ, η)∥ :=|M(ξ, η)|T̂. (15)

These norms de�ne correspondingly the strong and weak topology on M.

3. Maps Q and P. Recall that ∀A ∈ B(H) QA := QA� ∈ B(H). We shall

extend the map Q to operator-valued charges N ∈ ~N. Put (see (2))

∀N ∈ ~N ∀ Ê ∈ �̂ (QN)Ê :=
∑
t̂∈T̂

λ̂Ê(t̂)QNt̂; (16)

in particular,
∀ t̂ ∈ T̂ (QN)Q̂t̂ =: QNt̂ = QNt̂�. (17)

Proposition. Q is a linear injective unstretching (with respect to norm (13))

transformation ~N → ~M. It maps real o.charges to real ones and o.measures to
real ones.

◁ It follows from im� = H, kerQ = {0}, and (17) that ∀ t̂ ∈ T̂ Nt̂ = 0 whenever

QN = 0. Since the (standard) number measure λ̂ is σ-additive, we obtain that

∀ t̂ ∈ T̂ the map Ê 7→ λ̂Ê(t̂) is a σ-additive measure on the subalgebra {Ê ∈ �̂ :

Ê ⊆ Q̂t̂} of the algebra �̂. We have λ̂q̂t̂(t̂) = 1. Consequently, the function QN

is σ-additive on �̂. Since ∥Q∥ = ∥�∥ = 1, we have ∥QN∥ ≤ ∥N∥. Denote by
~N+ and ~M+ the cones of o.mesures in ~N and ~M respectively. By (17), we get

∀ t̂ ∈ T̂ ∀ ξ ∈ H (QNt̂ξ|ξ) = (Nt̂�ξ|�ξ) ≥ 0, whenever ∀ t̂ ∈ T̂ Nt̂ ≥ 0. Therefore,

Q ~N+ ⊂ ~M+ ▶
Now we extend the inductor P to all of ~N. Recall that for A ∈ B(H) we have

PA := �AQ. For this reason we de�ne

∀M ∈ ~M ∀ Ê ∈ 2T̂ (PM)Ê := �(MQ̂Ê)Q; (18)

in particular,
∀ t̂ ∈ T̂ (PM)t̂ = �(MQ̂t̂)Q. (19)

Proposition. The inductor P is a linear unstretching map ~M → ~N which maps
real o.charges to real ones and o.measures to o.measures. It is left inverse to the
embedding Q : ~N → ~M. This means that

∀M ∈ ~M ∥PM∥ ≤ ∥M∥,

∀N ∈ ~N ∀ Ê ∈ 2T̂ PQNÊ = NÊ.

◁According to (6) and (19), we �nd ∥PM∥ =
∑

t̂∈T̂ ∥(PM)t̂∥ =
∑

t̂∈T̂ ∥�MQ̂t̂Q∥ ≤∑
t̂∈T̂ ∥MQ̂t̂∥ ≤ ∥M∥. Sinse �Q = IH and λ̂Q̂Ê coincides with the characteris-

tic function of Ê, we have PQNÊ = �(QN)Q̂ÊQ = �(
∑

t̂∈T̂ λ̂Q̂Ê(t̂)QNt̂�)Q =∑
t̂∈T̂ λ̂Q̂Ê(t̂)Nt̂ = NÊ, by (16 ) and (18).

4. Nearstandard o.charges. Nearstandardness notion depends on the choice of
topology.
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De�nition. O.charge N is called weakly, (respectively strongly, uniformly) near-

standard if for some M ∈ st ~M

∀ ξ, η ∈ stH ∥(N−PM)(�ξ,�η)∥ ≈ 0, (20)

(respectively

∀ ξ ∈ stH ∥(N−PM)(�ξ)∥ ≈ 0, (21)

∥N−PM∥ ≈ 0). (22)

Obviously, a uniformly nearstandard o.charge is strongly nearstandard, and
o.charge M satisfying (22) also satis�es (21). A strongly nearstandard o.charge
is weakly nearstandard, and M satisfying (21) also satis�es (20). This follows from
the following evident inequalities:

∀N ∈ ~N ∀x ∈ H ∥N(x)∥ ≤ ∥N∥ · ∥x∥, (23)

∀N ∈ ~N ∀x, y ∈ H ∥N(x, y)∥ ≤ ∥N(x)∥ · ∥y∥. (24)

In the sequel, we assume that the inductor �̂ corresponding to the standard
�lling (T̂, Q̂, λ̂) of T is exact. It is easily shown that o.charge M satisfying (20) is
unique.

