УДК 515.12

THE SPACE OF LOCALLY HÖLDER MAPS FROM A LOCALLY COMPACT METRIC SPACE TO A BANACH SPACE

T.O. Banakh

ABSTRACT. T. Banakh, The space of locally Hölder maps from a locally compact metric space to a Banach space, Math. Stud. 2 (1993) 87–90.

For a separable locally compact metric space (X,d) and a separable Banach space Y, C(X,Y) denotes the spaces of all continuous maps from X to Y, equipped with the compact-open topology. The linear subspace $H^{\mu}(X,Y) \subset C(X,Y), \ \mu \in (0,1]$, consisting of all locally μ -Hölder maps is considered. It is proved that the couple $(C(X,Y),H^{\mu}(X,Y))$ is homeomorphic either to (s,Σ) or to $(s\times s,\Sigma\times s)$ or to $(s^{\omega},\Sigma^{\omega})$. Here $s=(-1,1)^{\omega}$ is the pseudo-interior of the Hilbert cube and Σ is its radial interior.

1. Introduction

In the article the topology of the space consisting of locally Hölder maps from a separable locally compact metric space to a separable Banach space is studied. We show that it is homeomorphic to some well known infinite-dimensional model spaces.

Recall that $s = (-1, 1)^{\omega}$ is the pseudo-interior of the Hilbert cube $Q = [-1, 1]^{\omega}$ and $\Sigma = \{(x_i)_{i=1}^{\infty} \in Q \mid \sup\{|x_i| \mid i \in \mathbb{N}\} < 1\} \subset s \subset Q$ is its radial interior.

Let (X, d_X) , (Y, d_Y) be metric spaces. The space of all continuous functions from X to Y, equipped with the compact-open topology, is denoted by C(X,Y). For $0 \le \mu \le 1$ let $H^{\mu}(X,Y) = \{f \in C(X,Y) \mid \forall x \in X \; \exists U, \; x \in U^{open} \subset X, \; \text{such that } \sup\{d_Y(f(x),f(x'))/(d_X(x,x'))^{\mu} \mid x,x' \in U\} < \infty\}$ be the linear subspace in C(X,Y) consisting of all locally μ -Hölder maps. Note that $H^0(X,Y) = C(X,Y)$ and $H^1(X,Y) = L(X,Y)$ is the set of all locally Lipshchitz maps.

It follows from Ascoli-Arzela Theorem and [1, Theorem VIII.3.1] that the couple (C(X,Y),L(X,Y)) is homeomorphic to (s,Σ) , provided X is a non-discrete compactum and $(Y,\| \|)$ is a finite-dimensional Banach space.

This result was generalized by K. Sakai and R. Wong [2]. They proved that (C(X,Y), L(X,Y)) is an (s,Σ) -manifold, provided X is a non-discrete compactum and Y is a separable locally-compact locally convex set in a normed linear space (see also [3]).

In this article we obtain another generalization of the above statement.

¹⁹⁹¹ Mathematics Subject Classification. 57N17, 57N20.

For a topological space X by $X^{(1)} = \{x \in X \mid x \in \operatorname{cl}_X(X \setminus \{x\})\} \subset X$ we denote the set of all cluster points of X.

The main result of the paper is the following classification

Theorem. Let (X, d) be a separable locally-compact non-discrete metric space and (Y, || ||) be a separable Banach space. Then for every $0 < \mu \le 1$ the couple $(C(X, Y), H^{\mu}(X, Y))$ is homeomorphic to

- (1) (s, Σ) , provided X is compact and dim $Y < \infty$;
- (2) $(s \times s, \Sigma \times s)$, provided $X^{(1)}$ is compact and either X is not compact or $\dim Y < \infty$;
- (3) $(s^{\omega}, \Sigma^{\omega})$, provided $X^{(1)}$ is not compact.

Assumptions. Throughout the article $\mu \in (0,1]$, $(Y, \| \|)$ is a separable Banach space and (X,d) is a separable non-discrete locally-compact metric space. Let $X = \bigcup_{n=1}^{\infty} X_n$ where $X_n \subset \bar{X}_n \subset X_{n+1}$, $n \in \mathbb{N}$, are open sets with the compact closures \bar{X}_n .

