FIVE OPEN PROBLEMS IN THE THEORY OF ENTIRE FUNCTIONS

M.M. Sheremeta

Let l be a positive continuous function defined on $[0, +\infty)$. An entire function f is said to be a function of bounded l-index if there exists a number $\nu \in \mathbb{Z}_+$ such that

$$\frac{|f^{(j)}(z)|}{j!l^{j}(|z|)} \le \max\left\{\frac{|f^{(k)}(z)|}{k!l^{k}(|z|)} : 0 \le k \le \nu\right\}$$
 (1)

for every $z \in \mathbb{C}$ and $j \in \mathbb{Z}_+$ [1]. If $l(|z|) \equiv 1$, we obtain the definition of entire function of bounded index. Many papers are devoted to investigations of properties of entire functions of bounded index and their applications (see [2] for references). Counterparts of the main theorems from [2] for entire functions of bounded l-index are obtained in [3–5]. The fact that the function l is involved in the definition 1 leads naturally to some new problems, in particular, to the problem of existence, for a pregiven function l, of an entire function of bounded l-index which satisfies some growth conditions.

It is easy to see that every polynomial is a function of bounded l-index, for every function l. This is not the case for entire transcendental functions. Actually [6], for a function l there exists an entire transcendental function of bounded l-index if and only if $rl(r) \to \infty$ $(r \to \infty)$. In [7], entire functions with growth of logarithm of maximum modulus close to $\int_0^r l(t)dt$ are indicated for functions l satisfying some additional conditions. On the other hand, if A_k are zeros of an entire function f, p_k their multiplicity, with $\lim_{k\to +\infty} p_k = \pm \infty$, then f cannot be a function of bounded l-index, for every positive continuous on $[0, +\infty)$ function l.

The following natural problem arizes.

Problem 1. Let $p_k = O(1)$, $k \to \infty$. Is there a positive continuous on $[0, +\infty)$ function l such that f is a function of bounded l-index?

An entire function of exponential type $\sigma > 0$ is said to be of sine type [8] if there exist $m \geq 0$, M > 0, and H > 0 such that $m \leq |f(x+iy)| \exp\{-\sigma|y|\} \leq M$ for every $x \in \mathbb{R}$ and $y \in \mathbb{R} \setminus (-H, H)$. A necessary and sufficient conditions are given in [8] for a bounded sequence (ψ_k) in order that every entire function with zeros $a_k + \psi_k$ is of sine type, a_k being zeros of a sine type function. On the other hand [9], every function of sine type is a function of bounded l-index. Thus the following important problem arizes.

Problem 2. Let f be an entire function of bounded index with zeros a_k . For what bounded sequences (ψ_k) the function with zeros $a_k + \psi_k$ is also of bounded index?

The following problem is also connected with functions of bounded *l*-index.

Problem 3. Let l be a positive continuous on $[0, +\infty)$ function such that $xl(x) \to +\infty$, $l(x + O(\frac{1}{l(x)})) = O(l(x))$, $x \to +\infty$ and f an entire function with zeros a_k . Put

$$G_r(f) = \mathbb{C} \setminus \bigcup_k \left\{ z : |z - a_k| \le \frac{r}{l(|a_k|)} \right\}, \quad r > 0,$$

$$n\left(r, z_0, \frac{1}{f}\right) = \sum_{|a_k - z_0| \le r} 1$$

and assume that for every r > 0 there exists M(r) > 0 such that

$$\left| \frac{f'(z)}{f(z)} \right| \le M(r)l(|z|)$$

for every $z \in G_r(f)$ and

$$\overline{\lim}_{r \to \infty} \frac{n(r)}{rl(r)} < 1.$$

Is there $k \in \mathbb{N}$ such that $n\left(\frac{1}{l(|z_0|)}, z_0, \frac{1}{f}\right) \leq k$ for every $z_0 \in \mathbb{C}$?

Having in mind the representation of the sine as the canonical product, we may regard the entire function

$$\pi_0(z) = \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{\lambda_n^2} \right),\,$$

where (λ_n) is an increasing to $+\infty$ sequence of positive numbers, as its generalization. Since D. Polya's paper [10], the function π_0 is often used in investigations of properties of entire functions determined by gap power series, in the interpolation theory, and another aspects of analysis. The function π_0 has the same maximum modulus as the function

$$\pi(z) = \prod_{n=1}^{\infty} \left(1 + \frac{z^2}{\pi^2}\right),$$

and the latter is positive onto a positive ray. Thus, it is more convenient to formulate the following problem for the function π .

Problem 4. Let $\sum_{n=1}^{\infty} \frac{1}{\lambda_n} < \infty$ and $\pi(z) = \sum_{n=0}^{\infty} \frac{a_n}{n!} z^n$. Then π is an entire function not exceeding the minimal type of the first order and by the Hadamard formula $\sqrt[n]{a_n} \to 0$ $(n \to \infty)$. Then $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is an entire function. Does the relation

$$\int_{1}^{\infty} \frac{\ln \ln f(r)}{r^2} dr < \infty$$

holds?

The following problem is also related to gap power series and interpolation.

Problem 5. Let (λ_n) be an increasing sequence of natural numbers such that $\sum_{n=0}^{\infty} \frac{1}{\lambda_n} < \infty$ and

$$\Lambda_n = \prod_{\substack{m=1\\m\neq n}}^{\infty} \frac{\lambda_m^2}{|\lambda_m^2 - \lambda_n^2|} \ .$$

Is there an increasing sequence of natural numbers (p_n) such that

$$\int_{1}^{\infty} \frac{\ln \ln \Psi(r)}{r^2} dr < \infty,$$

where

$$\Psi(r) = \sum_{n=1}^{\infty} \Lambda_n p_n! \left(\frac{r}{\lambda_n}\right)^{p_n} ?$$

REFERENCES

- 1. Kuzyk A.D., Sheremeta M.N. Entire functions of bounded l-distribution of values // Matem. zametki. 1986. V.39, №1. P.3–13 (Russian).
- 2. Shah S.M. Entire functions of bounded index // Lect. Notes in Math. 1977. V.589. P.117-145.
- 3. Kuzyk A.D., Sheremeta M.N. On entire functions satisfying linear differential equations // Diff. equations. 1990. V.26, №10. P.1716–1722 (Russian).
- 4. Sheremeta M.N. On l-index and l-distribution of values of entire functions // Izv. vuzov. Matem. 1990, №2. P.94–96 (Russian).
- 5. Sheremeta M.N., Kuzyk A.D. On logarithmic derivative and zeros of entire function of bounded l-index // Sibirsk. matem. zh. 1992. V.33, №2. P.142–150 (Russian).
- 6. Goldberg A.A., Sheremeta M.N. On existence of entire transcendental function of bounded l-index // Matem. zametki. 1995. V.57., №1. P.125-129 (Russian).
- 7. Bordulyak M.T., Sheremeta M.N. On existence of entire functions of bounded l-index and l-regular growth // Ukr. matem. zh. 1996. V.48, №9. (Russian).
- 8. Levin B.Ya., Ostrovski I.V. On small perturbations of zero set of entire functions of sine type // Izv. AN SSSR. Ser. matem. 1979. V.43, №1. P.87–110 (Russian).
- 9. Sheremeta M.N. On entire functions of sine type. In: Function Theory and its Appl. Abstracts of Conference (June 15–22, 1995, Kazan). Kazan "Matematika" foundation, 1995. P.74 (Russian).
- 10. Polya G. Untersuchungen über Lücken und Singularitäten von Potenzreihen // Math. Z. 1929. Bd.29. S.549–640.

Lviv University, Dept. of Math. and Mech.