De�nition. The o.charge M satisfying (20) is denoted by ◦N and is called the

shadow of N. The quasikernel of P is the set qkerP := {M ∈ ~M : (∀ Ê ∈
T̂) (∥PMÊ∥ ≈ 0).

Proposition. a) The inductor P is exact in the sense that st qkerP = {0}. b) If

N ∈ ~N, M ∈ st ~M and ∥QN−M∥ ≈ 0, then o.charge N is uniformly nearstandard
and ◦N = M.

The proof is left to the reader.

Example. Here we assume that T̂ = T, (T̂, Q̂, λ̂) = (T, Q, λ). De�ne the o.charges
N and M as follows:

∀E ∈ 2T ∀x, y ∈ CT (NEx|y) :=
∑
t∈E

x(t)y(t)~νt, (n)

where ~νt ∈ N is some complex-valued charge, and

∀ E ∈ � ∀ ξ, η ∈ H (MEξ|η) =
∫
E
ξ(τ)η(τ)λ(dτ). (m)

In other words, ME is the operator of multiplication in H by the characteristic
function of E . Note that M ∈ st ~M+.

Let E ∈ 2T, x , y ∈ H, then (PMEx|y) = (MQEQx|Qy) =
∫
QE

Qx(τ)Qy(τ)λ(dτ) =∑
t∈E x(t)y(t)νt, where νt := λQt. Consequently,

∀ t ∈ T ∀x, y ∈ H ((N−PM)tx|y) = x(t)y(t)(~νt − νt), (25)
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or ∀ t ∈ T ∀x, y ∈ H ((N−PM)tx|y) = �(t)(x|δt)(δt|y)νt, where δt is a discrete
Dirac delta, and ∀ t ∈ T �(t) := (~νt − νt)ν

−1
t , νt := λQt. According to (11),

(12), and (25), we �nd

∀x, y ∈ H ∥(N−PM)(x, y)∥ =
∑
t∈T

|�(t)x(t)y(t)|ν(t). (26)

1◦ Suppose that ∀ t ∈ T |�(t)| ≪ ∞ and �(t) ≈ 0 quasieverywhere on T, then
the charge N is weakly nearstandard and ◦N = M.

◁ Let ξ, η ∈ stH, x := �ξ, y := �η. The function t 7→ �(t)x(t)y(t) is ν-
integrable, so that νT0 ≈ 0 and ∀ t ∈ T \ T0 �(t) ≈ 0. According to (26),
∥(N−PM)(x, y)∥ =

∑
t∈T0

+
∑

t∈T\T0
|�(t)x(t)y(t)|νt ≈ 0 because the second summand

is not greater than
max

t∈T\T0
|�(t)| · ∥x∥ · ∥y∥ ▶

Taking into account (8), (9), and that ∥δt∥ = ν
−1/2
t , we �nd

∀x ∈ H ∥(N−PM)(x)∥ =
∑
t∈T

ν
−1/2
t |�(t)x(t)|νt. (27)

2◦ Let
∑

t∈T |�(t)|2 ≈ 0, then N is strongly nearstandard and ◦N = M.
◁ It follows from (27) that

∥(N−PM)(x)∥ ≤
(∑
t∈T

|�(t)|2
)
∥x∥.

But for ξ ∈ stH and x = �ξ we have ∥x∥ ≪ ∞ ▶
Finally, since the operator x 7→ (x|δt)δtνt is an orthoprojector H → Cδt with the

unit norm, we obtain that ∀ t ∈ T ∥(N − PM)t∥ = |�(t)|, hence ∥N − PM∥ =∑
t∈T |�(t)|.
This proves that
3◦ N is uniformly nearstandard i�

∑
t∈T |�(t)| ≈ 0. Conversely, if

∑
t∈T |�(t)| ≈

0, then ◦N = M and ν−1
t �(t) ≈ 0 quasieverywhere on T.