2. Borelian classification of subsets $H^{\mu}(X,Y) \subset C(X,Y)$.

Let X_0 be a closed subset in X. Let $C(X|X_0,Y) = \{f \in C(X,Y) \mid f|X_0 \equiv 0\} \subset C(X,Y)$ and $C_0(X,Y) = \{f \in C(X,Y) \mid \text{supp}(f) = \text{cl}_X(f^{-1}(Y\setminus\{0\})) \text{ is compact}\}$. Let $H^{\mu}(X|X_0,Y) = H^{\mu}(X,Y) \cap C(X|X_0,Y), H^{\mu}_0(X,Y) = C_0(X,Y) \cap H^{\mu}(X,Y)$ and $H^{\mu}_0(X|X_0,Y) = H^{\mu}_0(X,Y) \cap H^{\mu}(X|X_0,Y)$.

Recall [4] that the topology on C(X,Y) is generated by the pre-basis $\{\langle K,U\rangle = \{f \in C(X,Y) \mid f(K) \subset U\} \mid K \text{ is compact in } X \text{ and } U \text{ is open in } Y\}$. This implies that $C(X|X_0,Y)$ is closed in C(X,Y).

Lemma 1. $H_0^{\mu}(X,Y)$ is an F_{σ} -set in C(X,Y). Moreover, if dim $Y < \infty$, then $H_0^{\mu}(X,Y)$ is sigma-compact.

Proof. Obviously, $H_0^{\mu}(X,Y) = \bigcup_{n=1}^{\infty} A_n$ where $A_n = \{f \in C(X,Y) \mid f \mid X \setminus X_n \equiv 0 \text{ and } \|f(x) - f(x')\| \leq n d(x,x')^{\mu} \text{ for } x,x' \in X\}$. It is easily seen that $A_n, n \in \mathbb{N}$, are closed subsets in C(X,Y). If dim $Y < \infty$, then, by Ascoli Theorem [4, 8.2.10], $A_n, n \in \mathbb{N}$, are compact.

Recall that for a topological space Z, $\mathcal{M}_2(Z)$ is the collection of subsets of Z that can be expressed as $\bigcap_{n=1}^{\infty} A_n$, where A_n , $n \in \mathbb{N}$, are F_{σ} -subsets in Z.

Corollary 1. The set $H^{\mu}(X,Y)$ belongs to the class $\mathcal{M}_2(C(X,Y))$.

Proof. Indeed, $H^{\mu}(X,Y) = \bigcap_{n=1}^{\infty} A_n$ where $A_n = \pi_n^{-1}(H^{\mu}(\bar{X}_n,Y)), n \in \mathbb{N}$. Here $\pi_n : C(X,Y) \to C(\bar{X}_n,Y)$ is the map defined by $\pi_n(f) = f|\bar{X}_n$. By Lemma 1, $H^{\mu}(\bar{X}_n,Y) = H^{\mu}_0(\bar{X}_n,Y)$ is an F_{σ} -subset in $C(\bar{X}_n,Y)$. This implies that $A_n = \pi_n^{-1}(H^{\mu}(\bar{X}_n,Y))$ is an F_{σ} -subset in C(X,Y). Hence $H^{\mu}(X,Y) = \bigcap_{n=1}^{\infty} A_n \in \mathcal{M}_2(C(X,Y))$.

Lemma 2. Assume that $X^{(1)}$ is compact. Then $H^{\mu}(X,Y)$ is an F_{σ} -subset in C(X,Y).

Proof. It is easily seen that $H^{\mu}(X,Y) = \bigcup_{n=1}^{\infty} A_n$ where $A_n = \{f \in C(X,Y) \mid \|f(x) - f(x')\| \le n(d(x,x'))^{\mu}$ for $x, x' \in O_d(X^{(1)}, 1/n)\}$, $n \in \mathbb{N}$. Here $O_d(X^{(1)}, 1/n)$ is the $\frac{1}{n}$ -neighbourhood of $X^{(1)} \subset X$. Obviously, the set A_n is closed in C(X,Y) for every $n \in \mathbb{N}$.