5. H−-nearstandard o.charges. A wider nearstandardness notion corresponds
to a weaker operator norm. We use the equipment of CT by norms ∥·∥−, ∥·∥, ∥·∥+,
induced by H and its equipment. Let H− ⊃ H ⊃ H+ be a Hilbert equipment of
the space H (see, for example, [8]). The embedding Q : CT → H enables us to
carry the equipment of H over to CT. De�ne

∀ x, y ∈ CT (x|y)− := (Qx|Qy)−, ∥x∥− = ∥Qx∥−.

The negative inner product may be represented in the following form:

(∀α, β ∈ H−) (α|β)− = (Iα|Iβ)0,
(∀x, y ∈ CT) (x|y)− = (Ix|Iy)0,

where I ∈ HH− , I ∈ HH are linear operators symmetric w.r.t. the inner products
of H and H respectively. It is easy to prove that I2 = �I2Q = PI2 and I is a
bijection.
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The positive inner product is introduced by

∀x, y ∈ CT (x|y)+ = (I−1x|I−1y)0, ∥x∥+ := ∥I−1x∥0.

CT with the positive inner product by H+, and with the negative inner product is
denoted by H−. One can �nd more details on the properties of H+ and H− in [7].
The notions of H−-nearstandardness for functions x ∈ CT and operators A ∈ B(H)
were considered in [8], too.

For A ∈ B(H) denote ∥A∥′ = sup{∥Ax∥− : x ∈ H, ∥x∥+ = 1}. We have
∀x ∈ H ∥x∥− ≤ ∥x∥ ≤ ∥x∥+, hence

∀A ∈ B(H) ∥A∥′ ≤ ∥A∥. (28)

De�nition. For N ∈ ~N put

∥n∥′ =
∑
t∈T

∥Nt∥′. (29)

N is called H−-nearstandard if for some M ∈ st ~M

∥N−PM∥′ ≈ 0. (30)

Proposition. If N is uniformly neastandard, then it is H−-nearstandard, and its
shadow ◦N coincides with M which satis�es condition (30).

◁ By (28), (29), and (6), ∀N ∈ ~N ∥N∥′ ≤ ∥N∥. So, (30) follows from (22).
Uniqueness of M follows from the following propositions ▶
Proposition. If ∥N∥′ ≈ 0, then N is weakly nearstandard and ◦N = 0.

◁Obviously, ∥N(x, y)∥ =
∑

t∈T |(Nx|y)| ≤
∑

t∈T ∥Nt∥′∥x∥+∥y∥+, hence ∥N(x, y)∥ ≤
∥N∥′∥x∥+∥y∥+. Our statement follows from de�nition (20) because the chain
H− ⊃ H ⊃ H+ is standard, and ∀ ξ ∈ stH ∥�ξ∥+ ≪ ∞ ▶

Corollary. If N isH−-nearstandard, then it is weakly nearstandard, and M ∈ st ~M
satisfying (30) coincides with the shadow ◦N.

Example. Let the conditions of the previous example be satis�ed. By (25), we
conclude that ∥N−PM∥′ ≤

∑
t∈T |�(t)∥δt∥2−νt. So if

∑
t∈T |�(t)|∥δt∥2−νt ≈ 0, then

N de�ned in (n) is H−-nearstandard and it has the shadow ◦N = M de�ned in
(m). Note that ∥δt∥− ≪ ∞ since the chain H− ⊃ H ⊃ H+ is standard. Therefore,
the multiplicator ∥δt∥2− is not essential.

6. Spectral decompositions of di�erential operators. Here we use the ter-
minology and notation of [7], where it was proved that the discrete di�erentiation
operator D is nearstandard and its shadow D = ◦D is the \usual" di�erentiation
operator.

O.charge N = ND. Recall that domD = CT = H, where T =
◦−
2ℓ is a discrete

2ℓ-periodic discrete axis,
◦−
2ℓ = {−ℓ,−ℓ+h, . . . , ℓ−h}, ℓ > 0, h > 0, h ≈ 0. D takes

the form: ∀x ∈ H, ∀ t ∈ T Dx(t) = 1
ih [x(t + h) − x(t)] in view of condition of

periodicity (ℓ − h) + h = −ℓ. It has eigenfunctions et̂, where et̂(t) = eit̂t, t ∈ T,
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t̂ ∈
◦−
2ℓ̂,

◦−
2ℓ̂ = {−ℓ̂,−ℓ̂+ ĥ, . . . ℓ̂− ĥ}, ℓ̂ := π

h , ĥ := π
ℓ . As T̂ we take the spectrum of

D:

T̂ = σ(D) = {zt̂}
t̂∈

◦−
2ℓ
, zt̂ :=

eit̂h− 1

ih
. (31)

We have ∀ t̂ ∈
◦−
2ℓ̂ Det̂ = zt̂et̂. Since ∥et̂∥ =

√
2ℓ, the decomposition of the unity

N = ND of D acts according to the formula

∀ Ê ∈ 2T̂ ∀x ∈ H NÊx =
1

2ℓ

∑
zt̂∈Ê

(x|et̂)et̂. (32)

O.measure M = MD. At �rst we examine the case ℓ ≪ ∞. To avoid technical
di�culties we assume that ℓ ∈ stR. In this case D = ◦D is an operator in H :=
L2(T, λ), where T = [−ℓ, ℓ[, λ = dτ is the Lebesgue measure on T. D is de�ned

on functions ξ ∈ H such that dξ
dτ ∈ H and ξ(−ℓ) = ξ(ℓ); Dξ = 1

i
dξ
dτ . According to

our plan we take the spectrum of D as T̂:

T̂ := σ(D) = ĥZ := {. . . ,−2ĥ,−ĥ, 0, ĥ, 2ĥ, . . . }.

The eigenfunction ϵτ̂ such that ∀ τ ∈ T ϵτ̂ (τ) = eiτ̂τ corresponds to the eigenvalue

τ̂ ∈ T̂. Since ∥ϵτ̂∥2 = 2ℓ, we get that the decomposition of the unity M = MD of
D operates as follows

∀ Ê ∈ 2T̂ ∀ ξ ∈ H MÊξ = 1

2ℓ

∑
τ̂∈Ê

(ξ|ϵτ̂ )ϵτ̂ ;

in particular,

∀ τ̂ ∈ T̂ ∀ ξ ∈ H M{τ̂}ξ = 1

2ℓ
(ξ|ϵτ̂ )ϵτ̂ . (33)

Exactness of �̂. Recall that the embedding Q : 2T → � ⊂ 2T is de�ned by

∀ t ∈ T Qt = [t, t+ h[. The embedding Q̂ : 2T̂ → 2T̂ will be de�ned by

∀ τ̂ ∈
◦−
2ℓ̂ Q̂zτ̂ = {τ̂}, zτ̂ =

eiτ̂h − 1

ih
, (34)

what is natural for reason of zτ̂ ≈ τ̂ whenever |τ̂ | ≪ ∞. The measure λ̂ is de�ned

on �̂ = 2T̂ by ∀ τ̂ ∈ T̂ λ̂τ̂ := λ̂{τ̂} = ĥ. Note that T̂, �̂, λ̂ are standard because

ĥ = π
ℓ ∈ stR. The inductor �̂ corresponding to the standard �lling (T̂, Q̂, λ̂) of T̂

is exact. Really, let µ ∈ st qker �̂ (that is, µ is a standard complex-valued charge

de�ned on �̂) be such that ∀ Ê ∈ 2T̂ �̂µÊ ≈ 0, then ∀ τ̂ ∈ T̂ = ĥZ µQ̂{zτ̂} =

�̂µ{zτ̂} ≈ 0, hence by (34), µ{τ̂} ≈ 0. But for τ̂ ∈ stĥZ the number µ{τ̂} is
standard, therefore µ = 0.

Proposition. The decomposition of the unity N = ND is weakly nearstandard and
its shadow is M = MD.