3. The topology of the couple $(C(X,Y), H^{\mu}(X,Y))$.

Note at first that C(X,Y) is a Frechet space (i.e. a locally convex linear complete metric space): the topology on C(X,Y) can be equivalently defined by the countable system of pseudonorms $\{\|\cdot\|_n\}_{n=1}^{\infty}$ where $\|f\|_n = \sup\{\|f(x)\| \mid x \in \bar{X}_n\}, f \in C(X,Y),$ $n \in \mathbb{N}$.

The following is easy and can be proved by the standard methods.

Lemma 3. Let $X_0 \subset X$ be a closed subset. Then the set $H_0^1(X|X_0,Y)$, and, consequently, $H_0^{\mu}(X|X_0,Y) \supset H_0^1(X|X_0,Y)$, is dense in $C(X|X_0,Y)$.

Theorem 1. Let X_0 be a closed subset in X. If $X \setminus X_0$ is non-discrete and dim $L < \infty$ then the couple $(C(X|X_0,Y), H_0^{\mu}(X|X_0,Y))$ is homeomorphic to (s, Σ) .

Proof. By [1, Theorem VIII.3.1], it is sufficiently to prove that $H_0^{\mu}(X|X_0,Y)$ is a dense sigma-compact linear subset in $C(X|X_0,Y)$ which contains an infinite-dimensional convex compactum.

Since dim $L < \infty$, by Lemmas 1 and 3, $H_0^{\mu}(X|X_0,Y) = H_0^{\mu}(X,Y) \cap C(X|X_0,Y)$ is a dense sigma-compact linear subspace in $C(X|X_0,Y)$.

Finally, since $X \setminus X_0$ is not discrete, there exists an infinite compactum $K \subset X \setminus X_0$. Obviously, $K \subset X_n$ for some $n \in \mathbb{N}$. The set $C = \{f \in C(X|X_0,Y) \mid f|X \setminus X_n \equiv 0, \|f(x) - f(x')\| \leq d(x,x'), x,x' \in X\}$ is an infinite-dimensional convex compactum in $H_0^{\mu}(X|X_0,Y)$.

Theorem 2. Let X_0 be a closed subset in X. If $X \setminus X_0 \neq \emptyset$ and dim $L = \infty$, then the couple $(C(X|X_0,Y), H_0^{\mu}(X|X_0,Y))$ is homeomorphic to $(s \times s, \Sigma \times s)$.

Proof. By [5, Theorem 3.5], it is sufficient to prove that $H_0^{\mu}(X|X_0,Y)$ is a dense linear F_{σ} -subset in $C(X|X_0,Y)$ which contains a closed in C(X,Y) convex non-locally compact subset.

By Lemmas 1 and 3, $H_0^{\mu}(X|X_0,Y)$ is a dense linear F_{σ} -subset in $C(X|X_0,Y)$.

It is easily seen that the convex set $C = \{f \in C(X|X_0,Y) \mid ||f(x) - f(x')|| \le d(x,x') \text{ for } x,x' \in X\}$ is closed in $C(X|X_0,Y)$ and C is not locally compact (recall that Y is not locally compact). This completes the proof of the theorem.

Theorem 3. Assume that $X^{(1)}$ is compact and either X is not compact or dim $L = \infty$. Then the couple $(C(X,Y), H^{\mu}(X,Y))$ is homeomorphic to $(s \times s, \Sigma \times s)$.

Proof. By Lemmas 2 and 3, $H^{\mu}(X,Y)$ is a dense linear F_{σ} -subset in C(X,Y). By [5, Theorem 3.5], it is sufficiently to show that $H^{\mu}(X,Y)$ contains a closed in C(X,Y) convex non-locally compact subset.