◁ Recall that et̂ are related to ϵτ̂ through � : H→ H by

∀ t̂ ∈ T̂ et̂ = γt̂�ϵt̂, where γt̂ :=
it̂h

eit̂h − 1
.
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By (34), (PM)zτ̂ := (PM){zτ̂} = �(MQ̂{zτ̂})Q = �M{τ̂}Q. Consequently,
by (33), ∀x ∈ H (PM)zτ̂x = �M{τ̂}Qx = 1

2ℓ (Qx|ϵτ̂ )�ϵτ̂ . Taking into account
(Qx|ϵτ̂ ) = (x|�ϵτ̂ ), we �nd

∀x ∈ H ∀ t̂ ∈
◦−
2ℓ̂ (PM)zt̂x =

1

2ℓ

1

|γt̂|2
(x|et̂)et̂. (35)

De�ne the complex-valued charge (N−PM)(x, y) on 2T̂ by (N−PM)(x, y){zτ̂} =
((N − PM)zt̂x|y)H. According to (32) and (35), we have (N − PM)(x, y){zt̂} =
1
2ℓ

(
1− 1

|γt̂|2

)
(x|et̂)(et̂|y). So, (see (12))

∥(N−PM)(x, y)∥ = 1

2ℓ

∑
zt̂∈T̂

(
1− 1

|γt̂|2

)
|(x|et̂)(et̂|x)|.

Note that ∀ t̂ ∈ st(ĥZ) t̂h ≈ 0. Thus ∀ t̂ ∈ st(ĥZ) γt̂ ≈ 1. By the Robinson lemma,

γt̂ ≈ 1 up to some t̂0 ∈ ĥZ+ \ st(ĥZ), i.e. γt̂ ≈ 1 whenever |t̂| ≤ t0. We conclude
that

∥(N−PM)(x, y)∥ ≤ 1

2ℓ

∑
|t̂|≤t̂0

(
1− 1

|γt̂|2
)
|(x|et̂)(et̂|y)|+

1

ℓ

( ∑
|t̂|>t̂0

|(x|et̂)|
2
)1/2( ∑

|t̂|>t̂0

|(y|et̂)|
2
)1/2

,

because |γt̂| ≥ 1 and |1 − 1
|γt̂|2

| ≤ 2. Let x = �ξ, y = �η with ξ, η ∈ stH. Then

x, y ∈ nstH and, by nearstandardness criterion 6.6.1 [7], the addend in the last sum
is in�nitesimal. The augend is also in�nitesimal, because it is not greater than
∥x∥ · ∥y∥ max

|t̂|<t̂0

|1− 1
|γt̂|2

|,   ∥x∥, ∥y∥ ≪ ∞ ▶

Case ℓ ≈ +∞. In this case the description of spectrum σ(D) =: T̂ and decom-
position of the unity N = ND of D remains the same as for ℓ ∈ stR. Note that

ĥ = π
ℓ ≈ 0, so ∀ ĥ ∈

◦−
2ℓ̂ the eigenvalues zt̂ and zt̂+ĥ are in�nitely close: zt̂ ≈ zt̂+ĥ.

Since now ◦D = D is the di�erentiation on whole axis, it is natural to take T = R,
λ be the Lebesgue measure on R, and ∀ t ∈ T Qt = [t, t+h[ as the standard �lling

(T, Q, λ) of T. Besides, the standard �lling (T̂, Q̂, λ̂) of T̂ = σ(D) is de�ned as

follows: T̂ = σ(D) = R, λ̂ is the Lebesgue measure on R, and

∀ zt̂ ∈ T̂ Q̂{zt̂} = [t̂, t̂+ ĥ[. (36)

As it was noted, the condition ĥ ≈ 0 implies the exactness of �̂.
It is a well-known fact that decomposition of the unity M = MD of D takes the

form

∀ ξ ∈ H ∀ Ê ∈ �̂ MÊξ(τ) = 1√
2π

∫
Ê
ξ̂(τ̂)eiτ̂τdτ,

where �̂ is the algebra of Lebesgue measurable sets Ê ⊂ R, ξ̂ = Fξ is the Fourier
transform of ξ ∈ H:

ξ̂(τ̂) = Fξ(τ̂) =
1√
2π

∫
R
ξ(τ)e−iτ̂τdτ.
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In particular, according to (36) we have

∀ zt̂ ∈ T̂ MQ̂{zt̂}ξ(τ) =
1√
2π

∫ t̂+ĥ

t̂

ξ̂(τ̂)eiτ̂τdτ.

It is easily shown that, for x ∈ H, the \usual" Fourier transform Q̂x := FQx is
related to the discrete Fourier transform x̂ := Cx by

∀ τ̂ ∈ R Q̂x(τ̂) =
1

γt̂
x̂(τ̂), γτ̂ :=

iτ̂h

eiτ̂h − 1
. (38)

For any x, y ∈ H form the complex-valued charge PM(x, y) as follows:

∀ Ê ∈ �̂ PM(x, y)Ê =
∑
zt̂∈Ê

(
�MQ̂{zt̂}Qx|y

)
H
.