Assume at first that X is not compact. Then for every $n \in \mathbb{N}$ the set $X \setminus \bar{X}_n$ is infinite. Since $X^{(1)}$ is compact, $X^{(1)} \subset X_n$ for some $n \in \mathbb{N}$. Then $X \setminus X_{n+1}$ is a discrete infinite closed subset in X. Obviously, $C = \{f \in C(X,Y) \mid f | \bar{X}_n \equiv 0\} \cong Y^{X \setminus \bar{X}_n} \cong s$ is a closed in C(X,Y) convex non-locally compact subset in $H^{\mu}(X,Y)$.

Assume now that dim $Y = \infty$, i.e. Y is not locally compact. Then $C = \{f \in C(X,Y) \mid f \equiv \text{constant} \in Y\}$ is a closed in C(X,Y) convex non-locally compact set of $H^{\mu}(X,Y)$.

Theorem 4. If $X^{(1)}$ is not compact, then the couple $(C(X,Y), H^{\mu}(X,Y))$ is homeomorphic to $(s^{\omega}, \Sigma^{\omega})$.

Proof. By [5, Proposition 4.2], if F is a separable Frechet space and $E \in \mathcal{M}_2(F)$ is a dense linear subset such that for some closed linear subspace $G \subset F$ the couple $(G, G \cap E)$ is homeomorphic to $(s^{\omega}, \Sigma^{\omega})$, then the couple (F, E) is homeomorphic to $(s^{\omega}, \Sigma^{\omega})$ as well.

Since $X^{(1)}$ is not compact, there exists a closed discrete countable set $\{x_n\}_{n=1}^{\infty} \subset X^{(1)}$. Let $\chi: X \to \mathbb{R}$ be a function with $\chi(x_n) = n$ for every $n \in \mathbb{N}$. For $n \in \mathbb{N}$ let $U_n = \chi^{-1}((n - \frac{1}{3}, n + \frac{1}{3})) \subset X$. Let $X_0 = X \setminus \bigcup_{n=1}^{\infty} U_n$.

Then, obviously,

 $(C(X|X_0,Y),H^{\mu}(X|X_0,Y))\cong \Pi_{n=1}^{\infty}(C(X|(X\backslash U_n),Y),H^{\mu}(X|(X\backslash U_n),Y)).$

By Theorems 1 and 2, for every $n \in \mathbb{N}$ the couple $(C(X|(X\setminus U_n), Y), H^{\mu}(X|(X\setminus U_n), Y))$ is homeomorphic either to (s, Σ) or to $(s \times s, \Sigma \times s)$. This implies that $(C(X|X_0, Y), H^{\mu}(X|X_0, Y)) \cong (s^{\omega}, \Sigma^{\omega})$. Since $C(X|X_0, Y)$ is a closed linear subspace in C(X, Y) and, by Lemma 2, $H^{\mu}(X, Y) \in \mathcal{M}_2(C(X, Y))$ is a dense linear subspace in C(X, Y), the couple $(C(X, Y), H^{\mu}(X, Y))$ is homeomorphic to $(s^{\omega}, \Sigma^{\omega})$ as well.

Question. For an open subset $U \subset Y$ let $C(X,U) = \{f \in C(X,Y) \mid f(X) \subset U\}$ and $H^{\mu}(X,U) = H^{\mu}(X,Y) \cap C(X,U)$. Assume that $X^{(1)}$ is not compact. Is the couple $(C(X,U),H^{\mu}(X,U))$ an $(s^{\omega},\Sigma^{\omega})$ -manifold? (Note that C(X,U) is not open in C(X,Y)).

REFERENCES

- Bessaga C., Pełczyński A. Selected Topics in Infinite Dimensional Topology. Warszawa: PWN, 1975.
- 2. Sakai K. The space of Lipshchitz maps from a compactum to an absolute neighbourhood LIP extensor // Fund. Math. 1991. V.138. P.27–34.
- 3. Sakai K., Wong R.Y. The space of Lipshchitz maps from a compactum to a locally convex set // Top. Appl. 1989. V.32. P.223-235.
- 4. Engelking R. General Topology. Warszawa: PWN, 1977.
- 5. Banakh T. The strongly universal property in closed convex sets, preprint, 1993.

Department of Mechanics and Mathematics, Lviv University, Universytetska 1, Lviv, 290602, Ukraine

Received 19.11.1992