In particular, taking into account that �∗ = Q and by (37), we get

∀ zt̂ ∈ T̂ PM(x, y){zt̂} =
(
MQ̂{zt̂}Qx|Qy

)
H

=∫
R

dτ
1√
2π

∫ t̂+ĥ

t̂

Q̂x(τ̂)eiτ̂τ dτ̂ Qy(τ) =

∫ t̂+ĥ

t̂

Q̂x (τ̂) Q̂y(τ̂) dτ̂ .

On the other hand, by (32),

N(x, y){zt̂} =
π

ℓ
x̂(t̂)ŷ(t̂) =

∫ t̂+ĥ

t̂

dτ̂ x̂(t̂)ŷ(t̂).

Thus according to (12) and (38),

∥(N−PM(x, y)∥ =
∑
zt̂∈T̂

∣∣∣(N−PM(x, y){zt̂}
∣∣∣ = ∑

t̂∈T̂

∣∣∣∫ t̂+ĥ

t̂

(|γτ̂ |2−1)Q̂x(τ̂)Q̂y(τ̂) dτ
∣∣∣.

If |t̂| ≪ ∞, then γt̂ ≈ 1, hence there exists a t̂0 ≈ +∞ such that γ := max
|t̂|<t̂0

∣∣|γt̂|2 − 1
∣∣ ≈

0. Taking the condition |γτ̂ | < π
2 into account, we �nd that

∥(N−PM(x, y)∥ ≤ γ∥Q̂x} · ∥Q̂y∥+ C
∣∣∣∫

|τ̂ |>t0

Q̂x(τ̂)Q̂y(τ̂) dτ̂
∣∣∣,

where C is independent of x and y, 0 < C ≪ ∞. If x, y ∈ nstH, then the augend at
the right is in�nitesimal, because ∥Q̂x∥ = ∥Qx∥ = ∥x∥ ≪ ∞ and ∥Q̂y∥ = ∥Qy∥ =
∥y∥ ≪ ∞. The addend is also in�nitesimal, because Qx,Qy ∈ nstH ▶
Remark. Formula (38) may be interpreted in the following way: FD′Q = ED∗,
where D′ = 1

i
d
dτ is the di�erentiation operator on R in the sense of distributions,

D∗ is adjoint to D: ∀x ∈ CT D∗x(t) = (Dx)(t− h) = 1
ih [x(t)− x(t− h)].

◁ Since γτ̂ = τ̂
zτ̂
, relationship (38) may be represented in the form τ̂ Q̂x(τ̂) =

zτ̂ x̂(τ̂). It remains to take into account that di�erentiation converts to multiplica-
tion by independent variable under the Fourier transrorm ▶

Appendix. Nearstandardness criterion for a scalar measure.

1. LetX be a standard set, X a standard σ-algebra of setsA ⊂ X. A measure (onX)
is a σ-additive function µ ∈ RX

+. By de�nition, it is nearstandard if var(µ− ν) ≈ 0
for some standard measure ν on X. Then ν is denoted by ◦µ and called the shadow
of µ.
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De�nition. A measure µ is said to be S-continuous i� µX ≪ ∞ and for any stan-
dard decreasing sequence An ∈ X such that

∩
n∈N An = ∅ the following condition

holds:
n ≈ ∞ =⇒ µ(An) ≈ 0.

Remark. Each nearstandard measure is S-continuous.

Proof. First suppose that µ is standard. Let (An)n∈N be a standard decreasing
sequence in X with ∩n∈N = ∅. The σ-additivity of µ implies µ(A1) =

∑
n∈N µ(An \

An+1). The series above is standard and convergent, hence µ(An) =
∑

k≥n µ(Ak \
Ak+1) ≈ 0 for any n ≈ ∞. Now consider a nearstandard measure µ on X. By
de�nition, there exists (a unique) standard measure ◦µ onX such that var(µ−◦µ) ≈
0. Since ∀A ∈ X (µ)(A) ≤ (var(µ− ◦µ))(X)+(◦µ)(A), from (◦µ)(A) ≈ 0 it follows
that (µ)(A) ≈ 0. Hence µ is S-continuous, too.

De�nition. A measure µ0 on X is said to be the shadow of µ in the weak sense
i�
(i) µ0 is standard,
(ii) for any standard A ∈ X µ0(A) ≈ µ(A). Obviously, if µ has the shadow in

the weak sense, then it is unique. As above it will be denoted by ◦µ (without
ambiguity).

Proposition. A S-continuous measure µ has the shadow in the weak sense.

Proof. For A ∈ stX put µ1(A) =
◦[µ(A)] and let µ0 be the standard extension of µ1

from stX to the whole X. Consider an arbitrary standard partition A = ⊔n∈NAn
of an arbitrary standard A ∈ X. For n ≪ ∞ An is standard. Hence ∀n ≪ ∞
µ0(A) =

∑
k≤n µ0(Ak) +

◦[µ(Bn)], where Bn := ⊔k>nAk. Therefore, for n ≪ ∞
µ0(A) −

∑
k≤n µ0(Ak) − µ(Bn) ≈ 0. By the Robinson lemma, this holds up to

some n = n0 ≈ ∞. But the Bn's form a standard decreasing sequence with empty
intersection. Therefore, ∀n ≈ ∞ µ(Bn) ≈ 0. Hence µ0(A) ≈

∑
k≤n0

µ0(Ak). The

number µ0(A) and the series
∑

n∈N µ0(An) are standard. Besides ∀n µ0(An) ≥ 0.
Therefore µ0(A) =

∑
n∈N µ0(An). By transfer, µ0 is σ-additive, hence ∀A ∈ stX

µ(A) ≈ µ0(A), µ0 =
◦µ ▶

2. Now we consider another approach. Let X be a standard set, X a standard
σ-algebra of subsets A ⊂ X, m a σ-additive measure on X. We interpret X as a
metric space with equality and distance de�ned as follows: ∀ A, B ∈ X

(A = B ≡ m(A△B) = 0)

d(A,B) := m(A,B),

where A△B := (A \B) ∪ (B \A).

Remark. Let f ∈ Y X (here Y is an internal set), then f is a function on (X, d) i�

m(A△B) = 0 =⇒ f(A) = f(B). (1)

But for an additive function µ ∈ CX this is simpler:

m(A) = 0 =⇒ µ(A) = 0. (2)

◁ Let (1) hold. Put B = ∅. The additivity of µ implies µ(B) = 0 and we
see that (2) is satis�ed. The additivity of µ implies |µ(A) − µ(B)| ≤ µ(A △ B).
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Suppose that (1) holds for f = µ and m(A△ B) = 0. Then µ(A△ B) = 0, hence
µ(A) = µ(B) ▶

Now suppose that a measure space (X,X,m) is standard. Arguing as above,
we �nd that for an additive function µ ∈ CX the <nst>-condition of graph-
nearstandardness is

m(A) ≈ 0 =⇒ µ(A) ≈ 0. (3)

We emphasize that (2) is exactly the condition of absolute continuity of µ with
respect to m.

De�nition. A measure µ on X is said to be absolutely continuous with respect to
m i� ∀A ∈ X µ(A) ≪ ∞ and µ satis�es (2) and (3).

Let µ be an absolutely S-continuous (with respect to m) measure. Since ∀A ∈ X
µ(A) ≪ ∞, ◦µ considered as the shadow of a graph-nearstandard function is de�ned
everywhere: dom(◦µ) = X. Besides ∀A ∈ stX (◦µ)(A) = ◦[µ(A)]. We see that
◦µ is the standard extension of stX ∋ A 7→ ◦[µ(A)] to the whole X. Note that ◦µ
is S-continuous. Indeed, let (An)n∈N be a standard decreasing sequence in X such
that ∩n∈NAn = ∅. Then ∀n ≈ ∞ m(An) ≈ 0 (since m is standard). Therefore,
by (3), ∀n ≈ ∞ µ(An) ≈ 0. Hence µ has the shadow in the weak sense. Thus the
following statement holds.

Proposition. The shadow of a graph-nearstandard measure coincides with the one
in the weak sense. In particular, it is σ-additive.

Many other approaches to the problems which are discussed in this paper are
possible. For instance, see [1, Ch.5].
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